[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05319853A - Sorting of hollow granular body and method for regulating particle size - Google Patents

Sorting of hollow granular body and method for regulating particle size

Info

Publication number
JPH05319853A
JPH05319853A JP13294992A JP13294992A JPH05319853A JP H05319853 A JPH05319853 A JP H05319853A JP 13294992 A JP13294992 A JP 13294992A JP 13294992 A JP13294992 A JP 13294992A JP H05319853 A JPH05319853 A JP H05319853A
Authority
JP
Japan
Prior art keywords
granular body
particles
hollow
hollow granular
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13294992A
Other languages
Japanese (ja)
Inventor
Ginji Umada
銀二 馬田
Shigenori Aoki
重憲 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13294992A priority Critical patent/JPH05319853A/en
Publication of JPH05319853A publication Critical patent/JPH05319853A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To decrease the generation of coagulated particles by freezing a quartz glass based hollow granular body sorted by air separation and gravity separation, and heating and drying the particles while the frozen state is kept in vacuum. CONSTITUTION:A quartz glass based hollow granular body prepared by mixing organosilicic compounds and a foaming agent, atomized and given thermal decomposition is classified by air separation into that of about 10mum central particle diameter and that of larger particle diameter to be removed. Next, after the hollow granular body of about 10mum central particle diameter is sorted by gravity separation and unfoamed particles and deformed particles are removed, the hollow granular body in slurry is instantaneously frozen. The frozen hollow granular body is heated and dried while frozen state is kept in vacuum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は中空粒状体について凝集
を無くした整粒方法に関する。大量の情報を迅速に処理
する必要から信号の周波数は益々向上して光通信も行わ
れている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sizing particles in which hollow particles are agglomerated. Due to the need to process a large amount of information quickly, the frequency of signals is increasing and optical communication is being performed.

【0002】このような高速な信号を処理する電子回路
が形成される回路基板は、電気信号の遅延時間τができ
るだけ少ないことが必要であり、このためには、次の
(1)式に示すように基板の誘電率εが小さいことが必要
である。
A circuit board on which an electronic circuit for processing such a high-speed signal is formed needs to have a delay time τ of an electric signal as small as possible. For this purpose,
As shown in equation (1), the dielectric constant ε of the substrate must be small.

【0003】 τ=ε1/2 /c …(1) 但し、εは基板の誘電率 cは光の速度Τ = ε 1/2 / c (1) where ε is the dielectric constant of the substrate c is the speed of light

【0004】[0004]

【従来の技術】かゝる問題を解決する手段として基板材
料としてガラスセラミックスが使用されている。
2. Description of the Related Art As a means for solving such a problem, glass ceramics are used as a substrate material.

【0005】すなわち、アルミナ( Al2O3,ε≒10) を
主成分とするグリーンシートは1300℃以上の焼成温度を
必要とするのに対し、アルミナ粉と硼珪酸ガラス粉との
混合物を主成分とするガラスセラミック・グリーンシー
トは焼成温度を1000℃以下に低下することができ、その
ため配線パターンの形成材料としてCu( 融点1083℃)を
使用することが可能となり伝送損失を少なくすることが
できる。
That is, while a green sheet containing alumina (Al 2 O 3 , ε≈10) as a main component requires a firing temperature of 1300 ° C. or higher, a mixture of alumina powder and borosilicate glass powder is mainly used. The glass-ceramic green sheet as a component can lower the firing temperature to 1000 ° C or less, so Cu (melting point 1083 ° C) can be used as a material for forming wiring patterns, and transmission loss can be reduced. ..

【0006】然し、このようなガラスセラミックス基板
の誘電率は4〜6であり、信号の遅延時間を短縮する目
的には不充分である。そこで、発明者等はセラミック基
板の低誘電率化を実現する方法としてアルミナなどのセ
ラミックスの一部を中空シリカ(石英)粉末に置き換え
て使用することを提案している。
However, the dielectric constant of such a glass ceramic substrate is 4 to 6, which is insufficient for the purpose of shortening the signal delay time. Therefore, the inventors have proposed to replace a part of ceramics such as alumina with hollow silica (quartz) powder and use it as a method for realizing a low dielectric constant of a ceramic substrate.

