JPH05317892A - Method for removing salts from soil containing salts - Google Patents
Method for removing salts from soil containing saltsInfo
- Publication number
- JPH05317892A JPH05317892A JP4155911A JP15591192A JPH05317892A JP H05317892 A JPH05317892 A JP H05317892A JP 4155911 A JP4155911 A JP 4155911A JP 15591192 A JP15591192 A JP 15591192A JP H05317892 A JPH05317892 A JP H05317892A
- Authority
- JP
- Japan
- Prior art keywords
- water
- soil
- salt
- superabsorbent polymer
- salts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000003839 salts Chemical class 0.000 title claims abstract description 91
- 239000002689 soil Substances 0.000 title claims abstract description 86
- 238000000034 method Methods 0.000 title claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 72
- 229920000642 polymer Polymers 0.000 claims abstract description 13
- 229920000247 superabsorbent polymer Polymers 0.000 claims description 54
- 239000002250 absorbent Substances 0.000 claims 2
- 150000002500 ions Chemical class 0.000 abstract description 6
- 239000010802 sludge Substances 0.000 abstract description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 30
- 239000007864 aqueous solution Substances 0.000 description 17
- 229920002125 Sokalan® Polymers 0.000 description 15
- 239000011780 sodium chloride Substances 0.000 description 15
- 239000004584 polyacrylic acid Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 239000004576 sand Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011033 desalting Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- -1 salt ions Chemical class 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical group C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は塩類含有土壌の除塩方法
に係り、詳しくは塩水を含んだ土壌中の塩分を除去して
植物の栽培を可能にした土壌を得ることができる塩類含
有土壌の除塩方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing salt-containing soil, and more particularly to a salt-containing soil from which salt in the salt-containing soil can be removed to obtain a plant-cultivable soil. Of salt removal method.
【0002】[0002]
【従来の技術】従来、海水や地下灌水を除塩する方法と
しては、電解槽に一対の電極板を設置し、これらの電極
板間にカチオン交換膜とアニオン交換膜を交互になら
べ、この電解槽中に水を流しながら通電させ、除塩して
いた。これによって、前記交換膜間で灌水の濃縮と脱塩
が同時に行われる。しかし、この方法は海水や地下灌水
の液体に含まれる塩類を除去するものであるため、海砂
やヘドロのような塩類含有土壌の脱塩を行うことは不可
能であった。即ち、イオン交換膜を使用する方法では、
該交換膜が薄い膜であるため土砂を投入するとき、ある
いは土砂の圧力によって容易に破壊し、また高価である
等の欠点があった。このため、土砂等の除塩方法として
は、一般に該土砂を多量の水によって洗浄して塩類を除
去していた。2. Description of the Related Art Conventionally, as a method of desalinating seawater or underground irrigation, a pair of electrode plates are installed in an electrolytic cell, and cation exchange membranes and anion exchange membranes are alternately arranged between these electrode plates to carry out this electrolysis. Electricity was supplied while flowing water in the tank to remove salt. Thereby, concentration and desalting of irrigation water are simultaneously performed between the exchange membranes. However, since this method removes salts contained in the liquid of seawater or underground irrigation, it was impossible to desalt salt-containing soil such as sea sand and sludge. That is, in the method using the ion exchange membrane,
Since the exchange membrane is a thin membrane, it has drawbacks such as being easily broken when the earth and sand are put in, or by the pressure of the earth and sand, and being expensive. For this reason, as a method of removing salt from the earth and sand, generally, the earth and sand are washed with a large amount of water to remove salts.
【0003】[0003]
【発明が解決しようとする課題】しかし、この方法では
塩類を完全に除去するには多量の水が必要であり、また
かなりの時間を要するため、合理的な方法ではなかっ
た。また、ヘドロのような塩類含有土壌は、粒子が非常
に小さいために土壌と水の分離ができず、除塩を行うこ
とは不可能であった。本発明はこのような諸問題を解決
するものであり、特にヘドロのような塩類含有土壌を高
吸水性高分子によって除塩し、土壌と高吸水性高分子の
再利用を可能にした塩類含有土壌の除塩方法を提供する
ことを目的とする。However, this method is not a rational method because a large amount of water is required to completely remove salts and it takes a considerable amount of time. In addition, since salt-containing soil such as sludge had very small particles, it was impossible to separate water from the soil, and it was impossible to remove salt. The present invention is to solve such problems, in particular, salt-containing soil such as sludge is desalted with a superabsorbent polymer, and a salt-containing soil that enables reuse of the soil and the superabsorbent polymer. It is an object to provide a method for removing salt from soil.