【0007】すなわち、シリカ(SiO2) は誘電率εが3.
8 と無機誘電体のうちでは最も低いが、中空とすること
により空気との複合誘電体を形成することができ、次の
(2)式に示すように誘電率を更に低下することができ
る。
That is, silica (SiO 2 ) has a dielectric constant ε of 3.
8 is the lowest of the inorganic dielectrics, but by making it hollow, a composite dielectric with air can be formed.
The dielectric constant can be further reduced as shown in equation (2).

【0008】ε0 =ε1 V1×ε2 V2 …(2) 但し、ε0 は複合誘電率、v1 は全容積に対しε1 なる
誘電体(石英) の占める割合、v2 は全容積に対しε2
なる誘電体(空気)の占める割合、 なお、中空シリカ粉末はメトキシシリケート〔Si(OCH3)
4]やエトキシシリケート[Si(OC2H5)4]などの有機硅素化
合物と発泡材を混合霧化した後に加熱分解する際、発泡
剤が気泡となるのを利用して作ることができる。
Ε 0 = ε 1 V 1 × ε 2 V 2 (2) where ε 0 is the composite permittivity, v 1 is the ratio of the dielectric (quartz) of ε 1 to the total volume, and v 2 is the total volume. Against ε 2
Of the dielectric material (air), the hollow silica powder is methoxysilicate [Si (OCH 3 )
4 ] and ethoxy silicate [Si (OC 2 H 5 ) 4 ] and the foaming material are mixed and atomized and then thermally decomposed, the foaming agent can be formed by forming bubbles.

【0009】発明者等はガラスセラミックスを構成する
セラミックスの一部を平均粒径が10μm 程度の中空シリ
カ粉末に置き換えることにより低誘電率化したガラスセ
ラミックス基板の使用を提案している。
The inventors have proposed the use of a glass ceramics substrate having a low dielectric constant by replacing a part of the ceramics constituting the glass ceramics with a hollow silica powder having an average particle size of about 10 μm.

【0010】すなわち、中空シリカ粉末,硼珪酸ガラス
粉末およびセラミック粉末との混合物に可塑剤,バイン
タおよび溶剤を加え、混練した後に成形してグリーンシ
ートを作り、このグリーンシートにバイアホールを形成
する孔開けを行った後、銅(Cu) ペーストをスクリーン
印刷して導体パターンを形成した後、このグリーンシー
トを位置合わせして積層し、一体化した後に焼成するこ
とにより多層セラミック回路基板を作ることができる。
That is, a plasticizer, a binder and a solvent are added to a mixture of hollow silica powder, borosilicate glass powder and ceramic powder, and the mixture is kneaded and then molded to form a green sheet, and a hole for forming a via hole is formed in this green sheet. After opening, a copper (Cu) paste is screen-printed to form a conductor pattern, and then the green sheets are aligned and laminated, integrated, and fired to make a multilayer ceramic circuit board. it can.

【0011】こゝで、今まで、中空シリカを主とする中
空粒状体の用途として粒径の小さなものは塗料の流動性
調整剤などに用いられ、また粒径が100 μm 以上と大き
なものはコンクリートの軽量材や樹脂成形体の軽量材な
どに使用されている。
Heretofore, hollow particles mainly composed of hollow silica having a small particle diameter have been used as a fluidity adjusting agent for paints, and a large particle having a particle diameter of 100 μm or more has been used. It is used as a lightweight material for concrete and a lightweight material for resin moldings.

【0012】このように、中空粒状体の主な使用目的は
コスト低減であり、粒径, 比重, 形状などは考慮され
ず、製造されたまゝの状態で使用されていた。そこで、
中空粒状体を低誘電率セラミック基板の構成材料として
使用し、高品質の回路基板を形成するためには粒径や比
重などについて厳密な管理が必要である。
[0012] As described above, the main purpose of use of the hollow granular material is to reduce the cost, and the particle diameter, specific gravity, shape, etc. are not taken into consideration, and the hollow granular material is used in the as-manufactured state. Therefore,
In order to form a high quality circuit board by using a hollow granular material as a constituent material of a low dielectric constant ceramic board, strict control of particle size and specific gravity is required.

【0013】そこで、発明者等は中空シリカと化学吸着
性の優れたアルコール溶液を使用する比重分級を行なう
ことにより未発泡品や破損品を除去すると共に、粒径と
比重のばらつきを抑制することができ、また、分級品を
750 ℃以下の温度で加熱することにより表面の異物も除
去できることを提案している。( 特願平03-190055,平成
3年7月30日出願)そして、かゝる方法により中空シリ
カを誘電体として含む低誘電率ガラスセラミック基板を
作ることができた。
Therefore, the inventors have carried out specific gravity classification using hollow silica and an alcohol solution having excellent chemisorbability to remove unfoamed products and damaged products, and to suppress variations in particle size and specific gravity. And the classified products
It is proposed that foreign matter on the surface can be removed by heating at a temperature of 750 ° C or lower. (Japanese Patent Application No. 03-190055, filed on July 30, 1991) Then, a low dielectric constant glass ceramic substrate containing hollow silica as a dielectric could be produced by such a method.

【0014】然し、従来の比重分級法とそれに続く加熱
処理により分離された中空粒状体は粒体が凝集して凝集
粒となっている。このため、分級して得た中空粒状体を
構成材料としてセラミックグリーンシートを形成する
と、表面に凝集粒が混在しており、成形性の悪い不均一
なものしか得ることができなかった。
However, the hollow granular material separated by the conventional specific gravity classification method and the subsequent heat treatment is agglomerated into agglomerated particles. Therefore, when a ceramic green sheet is formed by using a hollow granular material obtained by classification as a constituent material, aggregated particles are mixed on the surface, and only a non-uniform one having poor moldability can be obtained.

【0015】[0015]

【発明が解決しようとする課題】低誘電率のセラミック
基板を実現する方法として中空シリカを誘電体として含
む方法がある。
As a method of realizing a ceramic substrate having a low dielectric constant, there is a method of containing hollow silica as a dielectric.

【0016】こゝで、特性の優れたガラスセラミック基
板を得るには中空シリカの分級と整粒を充分に行なうこ
とが必要であるが、従来の中空粒状体は相互が凝集して
凝集粒となっており、そのためにグリーンシートを形成
しても成形性が不均一であった。
Here, in order to obtain a glass-ceramic substrate having excellent characteristics, it is necessary to perform classification and sizing of hollow silica sufficiently, but conventional hollow granules are aggregated with each other to form aggregated particles. Therefore, the formability was not uniform even if the green sheet was formed.

【0017】そこで、この改良が課題である。Therefore, this improvement is a problem.

【0018】[0018]

【課題を解決するための手段】上記の課題は風力分級法
と比重分級法とにより石英ガラス系の中空粒状体を分級
した後、この中空粒状を凍結させ、真空中で凍結状態を
保ちつゝ加熱し、乾燥粉末を得ることを特徴として中空
粒状体の分級と整粒方法を構成することにより解決する
ことができる。
[Means for Solving the Problems] The above-mentioned problem is that after classifying a silica glass-based hollow granular material by a wind classification method and a specific gravity classification method, the hollow granular material is frozen to keep the frozen state in a vacuum. This can be solved by constructing a method for classifying and sizing the hollow particles, which is characterized by heating to obtain a dry powder.

【0019】[0019]

【作用】粒状体の分級法として風力分級法と比重分級法
は公知である。すなわち、風力分級法を用いることによ
り粒径の大きなものを除くことができる。
The air classification method and the specific gravity classification method are known as classification methods for granular materials. That is, it is possible to remove particles having a large particle size by using the air classification method.

【0020】一方、比重の異なる溶液を使用する比重分
級法は粒径の小さなものゝ分級に適した方法であって、
これにより未発泡粒や変形粒も同時に除くことができ
る。然し、このように分級した中空粒状体は液体を含ん
でスラリ(Slurry) 状となっているが、従来は、これを
そのまゝ乾燥していたため、液体が除去される際の表面
張力によって粉末が凝集するのである。
On the other hand, the specific gravity classification method using solutions having different specific gravities is a method suitable for classification of particles having a small particle size.
As a result, unexpanded particles and deformed particles can be removed at the same time. However, the hollow granules classified in this way are in the form of a slurry (Slurry) containing liquid, but in the past, since this was dried as it was, powder was generated due to the surface tension when the liquid was removed. Are aggregated.