【0004】[0004]
【課題を解決するための手段】即ち、本発明の塩類含有
土壌の除塩方法は、 高吸水性高分子を含水した塩類含
有土壌に接触させ、土壌中にイオン化して存在する塩類
を水と一緒に吸収させ除塩を行った後、更に該高吸水性
高分子を水と接触させて塩類を水中に拡散、移行させ、
高吸水性高分子の再利用を可能にしたとにある。また、
本発明では吸水状態にある高吸水性高分子を含水した塩
類含有土壌に接触させることにより、高吸水性高分子と
土壌の間に塩類濃度勾配を設け、土壌中の塩類イオンの
みを高吸水性高分子中へ拡散、移行させる塩類含有土壌
の除塩方法も含む。Means for Solving the Problems That is, a method for removing salt from a salt-containing soil of the present invention is to bring a salt-containing soil containing a superabsorbent polymer into contact with the salt and ionize the salt present in the soil with water. After removing the salt by absorbing it together, the superabsorbent polymer is further brought into contact with water to diffuse and migrate salts into water,
It is said that the super absorbent polymer can be reused. Also,
In the present invention, a salt concentration gradient is provided between the superabsorbent polymer and the soil by contacting the salt-containing soil containing the superabsorbent polymer in the water absorbing state, and only the salt ions in the soil are superabsorbent. It also includes a method of desalting salt-containing soil that diffuses and migrates into polymers.
【0005】本発明の具体的な塩類含有土壌の除塩方法
では、図1に示す除塩装置1のように、容器2の中に塩
類含有土壌3を投入し、この土壌3の上に透水材4を介
して乾燥した高吸水性高分子5を設置する。これによ
り、塩類含有土壌3中から水、Naイオン、Clイオン
が透水材4を通って高吸水性高分子5に吸収される。か
かる高吸水性高分子5は太陽熱によって水を系外へ放出
し、一定の吸収能を持続する。また、塩類含有土壌3へ
は水を供給し、土壌中に水層、即ち砂等の粒子間に設け
られた水路を断絶しないようにする。In the concrete method of removing salt-containing soil according to the present invention, as in the salt-removing apparatus 1 shown in FIG. The dried superabsorbent polymer 5 is placed through the material 4. As a result, water, Na ions, and Cl ions are absorbed by the superabsorbent polymer 5 from the salt-containing soil 3 through the water permeable material 4. The superabsorbent polymer 5 releases water to the outside of the system by solar heat and maintains a certain absorbing ability. Further, water is supplied to the salt-containing soil 3 so as not to disconnect the water layer in the soil, that is, the water channel provided between particles of sand or the like.
【0006】一方、図2に示す除塩装置7では、容器2
の中を透水材4によって3つの区域8、9そして10を
設け、中央の区域9に吸水した高吸水性高分子5を投入
し、そして他の区域8、10にそれぞれ含水した塩類含
有土壌3と水11を投入する。この水11は連続して流
すことが可能であり、例えば河川12から引いた水であ
ってもよい。これによって、土壌3、高吸水性高分子5
そして水11間には,NaClの濃度勾配が発生し、常
時塩類含有土壌3中のNaイオン、Clイオンが透水材
4から高吸水性高分子5へ、そして水11へ拡散、移行
し、これはNaClの濃度勾配がなくなるまで続く。N
aClの濃度勾配がなくなって塩類含有土壌3の除塩が
完了すると、土壌3と水11を排出した後、再度土壌3
と水11を入れる。尚、水11は高吸水性高分子5が存
在するため土壌3へ逆流しにくい。上記透水材4は、水
を通し、強度を有するすものであれば特に限定されない
が、例えば織物、不織布等が最適である。On the other hand, in the salt removing apparatus 7 shown in FIG.
3 areas 8, 9 and 10 are provided by a water permeable material 4, the superabsorbent polymer 5 which has absorbed water is put into the central area 9, and the other areas 8 and 10 respectively contain water containing salt 3 And add water 11. This water 11 can flow continuously, and may be water drawn from the river 12, for example. As a result, soil 3, super absorbent polymer 5
Then, a concentration gradient of NaCl is generated between the water 11, and Na ions and Cl ions in the salt-containing soil 3 are constantly diffused and transferred from the water-permeable material 4 to the superabsorbent polymer 5 and then to the water 11. Continues until the NaCl concentration gradient disappears. N
When the aCl concentration gradient disappears and the desalination of the salt-containing soil 3 is completed, the soil 3 and the water 11 are discharged, and then the soil 3 again.
And add water 11. It should be noted that the water 11 does not easily flow back into the soil 3 because of the presence of the superabsorbent polymer 5. The water-permeable material 4 is not particularly limited as long as it allows water to pass through and has strength. For example, a woven fabric or a non-woven fabric is most suitable.
【0007】本発明で使用する高吸水性高分子は、カル
ボキシル基、アミノ基、エーテル基等の親水基を分子の
主鎖あるいは側鎖に有し、部分的に架橋されたゲル状の
ものであり、具体的にはポリアクリル酸、ポリアクリル
酸塩、ポリビニルアルコール、ポリアクリルアミド、ポ
リエーテルポリウレタン等がある。この高吸水性高分子
は粉体、塊状、板状、あるいは紙や布のような透水性の
材料で包囲された形状であってもよい。The superabsorbent polymer used in the present invention is a gel having a hydrophilic group such as a carboxyl group, an amino group or an ether group in the main chain or side chain of the molecule and partially crosslinked. Yes, specifically, there are polyacrylic acid, polyacrylic acid salt, polyvinyl alcohol, polyacrylamide, polyether polyurethane and the like. The superabsorbent polymer may be in the form of powder, lumps, plates, or a shape surrounded by a water-permeable material such as paper or cloth.
【0008】上記高吸水性高分子の使用量は、土壌の量
と含水率、塩分濃度さらには土壌に高吸水性高分子を接
触させる方法によって決められる。例えば、通常の高吸
水性高分子は該高分子の重量に対してNaClの5%水
溶液を数100%吸収できるので、土壌の含水量の数1
00分の1を使用すれば良いことになる。しかし、実際
には土壌の粒子径、含水率、さらには高吸水性高分子と
土壌との接触の仕方によって、高吸水性高分子の吸水能
を100%発揮させるのは困難である。従って、土壌の
状態、土壌と高吸水性高分子の接触のさせかたに応じ
て、高吸水性高分子の使用量は決定される。The amount of the super absorbent polymer used is determined by the amount of soil, the water content, the salt concentration, and the method of contacting the super absorbent polymer with the soil. For example, a normal superabsorbent polymer can absorb several 100% of a 5% aqueous solution of NaCl with respect to the weight of the polymer, so that the water content of the soil is several 1%.
It is sufficient to use 1/00. However, in reality, it is difficult to exert 100% of the water-absorbing ability of the superabsorbent polymer depending on the particle size and water content of the soil and the manner of contact between the superabsorbent polymer and the soil. Therefore, the amount of superabsorbent polymer used is determined depending on the condition of the soil and the contacting method between the soil and the superabsorbent polymer.
【0009】本発明で使用する土壌は、特に限定される
ものではない。しかし、本発明では必ず水と塩類イオン
の移動を行うために、土壌中における水層は連続層でな
ければならない。水を全く含まない塩類含有土壌につい
ては水を加えない限り、本発明の除塩方法は作動しな
い。The soil used in the present invention is not particularly limited. However, in the present invention, the water layer in the soil must be a continuous layer in order to transfer water and salt ions. The salt removal method of the present invention does not work on salt-containing soil containing no water unless water is added.
【0010】上記土壌と高吸水性高分子とを接触させる
方法としては、前述の除塩装置1以外に高吸水性高分子
を土壌へ混合、埋設する方法がある。また、高吸水性高
分子を土壌の下層、上層、あるいは側層に設置すること
もできる。特に、粉体あるいは塊状物の高吸水性高分子
を土壌中に混合した場合、土壌と高吸水性高分子の接触
面積が増加し、結果として除塩の効率が上がる。As a method for bringing the above-mentioned soil into contact with the superabsorbent polymer, there is a method of mixing and burying the superabsorbent polymer in the soil in addition to the salt removing apparatus 1 described above. Further, the superabsorbent polymer can be placed in the lower layer, upper layer, or side layer of the soil. In particular, when a powdery or lumpy superabsorbent polymer is mixed in the soil, the contact area between the soil and the superabsorbent polymer increases, and as a result, salt removal efficiency increases.