【0021】そこで、本発明は凍結乾燥法を用いること
により凝集のない中空粒状体を得るものである。すなわ
ち、液体窒素(N2) を用いてスラリを瞬間的に凍結させ
た後、減圧し真空内で凍結状態を保ちつゝ乾燥させる
と、昇華が起こり、固体状態から直接に気体となり、液
体状態を経過しない。
Therefore, the present invention is to obtain hollow granules without aggregation by using the freeze-drying method. That is, when liquid nitrogen (N 2 ) is used to freeze the slurry momentarily, and then it is depressurized and dried in vacuum while maintaining the frozen state, sublimation occurs, and it becomes a gas directly from the solid state to the liquid state. Does not elapse.

【0022】そのために液体が蒸発する際の表面張力に
よる凝集作用がないことから、凝集粒の発生を無くする
ことができる。
Therefore, since there is no aggregating action due to the surface tension when the liquid evaporates, the generation of agglomerated particles can be eliminated.

【0023】[0023]

【実施例】入手した中空シリカ粉末は平均比重が0.5 で
未発泡品や破損品を含んでいる。この中空粒状体を風力
分級装置により中心粒径が10μm のものに分級し、粒径
の大きなものは除いた。
Example The obtained hollow silica powder has an average specific gravity of 0.5 and includes unfoamed products and broken products. This hollow granular material was classified by an air classifier into those having a central particle diameter of 10 μm, and those having a large particle diameter were removed.

【0024】分級後の平均比重は発泡が不充分な微小径
の中空粒体が集められたことに加え、風力分級時に中空
粒状体が破損することから約0.7 にまで増加した。次
に、分級粉末を4倍量の容器に入れて水と混合し、1時
間放置して後、液面に浮いたものを採取した。
The average specific gravity after classification increased to about 0.7 due to the fact that hollow particles having a small diameter with insufficient foaming were collected and the hollow particles were damaged during air classification. Next, the classified powder was put in a 4-fold container, mixed with water, allowed to stand for 1 hour, and then, what floated on the liquid surface was collected.

【0025】次に、回収したスラリ(水を含む中空粒状
体)を液体N2の中に投入して凍結させ、これを真空容器
に入れ、1×10-2 torr に真空排気し、50℃で24時間に
亙って乾燥した結果、整粒された中空粒状体を得た。
Next, the recovered slurry (hollow granular material containing water) is poured into liquid N 2 to be frozen, placed in a vacuum container, evacuated to 1 × 10 -2 torr, and heated to 50 ° C. As a result of drying for 24 hours at room temperature, a sized hollow granular material was obtained.

【0026】また、比較として従来の常圧下での乾燥法
によっても中空粒状体を作った。そして、両者について
凝集率を測定した。こゝで、凝集率は中空粒状体それぞ
れ10gを軽くほぐした状態でエチルアルコール中に分散
させて溶液とし、孔径122 μm のテフロン製のメッシュ
を通過した粉末量と通過しなかった粉末量( 凝集量) か
ら、下記の式より求めた。
For comparison, hollow particles were also produced by a conventional drying method under normal pressure. Then, the aggregation rate was measured for both. Here, the agglomeration rate is 10 g of each hollow granule, lightly loosened and dispersed in ethyl alcohol to form a solution. The amount of powder that passed through a Teflon mesh with a pore size of 122 μm and the amount of powder that did not pass (aggregation The amount was calculated from the following formula.

【0027】 凝集率=( 凝集量/粉末総量)×100 % …(3) また、この中空粒状体を用いてグリーンシートを作り、
外観を目視により観察した。
Aggregation rate = (agglomeration amount / total powder amount) × 100% (3) Further, a green sheet is prepared using this hollow granular material,
The appearance was visually observed.

【0028】その結果、中空粒状体の凝集率は従来法に
よるものが30%であるのに対し、本発明によるものは0.
5 %と低かった。また、グリーンシートの外観観察でも
本発明を実施したものは凝集粒が少なく良好であった。
As a result, the agglomeration rate of the hollow granules was 30% according to the conventional method, whereas it was 0.
It was as low as 5%. In addition, observation of the appearance of the green sheet was also good in that the present invention had few aggregated particles.