【0011】[0011]
【作用】本発明によると、高吸水性高分子を含水した塩
類含有土壌に接触させ、土壌中にイオン化して存在する
塩類を水と一緒に吸収させたり、吸水状態にある高吸水
性高分子を含水した塩類含有土壌に接触させることによ
り、高吸水性高分子と土壌の間に塩類濃度勾配を設ける
ことによって、ヘドロのような土壌中にイオン化して存
在する塩類を水と一緒にあるいは塩類のみを高吸水性高
分子に吸収あるいは拡散、移行させた後、該高吸水性高
分子を水と接触させて塩類を水中に拡散、移行させるこ
とによって、洗浄できなかったヘドロの除塩を行うこと
ができ、また除塩に用いた高吸水性高分子を水で洗浄す
ることによって、再び除塩に用いることができる。EFFECTS OF THE INVENTION According to the present invention, a salt-containing soil containing a superabsorbent polymer is brought into contact with the salt to ionize salts present in the soil together with water, or the superabsorbent polymer in a water absorbing state. By contacting with salt-containing soil containing water, a salt concentration gradient is established between the superabsorbent polymer and the soil. After absorbing or diffusing and transferring only the water-absorbing polymer to the superabsorbent polymer, the superabsorbent polymer is brought into contact with water to diffuse and transfer salts into the water to remove sludge that could not be washed. The superabsorbent polymer used for salt removal can be used again for salt removal by washing with water.
【0012】[0012]
【実施例】次に、本発明を具体的な実施例により更に詳
細に説明する。 実施例1 5%および15%のNaClの水溶液に乾燥したポリア
クリル酸塩(PAA:日本合成化学工業(株)製アクア
リザーブAP−100)を水溶液100重量部に対して
1重量部、またポリエーテルウレタン(PEU:タキロ
ン(株)製)も同様の水溶液に5重量部浸漬した。所定
時間後、NaCl水溶液をサンプリングし、蛍光X線分
析によりNaおよびClを定量分析し水溶液中の濃度を
求めた。その結果を図3に示す。Next, the present invention will be described in more detail with reference to specific examples. Example 1 1 part by weight of polyacrylate (PAA: Aqua Reserve AP-100 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) dried in an aqueous solution of 5% and 15% NaCl was added to 100 parts by weight of the aqueous solution. Ether urethane (PEU: manufactured by Takiron Co., Ltd.) was also immersed in 5 parts by weight in the same aqueous solution. After a predetermined time, the aqueous NaCl solution was sampled, and Na and Cl were quantitatively analyzed by fluorescent X-ray analysis to determine the concentration in the aqueous solution. The result is shown in FIG.
【0013】高吸水性高分子は浸漬直後から水溶液を吸
収し、5%NaCl水溶液中では24時間後、PAAで
約100倍、PEUで約10倍の重量増加を示した。一
方、15%NaCl水溶液の場合には、PPAで約10
倍、PEUで約5倍の重量増加であった。この時、水溶
液中のNa、Cl濃度はほとんど変化しないことから、
PPAおよびPEUは、水溶液中のNaおよびClイオ
ンも水とともに吸収していることを示している。しか
し、高吸水性高分子の種類によってNaCl水溶液の吸
収性は異なっているようで、PAAの場合は水溶液のN
a濃度は増加傾向で、Naを吸収しにくい。一方、PE
Uの場合は水溶液のNaおよびCl濃度は減少傾向で、
水よりもNaおよびClをよく吸収している。The superabsorbent polymer absorbed the aqueous solution immediately after the immersion, and after 24 hours in the 5% NaCl aqueous solution, showed a weight increase of about 100 times for PAA and about 10 times for PEU. On the other hand, in the case of a 15% NaCl aqueous solution, it is about 10 with PPA.
That is, the weight increase of PEU was about 5 times. At this time, since the Na and Cl concentrations in the aqueous solution hardly change,
PPA and PEU show that they also absorb Na and Cl ions in aqueous solution with water. However, the absorption of the NaCl aqueous solution seems to differ depending on the type of superabsorbent polymer.
The a concentration tends to increase, and it is difficult to absorb Na. On the other hand, PE
In the case of U, the Na and Cl concentrations of the aqueous solution tend to decrease,
It absorbs Na and Cl better than water.
【0014】実施例2 炭酸カルシウム(粒径1μm)70重量部に対してNa
Cl15%水溶液を30重量部添加し混合して得た疑似
土壌に、乾燥したポリアクリル酸ゲル(PAA:日本合
成化学工業(株)製アクアリザーブAP−100)を疑
似土壌100重量部に対して3重量部を濾紙に包含した
状態で48時間接触させた。その後、疑似土壌を120
°Cで24時間乾燥し、水分率を測定した後、乾燥疑似
土壌100重量部に対してイオン交換水100重量部を
混合し、静置後、上澄み液をサンプリングし、これを蛍
光X線分析装置によって試験後の疑似土壌中のNa量を
定量した。その結果を表1に示す。Example 2 70 parts by weight of calcium carbonate (particle size 1 μm) was added to Na.
30 parts by weight of a 15% Cl aqueous solution was added and mixed, and then dried polyacrylic acid gel (PAA: Aqua Reserve AP-100 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was added to 100 parts by weight of the pseudo soil. The filter paper was contacted with 3 parts by weight for 48 hours. Then, the pseudo soil is 120
After drying at ° C for 24 hours and measuring the water content, 100 parts by weight of ion-exchanged water was mixed with 100 parts by weight of dry simulated soil, allowed to stand, and the supernatant liquid was sampled. Fluorescent X-ray analysis The amount of Na in the pseudo soil after the test was quantified by the device. The results are shown in Table 1.
【0015】実施例3 実施例2のポリアクリル酸ゲルをポリエーテルポリウレ
タン(PEU:タキロン(株)製)に変えて同様の評価
を行った。その結果を表1に示す。Example 3 The same evaluation was performed by changing the polyacrylic acid gel of Example 2 to polyether polyurethane (PEU: manufactured by Takiron Co., Ltd.). The results are shown in Table 1.
【0016】実施例4 実施例2のポリアクリル酸ゲルをポリビニルアルコール
ゲル(PVA:日本合成化学工業(株)製GP01)に
変えて同様の評価を行った。その結果を表1に示す。Example 4 The same evaluation was performed by changing the polyacrylic acid gel of Example 2 to polyvinyl alcohol gel (PVA: GP01 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.). The results are shown in Table 1.
【0017】比較例1 実施例2のポリアクリル酸ゲルを用いずに疑似土壌単独
で同様の評価を行った。その結果を表1に示す。Comparative Example 1 The same evaluation was carried out with the pseudo soil alone without using the polyacrylic acid gel of Example 2. The results are shown in Table 1.
【0018】[0018]
【表1】 [Table 1]
【0019】以上に結果から、乾燥した高吸水性高分子
を塩類を含んだ土壌に接触させることにより、高吸水性
高分子が土壌中の塩類を水と一緒に吸収して土壌の除塩
をしていることが判る。From the above results, by contacting the dried superabsorbent polymer with the soil containing the salt, the superabsorbent polymer absorbs the salt in the soil together with water to remove the salt from the soil. You can see that
【0020】実施例5 ポリアクリル酸塩(PAA:日本合成化学工業(株)製
アクアリザーブAP−100)にイオン交換水を、PA
A/イオン交換水の重量比で1/50および1/250
で吸収させた。これらの湿潤試料と5%および15%の
NaCl水溶液とを湿潤試料/NaCl水溶液=1:1
の重量比で混合し、その後のNaCl水溶液のNaおよ
びCl濃度の変化を実施例1と同様の方法で調べた。そ
の結果を図4に示す。湿潤試料をNaCl水溶液に浸漬
すると、直ちにNaCl水溶液のNaおよびCl濃度が
約1/2になり、NaCl水溶液のNaおよびClイオ
ンが湿潤試料へ移行したことが判る。これはNaCl水
溶液と湿潤試料との間にできた濃度勾配に従いNaおよ
びClイオンが水溶液から湿潤試料へ拡散、移行したも
のである。Example 5 Polyacrylic acid salt (PAA: Aqua Reserve AP-100 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was charged with ion-exchanged water and PA.