【0029】[0029]

【発明の効果】本発明の実施により、凝集粒を殆どなく
することができ、これにより、特性が均一で且つ表面が
平坦なガラスセラミックス基板を得ることができる。
EFFECTS OF THE INVENTION By carrying out the present invention, it is possible to almost eliminate agglomerates, and thus it is possible to obtain a glass ceramics substrate having uniform characteristics and a flat surface.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 風力分級法と比重分級法とにより石英ガ
ラス系の中空粒状体を分級した後、該中空粒状を凍結さ
せ、真空中で凍結状態を保ちつゝ加熱し、乾燥粉末を得
ることを特徴とする中空粒状体の分級と整粒方法。
1. A dry powder is obtained by classifying quartz glass hollow particles by a wind classification method and a specific gravity classification method, and then freezing the hollow particles and heating them in a vacuum while keeping the frozen state. A method for classifying and sizing hollow particles, characterized by:
JP13294992A 1992-05-26 1992-05-26 Sorting of hollow granular body and method for regulating particle size Withdrawn JPH05319853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13294992A JPH05319853A (en) 1992-05-26 1992-05-26 Sorting of hollow granular body and method for regulating particle size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13294992A JPH05319853A (en) 1992-05-26 1992-05-26 Sorting of hollow granular body and method for regulating particle size

Publications (1)

Publication Number Publication Date
JPH05319853A true JPH05319853A (en) 1993-12-03

Family

ID=15093265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13294992A Withdrawn JPH05319853A (en) 1992-05-26 1992-05-26 Sorting of hollow granular body and method for regulating particle size

Country Status (1)

Country Link
JP (1) JPH05319853A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219353A (en) * 2010-03-26 2011-11-04 Taiheiyo Materials Corp Impact-resistant perlite, and method for producing the same
JP2016169152A (en) * 2010-09-08 2016-09-23 スリーエム イノベイティブ プロパティズ カンパニー Glass bubbles, composites therefrom, and method of making glass bubbles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219353A (en) * 2010-03-26 2011-11-04 Taiheiyo Materials Corp Impact-resistant perlite, and method for producing the same
JP2016169152A (en) * 2010-09-08 2016-09-23 スリーエム イノベイティブ プロパティズ カンパニー Glass bubbles, composites therefrom, and method of making glass bubbles

Similar Documents

Publication Publication Date Title
US2883347A (en) Formation of expanded silica spheres
US6335052B1 (en) Method of producing alumina particles
US4867935A (en) Method for preparing ceramic tape compositions
JP2906282B2 (en) Glass-ceramic green sheet, multilayer substrate, and manufacturing method thereof
KR920004209B1 (en) Dielectric composition
WO2019019657A1 (en) Boroaluminosilicate mineral material, low temperature co-fired ceramic composite, low temperature co-fired ceramic, composite substrate and preparation method therefor
US4064071A (en) Process for agglomerating expanded perlite fines
JPH05319853A (en) Sorting of hollow granular body and method for regulating particle size
CN112321164B (en) Calcium borosilicate glass powder-based composite ceramic powder and preparation process thereof
JP2002100238A (en) Sheet-like molding and laminate
JP4569000B2 (en) Low-frequency sintered dielectric material for high frequency and its sintered body
JPS63107838A (en) Glass-ceramic sintered body
JPH10120436A (en) Glass ceramic dielectric material
US3881914A (en) Preparation of electronic grade copper
CN118103329A (en) Spherical silica particles and resin composition using same
CN116917233A (en) Powder and method for producing same, and method for producing resin composition
JPH0532455A (en) Inorganic composition having low dielectric constant and sinterable at low temperature
JPS6379739A (en) Sintered glass ceramic body
KR20240037979A (en) Globular silica powder and method for producing spherical silica powder
TW202225284A (en) Hollow particle and method for producing same, and resin composition
JPH08175864A (en) Production of low-temperature sintered anorthite-gehlenite ceramic
JPH0249265B2 (en)
JPH05254807A (en) Production of particulate ceramics precursor
JPH0725684A (en) Fine ceramic sintered compact having microvoid and production thereof
JPH05105508A (en) Glass-mullite whisker composite board and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803