1/50 and 1/250 by weight ratio of A / ion-exchanged water
Absorbed by. These wet samples and 5% and 15% aqueous NaCl solutions were wet sample / NaCl aqueous solution = 1: 1.
In the same manner as in Example 1, changes in the Na and Cl concentrations of the aqueous NaCl solution were examined. The result is shown in FIG. When the wet sample was immersed in the aqueous NaCl solution, the Na and Cl concentrations of the aqueous NaCl solution were immediately reduced to about 1/2, and it was found that Na and Cl ions of the aqueous NaCl solution were transferred to the wet sample. This is because Na and Cl ions were diffused and transferred from the aqueous solution to the wet sample according to the concentration gradient formed between the NaCl aqueous solution and the wet sample.
【0021】実施例6 炭酸カルシウム(粒径1μm)70重量部に対してNa
Cl15%水溶液を30重量部添加し混合して得た疑似
土壌に、イオン交換水を5000重量%を吸収させたポ
リアクリル酸塩(PAA:日本合成化学工業(株)製ア
クアリザーブAP−100)30重量部を濾紙に包含し
た状態で48時間接触させた。その後、疑似土壌を12
0°Cで24時間乾燥し、水分率を測定した後、乾燥疑
似土壌100重量部に対してイオン交換水100重量部
を混合し、静置後、上澄み液をサンプリングし、これを
蛍光X線分析装置によって試験後の疑似土壌中のNa量
を定量した。その結果を表2に示す。Example 6 Na for 70 parts by weight of calcium carbonate (particle size 1 μm)
A polyacrylic acid salt (PAA: Aqua Reserve AP-100 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) in which 5000 wt% of ion-exchanged water was absorbed into the pseudo soil obtained by adding 30 parts by weight of Cl 15% aqueous solution and mixing. The filter paper was contacted with 30 parts by weight for 48 hours. After that, 12 pseudo soils
After drying at 0 ° C for 24 hours and measuring the water content, 100 parts by weight of ion-exchanged water was mixed with 100 parts by weight of the dry simulated soil, allowed to stand, and the supernatant liquid was sampled. The amount of Na in the pseudo soil after the test was quantified by the analyzer. The results are shown in Table 2.
【0022】実施例7 実施例6と同様に塩類濃度を低下させた土壌に、イオン
交換水を5000重量%を吸収させたポリアクリル酸塩
を24時間接触させた後、更に同じ操作を3回繰り返し
た。試験後の土壌中のNa量を定量した。その結果を表
2に示す。Example 7 As in Example 6, the soil in which the salt concentration was lowered was contacted with a polyacrylic acid salt in which 5000 wt% of ion-exchanged water had been absorbed for 24 hours, and the same operation was repeated 3 times. I repeated. The amount of Na in the soil after the test was quantified. The results are shown in Table 2.
【0023】実施例8 ポリアクリル酸塩の使用量を150重量部として、実施
例6と同様の方法で試験後の土壌中のNa量を定量し
た。その結果を表2に示す。Example 8 The amount of Na in the soil after the test was quantified in the same manner as in Example 6 except that the amount of polyacrylate used was 150 parts by weight. The results are shown in Table 2.
【0024】比較例2 実施例6のポリアクリル酸ゲルを用いずに行い、初期の
土壌中のNa量を定量した。その結果を表2に示す。Comparative Example 2 The amount of Na in the initial soil was quantified without using the polyacrylic acid gel of Example 6. The results are shown in Table 2.
【0025】[0025]
【表2】 [Table 2]
【0026】以上の結果から、大量に水を吸収した高吸
水性高分子を塩類を含んだ土壌に接触させることによ
り、土壌と高吸水性高分子間に塩類濃度勾配を設け土壌
中の塩類の一部を高吸水性高分子中に拡散、移行させる
ことができた。また、この結果は塩類を吸収した高吸水
性高分子を水と接触させることにより、高吸水性高分子
と水との間に塩類濃度勾配を設け高吸水性高分子中の塩
類を水中へ拡散、移行させることも示している。このた
め、除塩に用いた高吸水性高分子は使い捨てではなく、
再度使用可能になる。From the above results, a salt concentration gradient was established between the soil and the superabsorbent polymer by bringing the superabsorbent polymer, which absorbed a large amount of water, into contact with the soil containing the salt, and A part could be diffused and transferred into the superabsorbent polymer. In addition, this result shows that the salt in the superabsorbent polymer diffuses into water by bringing the salt-absorbing polymer into contact with water to establish a salt concentration gradient between the superabsorbent polymer and water. , It is also shown to be migrated. Therefore, the super absorbent polymer used for salt removal is not disposable,
It can be used again.
【0027】[0027]
【発明の効果】以上のように本発明では、高吸水性高分
子を含水した塩類含有土壌に接触させて土壌中にイオン
化して存在する塩類を水と一緒に吸収させたり、あるい
は吸水状態にある高吸水性高分子を含水した塩類含有土
壌に接触させることにより、高吸水性高分子と土壌の間
に塩類濃度勾配を設けることにによって、土壌中にイオ
ン化して存在する塩類を高吸水性高分子に拡散、移行さ
せた後、該高吸水性高分子を水と接触させて塩類を水中
に拡散、移行させることによって、洗浄できなかったヘ
ドロの除塩を行うことができ、また除塩に用いた高吸水
性高分子を水で洗浄することによって、再び除塩に用い
ることができる。INDUSTRIAL APPLICABILITY As described above, in the present invention, the salt-containing soil containing the superabsorbent polymer is brought into contact with the salt to ionize the salt present in the soil together with water, or to absorb water. By contacting a salt-containing soil containing a certain superabsorbent polymer, a salt concentration gradient is established between the superabsorbent polymer and the soil, so that the salts that are ionized in the soil are superabsorbent. After diffusion and transfer to the polymer, the superabsorbent polymer is brought into contact with water to diffuse and transfer salts into the water, whereby sludge which could not be washed can be removed. By washing the superabsorbent polymer used in the above with water, it can be used again for salt removal.
【図1】本発明の塩類含有土壌の除塩方法に使用する除
塩装置の側面図である。FIG. 1 is a side view of a salt removing apparatus used in the salt removing method for salt-containing soil of the present invention.
【図2】本発明の塩類含有土壌の除塩方法に使用する他
の除塩装置の側面図である。FIG. 2 is a side view of another salt removing apparatus used in the salt removing method for salt-containing soil of the present invention.
【図3】実施例1における試料の蛍光X線分析によるN
aあるいはCl濃度の時間変化を示すグラフである。FIG. 3 shows the N of the sample in Example 1 measured by X-ray fluorescence analysis.
It is a graph which shows the time change of a or Cl concentration.
【図4】実施例5における試料の蛍光X線分析によるN
aあるいはCl濃度の時間変化を示すグラフである。FIG. 4 is an N by fluorescent X-ray analysis of the sample in Example 5.
It is a graph which shows the time change of a or Cl concentration.
1 除塩装置 2 容器 3 塩類含有土壌 4 透水材 5 高吸水性高分子 7 除塩装置 8 区域 9 区域 10 区域 11 水 12 河川 1 salt removal device 2 container 3 salt-containing soil 4 water permeable material 5 super absorbent polymer 7 salt removal device 8 area 9 area 10 area 11 water 12 river
フロントページの続き (72)発明者 山口 良雄 神戸市長田区浜添通4丁目1番21号 三ツ 星ベルト株式会社内Front page continuation (72) Inventor Yoshio Yamaguchi 4-1-21, Hamazoe-dori, Nagata-ku, Kobe Mitsuboshi Belt Co., Ltd.
Claims (2)
に接触させ、土壌中にイオン化して存在する塩類を水と
一緒に吸収させた後、該高吸水性高分子を水と接触させ
て塩類を水中に拡散、移行させることを特徴とする塩類
含有土壌の除塩方法。1. A method of contacting a salt-containing soil containing a water-containing superabsorbent polymer, absorbing salts ionized in the soil together with water, and then contacting the superabsorbent polymer with water. A method for removing salt-containing soil, which comprises diffusing and transferring salts into water.
た塩類含有土壌に接触させることにより、高吸水性高分
子と土壌の間に塩類濃度勾配を設け、土壌中の塩類イオ
ンのみを高吸水性高分子中へ拡散、移行させた後、更に
該高吸水性高分子を水と接触させて塩類を水中に拡散、
移行させることを特徴とする塩類含有土壌の除塩方法。2. A salt concentration gradient is provided between the superabsorbent polymer and the soil by contacting the salt-containing soil containing the superabsorbent polymer in a water-absorbing state to increase only the salt ion in the soil. After being diffused and transferred into the water-absorbent polymer, the super-water-absorbent polymer is further brought into contact with water to diffuse salts into water,
A salt removal method for salt-containing soil, which comprises migrating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4155911A JP2783942B2 (en) | 1992-05-21 | 1992-05-21 | Salt removal method for salt-containing soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4155911A JP2783942B2 (en) | 1992-05-21 | 1992-05-21 | Salt removal method for salt-containing soil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05317892A true JPH05317892A (en) | 1993-12-03 |
JP2783942B2 JP2783942B2 (en) | 1998-08-06 |
Family
ID=15616210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4155911A Expired - Fee Related JP2783942B2 (en) | 1992-05-21 | 1992-05-21 | Salt removal method for salt-containing soil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2783942B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006205096A (en) * | 2005-01-28 | 2006-08-10 | Shimane Univ | Salt-removing method of soil containing salts |
CN106045154A (en) * | 2016-07-12 | 2016-10-26 | 山东胜伟园林科技有限公司 | Process for treating wastewater generated after saline-alkali soil improvement |
-
1992
- 1992-05-21 JP JP4155911A patent/JP2783942B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006205096A (en) * | 2005-01-28 | 2006-08-10 | Shimane Univ | Salt-removing method of soil containing salts |
JP4600985B2 (en) * | 2005-01-28 | 2010-12-22 | 国立大学法人島根大学 | Desalination method for soil containing salt |
CN106045154A (en) * | 2016-07-12 | 2016-10-26 | 山东胜伟园林科技有限公司 | Process for treating wastewater generated after saline-alkali soil improvement |
Also Published As
Publication number | Publication date |
---|---|
JP2783942B2 (en) | 1998-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2242030C (en) | Alginate gel based adsorbents for heavy metal removal | |
CN101646628A (en) | Reduce the pollution of reverse osmosis membrane | |
KR100323152B1 (en) | Filtration method of fluid and manufacturing method of filter particles for fluid filtration | |
CN102424499A (en) | Large movable water purifying system for enclosed water area | |
AU2019370766A1 (en) | Process for dewatering aqueous sludge water | |
Hart et al. | A new dialysis-ion exchange technique for determining the forms of trace metals in water | |
RU2110482C1 (en) | Method and apparatus for controlled sorption of soluble organic substances and heavy metal ions from aqueous solution | |
Kim et al. | Ion-exchangeable and sorptive reinforced membranes for efficient electrochemical removal of heavy metal ions in wastewater | |
CN102350306A (en) | Activated carbon fiber adsorbent loaded with lanthanum hydroxide and preparation method thereof | |
Winfield | The treatment of sewage effluents by reverse osmosis—pH based studies of the fouling layer and its removal | |
JP2783942B2 (en) | Salt removal method for salt-containing soil | |
Chen et al. | Evaluation of granular activated carbon for removal of trace organic compounds in drinking water | |
Amrate et al. | Use of cation-exchange membranes for simultaneous recovery of lead and EDTA during electrokinetic extraction | |
RU2531829C1 (en) | Filtration material, method of its production and application | |
JP2001029951A (en) | Cleaning of sea area by artificial coal ash zeolite | |
Ismail et al. | Factors affecting the adsorption of cationic dyes on polymeric hydrogels prepared by gamma irradiation | |
JP6239836B2 (en) | Radioactive cesium adsorbent and method for purifying radioactive polluted water using the same | |
EP4168362A1 (en) | Regeneratable system for contaminant removal | |
KR100237312B1 (en) | Alginate water treatment agent containing activated carbon and method for producing the same | |
Demkin et al. | Cleaning low mineral water by electrodialysis | |
CN100522345C (en) | Method for embedding adsorbent of poly m-phenylene diamine by using polyvinyl alcohol | |
JPS63264192A (en) | Method and device for purifying sewage | |
Gehr et al. | The adsorption behaviour of cationic polyelectrolytes in dissolved air flotation | |
JP2611808B2 (en) | Regeneration method of dehydrating material containing water containing suspended substances | |
MAJEWSKA—NOWAK et al. | OF TUBULAR POLYSULFONE MEMBRANES TO DECOLORIZATION OF TEXTILE EFFLUENTS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |