[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05306910A - Method for measuring film thickness of single-crystal thin film on soi substrate - Google Patents

Method for measuring film thickness of single-crystal thin film on soi substrate

Info

Publication number
JPH05306910A
JPH05306910A JP13771992A JP13771992A JPH05306910A JP H05306910 A JPH05306910 A JP H05306910A JP 13771992 A JP13771992 A JP 13771992A JP 13771992 A JP13771992 A JP 13771992A JP H05306910 A JPH05306910 A JP H05306910A
Authority
JP
Japan
Prior art keywords
curve
optical path
single crystal
film
path difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13771992A
Other languages
Japanese (ja)
Other versions
JP2855964B2 (en
Inventor
Yutaka Ota
豊 大田
Katsuo Yoshizawa
克夫 吉沢
Masatake Nakano
正剛 中野
Masayasu Katayama
正健 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP13771992A priority Critical patent/JP2855964B2/en
Publication of JPH05306910A publication Critical patent/JPH05306910A/en
Application granted granted Critical
Publication of JP2855964B2 publication Critical patent/JP2855964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To highly accurately measure an SOI film having a high-concentration doped layer (buried layer) by using the resultant curve of a curve obtained by performing cosine Fourier transformation and inverse transformation on a curve representing the relation between optical path differences and intensities of reflected infrared rays and another curve obtained by performing sine Fourier transformation and inverse transformation on the same curve. CONSTITUTION:The film thickness of an SOI film (single-crystal film) 12 is found from the peak optical path difference at which the absolute value of the optical path difference DELTAbetween a fixed mirror and mobile mirror constituting a Michelson's interferometer among a plurality of peaks existing in the optical path difference area corresponding to the film thickness of the film 12 by using the resultant curve Y(DELTA) of a curve Cf(DELTA) obtained by performing cosine Fourier transformation and inverse transformation on a curve f(DELTA) representing the relation between the optical path differences DELTA and intensities of reflected infrared rays and obtained by irradiating an SOI substrate 11 with interference light obtained by continuously changing the optical path difference DELTA and another curve Sf(DELTA) obtained by performing sine Fourier transformation and inverse transformation on the curve f(DELTA). Therefore, the film thickness of the film 12 which has a high-concentration doped layer (buried layer) having a dopant concentration of >=1X10<17>atms/cm<3> and is formed adjacent to a dielectric layer 13 can be measured with high accuracy in a nondestructive state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高濃度ドープ層を有す
る単結晶薄膜を誘電体基板上に接合して成るSOI基板
における前記単結晶薄膜をフーリエ変換赤外分光光度計
を用いて測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures a single crystal thin film having a highly doped layer on a dielectric substrate by measuring the single crystal thin film on an SOI substrate by using a Fourier transform infrared spectrophotometer. Regarding the method.

【0002】[0002]

【従来の技術】従来、誘電体基板上に1μm以上の厚さ
の単結晶半導体薄膜を形成する方法としては、単結晶サ
ファイア基板上に単結晶シリコン膜等をエピタキシャル
成長させる技術が良く知られているが、この技術におい
ては、誘電体基板と気相成長されるシリコン単結晶との
間に格子定数の不一致があるため、シリコン気相成長に
多数の結晶欠陥が発生し、このために該技術は実用性に
乏しい。
2. Description of the Related Art Conventionally, as a method of forming a single crystal semiconductor thin film having a thickness of 1 μm or more on a dielectric substrate, a technique of epitaxially growing a single crystal silicon film or the like on a single crystal sapphire substrate is well known. However, in this technique, a large number of crystal defects occur in the silicon vapor phase growth due to the mismatch of the lattice constants between the dielectric substrate and the vapor-grown silicon single crystal. Practicality is poor.

【0003】そこで、近年SOI( Si On Insulator)
構造の接合基板(以下、SOI基板と称す)が特に注目
されるに至った。このSOI基板は、例えば2枚の単結
晶シリコンウエーハの少なくとも一方を酸化処理してそ
のウエーハの少なくとも一方の表面に酸化膜を形成し、
これら2枚のウエーハを前記酸化膜が中間層になるよう
にして重ね合わせた後、これらを所定温度に加熱して接
着し、その一方のウエーハを平面研削した後、更にその
表面を研磨してこれを薄膜化し、単結晶シリコン薄膜
(以下、SOI膜と称す)とすることによって得られ
る。
Therefore, in recent years, SOI (Si On Insulator)
A bonded substrate having a structure (hereinafter referred to as an SOI substrate) has come to be particularly noted. In this SOI substrate, for example, at least one of the two single crystal silicon wafers is oxidized to form an oxide film on the surface of at least one of the wafers,
After laminating these two wafers so that the oxide film serves as an intermediate layer, they are heated to a predetermined temperature to bond them, and one of the wafers is surface-ground and then the surface thereof is further polished. This can be obtained by thinning it into a single crystal silicon thin film (hereinafter referred to as an SOI film).

【0004】ところで、斯かるSOI基板におけるSO
I膜の膜厚は、従来、可視光を用いた分光干渉法によっ
て測定されてきた。
By the way, SO in such an SOI substrate
The film thickness of the I film has been conventionally measured by a spectral interference method using visible light.

【0005】しかしながら、上記分光干渉法による膜厚
測定は膜厚が10μm程度以下のSOI膜に対しては有
効であるが、SOI膜の膜厚が前記厚さを超えると、可
視光のシリコンへの吸収の影響で測定が不可能となる。
However, the film thickness measurement by the above-mentioned spectral interferometry is effective for the SOI film having a film thickness of about 10 μm or less, but when the film thickness of the SOI film exceeds the above-mentioned thickness, it becomes visible light silicon. Measurement becomes impossible due to the absorption of.

【0006】一方、膜厚を測定する他の方法としては、
フーリエ変換赤外分光光度計(以下、FTIRと称す)
を用いる方法(以下、FTIR法と称す)が知られてい
るが、該方法はドープ濃度が1018atoms/cm3程度以上
のシリコンの支持基板層上に形成されたシリコンエピタ
キシャル層の厚さの測定に専ら使用されてきた。
On the other hand, as another method for measuring the film thickness,
Fourier transform infrared spectrophotometer (hereinafter referred to as FTIR)
There is known a method (hereinafter, referred to as FTIR method) using the above method. In this method, the thickness of a silicon epitaxial layer formed on a supporting substrate layer of silicon having a doping concentration of about 10 18 atoms / cm 3 or more is used. It has been used exclusively for measurement.

【0007】ここで、FTIR法によるシリコンエピタ
キシャル層の厚さ測定の原理を図6乃至図8に基づいて
説明する。尚、図6はFTIR法による膜厚測定計の基
本構成図、図7は赤外光のシリコンエピタキシャル層で
の反射の状態を示す図、図8は光路差−反射赤外光強度
曲線図である。
Here, the principle of measuring the thickness of the silicon epitaxial layer by the FTIR method will be described with reference to FIGS. 6 to 8. 6 is a basic configuration diagram of a film thickness meter by the FTIR method, FIG. 7 is a diagram showing a state of reflection of infrared light on a silicon epitaxial layer, and FIG. 8 is an optical path difference-reflected infrared light intensity curve diagram. is there.

【0008】図6に示すように、赤外線発生用ランプ1
によって発生した波長2.5〜25μmの連続赤外光
を、固定鏡2と移動鏡3及びビームスプリッター4で構
成されるマイケルソン干渉計を用いて干渉光とし、この
干渉光をシリコン基板5上のエピタキシャル層6に照射
する。
As shown in FIG. 6, an infrared ray generating lamp 1
The continuous infrared light having a wavelength of 2.5 to 25 μm generated by is converted into interference light by using a Michelson interferometer composed of the fixed mirror 2, the movable mirror 3 and the beam splitter 4, and this interference light is placed on the silicon substrate 5. The epitaxial layer 6 is irradiated.

【0009】ところで、図7に示すように、入射赤外光
(マイケルソン干渉光)Lのシリコン基板5での反射光
Rは種々の成分から構成されている。それらの内で主要
なものは、エピタキシャル層6の表面cで反射して反射
光R1となるものと、エピタキシャル層6を透過し、エ
ピタキシャル層6と支持基板層7との界面gで再び反射
し、エピタキシャル層6の表面hを経てシリコン基板5
外へ出射して反射光R2となるものの2つである。
Incidentally, as shown in FIG. 7, the reflected light R of incident infrared light (Michelson interference light) L on the silicon substrate 5 is composed of various components. Among them, the main ones are those reflected by the surface c of the epitaxial layer 6 to be reflected light R1 and those transmitted through the epitaxial layer 6 and reflected again at the interface g between the epitaxial layer 6 and the supporting substrate layer 7. , The silicon substrate 5 through the surface h of the epitaxial layer 6
They are two that are emitted to the outside and become reflected light R2.

【0010】而して、上記2つの反射光R1,R2は互
いに干渉し合うため、その干渉光を解析することによっ
てエピタキシャル層6の厚さを求めることができる。即
ち、ここでは詳しい説明は省略するが、入射干渉光を作
る前記固定鏡2と移動鏡3(図6参照)が或る特定の光
路差を持つ際に、合成された反射光(2つの反射光R
1,R2を合成したもの)は特異な挙動を示す。つま
り、図8に示す光路差−反射赤外光強度曲線上に反射光
強度がピーク値を示すサイドバースト(ピーク集合部
分)と称される部分が生じ、反射光強度にピークが生じ
る光路差とエピタキシャル層6の厚さとの間には相関が
あるため、図8からエピタキシャル層6の厚さを求める
ことができる。
Since the two reflected lights R1 and R2 interfere with each other, the thickness of the epitaxial layer 6 can be obtained by analyzing the interference light. That is, although a detailed description is omitted here, when the fixed mirror 2 and the moving mirror 3 (see FIG. 6) that generate incident interference light have a certain optical path difference, the combined reflected light (two reflections Light R
1, which is a composite of R2) shows a peculiar behavior. That is, a portion called a side burst (peak aggregation portion) where the reflected light intensity shows a peak value is generated on the optical path difference-reflected infrared light intensity curve shown in FIG. Since there is a correlation with the thickness of the epitaxial layer 6, the thickness of the epitaxial layer 6 can be obtained from FIG.

【0011】而して、本発明者等はSOI膜の厚さ測定
にFTIR法を適用するための条件を見い出し、厚さ1
μm以上の単結晶の膜厚を非破壊で高精度に測定するこ
とができる方法を先に提案した。即ち、該方法とは、マ
イケルソン干渉計を構成する固定鏡と移動鏡との光路差
を連続的に変えて得られる干渉光をSOI基板上に照射
して光路差−反射赤外光強度曲線を得、この曲線におけ
る複数のサイドバーストの各々に存在する極小ピーク中
から光路差の絶対値が最も小さいものを選出し、その極
小ピークの光路差から単結晶薄膜の膜厚を求める方法で
ある。
Then, the present inventors found out the conditions for applying the FTIR method to the thickness measurement of the SOI film, and determined the thickness 1
We have previously proposed a method that enables nondestructive and highly accurate measurement of the thickness of single crystals with a thickness of μm or more. That is, the method is that the optical path difference-reflected infrared light intensity curve is obtained by irradiating the SOI substrate with interference light obtained by continuously changing the optical path difference between the fixed mirror and the moving mirror that configure the Michelson interferometer. This is a method of obtaining the film thickness of the single crystal thin film from the optical path difference of the minimum peak by selecting the one having the smallest absolute value of the optical path difference from the minimum peaks present in each of the plurality of side bursts in this curve. ..

【0012】ところで、SOI構造でバイポーラトラン
ジスタを作製する場合にコレクター抵抗を下げる目的等
のために、図1に示すように誘導体層13に隣接する底
部にドーパント濃度1×1017atoms/cm3以上の高濃度
ドープ層(以下、埋め込み層と称す)12Aを有するS
OI膜12を形成するSOI構造が一般に用いられてい
る。尚、図1において11はSOI基板、12BはSO
I膜12中の低ドープ濃度層、14は支持基板層であ
る。
By the way, for the purpose of lowering collector resistance when a bipolar transistor having an SOI structure is manufactured, as shown in FIG. 1, a dopant concentration of 1 × 10 17 atoms / cm 3 or more is provided at the bottom adjacent to the dielectric layer 13. Having a high-concentration doped layer (hereinafter referred to as a buried layer) 12A of S
An SOI structure forming the OI film 12 is generally used. In FIG. 1, 11 is an SOI substrate and 12B is an SO substrate.
In the I film 12, a lightly doped layer, 14 is a supporting substrate layer.

【0013】[0013]

【発明が解決しようとする課題】而して、一例として上
記埋め込み層(シート抵抗:10Ω/□、厚さ:3μ
m)を有するSOI膜の膜厚の走査型電子顕微鏡(以
下、SEMと称す)による測定で、4〜35μmあるも
のと、本発明者等が先に提案した方法(FTIR法)で
測定した結果(δ2)との偏差を図9に示す。同図よ
り、SOI膜厚が大きくなる程両者の偏差が大きくなる
ことがわかり、本発明者等が先に提案した方法では埋め
込み層を有するSOI膜の膜厚を高精度に測定すること
ができない。
Thus, as an example, the embedded layer (sheet resistance: 10 Ω / □, thickness: 3 μm) is used.
m), the film thickness of the SOI film is measured by a scanning electron microscope (hereinafter referred to as SEM) to be 4 to 35 μm, and the result measured by the method (FTIR method) previously proposed by the present inventors. The deviation from (δ2) is shown in FIG. From the figure, it is understood that the deviation between the two becomes larger as the SOI film thickness becomes larger, and the method proposed by the present inventors cannot measure the film thickness of the SOI film having the buried layer with high accuracy. ..

【0014】本発明は上記問題に鑑みてなされたもの
で、その目的とする処は、誘電体層に隣接する部位にド
ーパント濃度1×1017atoms/cm3以上の高濃度ドープ
層(埋め込み層)を有するSOI膜の膜厚を非破壊で高
精度に測定することができるSOI基板における単結晶
薄膜の膜厚測定方法を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide a high-concentration doped layer (buried layer) having a dopant concentration of 1 × 10 17 atoms / cm 3 or more in a portion adjacent to a dielectric layer. The object of the present invention is to provide a method for measuring the thickness of a single crystal thin film on an SOI substrate, which is capable of nondestructively and highly accurately measuring the thickness of an SOI film having

【0015】[0015]

【課題を解決するための手段】上記目的を達成すべく本
発明は、誘電体側にドーパント濃度1×1017atoms/cm
3 以上の高濃度ドープ層を有する単結晶薄膜を誘電体基
板上に接合して成るSOI基板における前記単結晶薄膜
の膜厚をフーリエ変換赤外分光光度計を用いて測定する
方法を提案するものであって、マイケルソン干渉計を構
成する固定鏡と移動鏡との光路差Δを連続的に変えて得
られる干渉光をSOI基板上に照射して得られる光路差
−反射赤外光強度曲線f(Δ)を余弦フーリエ変換及び
逆変換して得られる曲線Cf(Δ)と、同曲線f(Δ)
を正弦フーリエ変換及び逆変換して得られる曲線Sf
(Δ)とを合成して得られる曲線Y(Δ): Y(Δ)=√(Cf(Δ)2+Sf(Δ)2) において、単結晶薄膜厚に対応する光路差領域に存在す
る複数のピークの内、光路差の絶対値が最も小さいピー
クの光路差から単結晶薄膜の膜厚を求めることをその特
徴とする。
In order to achieve the above object, the present invention has a dopant concentration of 1 × 10 17 atoms / cm 3 on the dielectric side.
A method for measuring the thickness of a single crystal thin film on an SOI substrate formed by bonding a single crystal thin film having three or more highly doped layers on a dielectric substrate using a Fourier transform infrared spectrophotometer In addition, the optical path difference-reflected infrared light intensity curve obtained by irradiating the SOI substrate with interference light obtained by continuously changing the optical path difference Δ between the fixed mirror and the movable mirror that configure the Michelson interferometer. A curve Cf (Δ) obtained by cosine Fourier transform and inverse transform of f (Δ) and the same curve f (Δ)
Sf obtained by performing sine Fourier transform and inverse transform of
A curve Y (Δ) obtained by synthesizing (Δ): Y (Δ) = √ (Cf (Δ) 2 + Sf (Δ) 2 ) in which a plurality of optical path difference regions corresponding to the single crystal thin film thickness exist Among these peaks, the film thickness of the single crystal thin film is obtained from the optical path difference of the peak having the smallest absolute value of the optical path difference.

【0016】[0016]

【作用】一般に不純物濃度の高いシリコン層では赤外光
は吸収され易くなる。従って、SOI基板のSOI膜厚
をFTIR法で測定する際にSOI膜の誘電体層との境
界部に高不純物濃度層が存在する場合、この高不純物濃
度層において幾分かは赤外光が吸収される。そのため、
SOI膜と誘電体層との界面での赤外光の反射は、光の
吸収帯が無い(即ち、高不純物層が無い)場合とは異な
ってくる。
In general, infrared light is easily absorbed in a silicon layer having a high impurity concentration. Therefore, when a high impurity concentration layer is present at the boundary between the SOI film and the dielectric layer when the SOI film thickness of the SOI substrate is measured by the FTIR method, some infrared light may be present in this high impurity concentration layer. Be absorbed. for that reason,
The reflection of infrared light at the interface between the SOI film and the dielectric layer is different from the case where there is no light absorption band (that is, there is no high impurity layer).

【0017】而して、FTIRの場合、マイケルソン干
渉計の固定鏡と移動鏡との光路差Δと反射光強度との関
係曲線(インターフェログラム)f(Δ)を正弦フーリ
エ変換し、これを再び逆変換して得られる曲線Sf
(Δ)は虚数部分と呼ばれ、これは光路上に光吸収があ
る場合の効果を表わすものと考えられている。
In the case of FTIR, the relational curve (interferogram) f (Δ) between the optical path difference Δ between the fixed mirror and the movable mirror of the Michelson interferometer and the reflected light intensity is sine Fourier transformed, and The curve Sf obtained by inverse transformation of
(Δ) is called the imaginary part, which is considered to represent the effect when there is light absorption on the optical path.

【0018】ところで、埋め込み層を有しないSOI膜
の膜厚測定方法として本発明者等が先に提案した方法で
は、FTIRにおけるマイケルソン干渉計の固定鏡と移
動鏡との光路差Δと反射光強度との関係曲線(インター
フェログラム)f(Δ)を求め、そのサイドバースト部
における複数のピークの内、光路差Δの絶対値が最も小
さいピーク位置(光路差Δ)からSOI膜厚を求めるよ
うにした。実際には、ピークの形を良くするために、関
係曲線(インターフェログラム)f(Δ)を一旦は余弦
フーリエ交換し、更にその逆交換を施して曲線(ケプス
トラム)Cf(Δ)を得、この曲線Cf(Δ)のみによ
ってSOI膜厚を求めるようにした。
By the way, in the method previously proposed by the present inventors as a method for measuring the film thickness of an SOI film having no buried layer, the optical path difference Δ between the fixed mirror and the movable mirror of the Michelson interferometer in FTIR and the reflected light. The relationship curve (interferogram) f (Δ) with the intensity is obtained, and the SOI film thickness is obtained from the peak position (optical path difference Δ) having the smallest absolute value of the optical path difference Δ among a plurality of peaks in the side burst portion. I did it. Actually, in order to improve the shape of the peak, the relational curve (interferogram) f (Δ) is once subjected to cosine Fourier exchange, and then the inverse exchange thereof is performed to obtain the curve (cepstral) Cf (Δ), The SOI film thickness is determined only by this curve Cf (Δ).

【0019】而して、埋め込み層を有しないSOI基板
のSOI膜厚の測定に対して本発明方法を適用した場
合、即ち、埋め込み層を有しない基板に対する関係曲線
(インターフェログラム)f(Δ)を余弦フーリエ交換
し、更にその逆交換を施して得られる曲線(ケプストラ
ム)Cf(Δ)と、同じく関係曲線f(Δ)を正弦フー
リエ変換し、更にその逆変換を施して得られる曲線Sf
(Δ)とを合成して得られる合成曲線Y(Δ)を用いて
SOI膜厚を測定した場合の結果と、先に提案した方
法、つまり曲線(ケプストラム)Cf(Δ)のみを用い
てSOI膜厚を測定した場合の結果は略々一致した。こ
れは、埋め込み層を有しないSOI基板中での赤外光の
吸収が小さいため、曲線Sf(Δ)の寄与は殆んど無視
し得ることに基づくものであって、SOI膜厚としては
曲線Sf(Δ)、合成曲線Y(Δ)の何れを用いても同
じ値が得られるのは当然である。
When the method of the present invention is applied to the measurement of the SOI film thickness of the SOI substrate having no buried layer, that is, the relation curve (interferogram) f (Δ) for the substrate having no buried layer. ) Is subjected to cosine Fourier exchange, and then the inverse exchange thereof is performed, and a curve (cepstrum) Cf (Δ) and a relational curve f (Δ) are also subjected to sine Fourier transform, and a curve Sf obtained by further performing the inverse transform thereof.
(Δ) and the resultant curve when the SOI film thickness is measured using the synthetic curve Y (Δ) and the previously proposed method, that is, only the curve (cepstrum) Cf (Δ) is used. When the film thickness was measured, the results were almost the same. This is because the contribution of the curve Sf (Δ) is almost negligible since the absorption of infrared light in the SOI substrate having no buried layer is small, and the curve of the SOI film thickness is the curve. It is natural that the same value can be obtained by using either Sf (Δ) or the composite curve Y (Δ).

【0020】これに対し、SOI膜中に埋め込み層が存
在する場合、即ち、SOI基板中での赤外光の吸収の影
響が無視できない場合には、曲線Sf(Δ)の寄与が無
視できず、従って合成曲線Y(Δ)でなければ正確なS
OI膜厚を求めることができず、この点に着目して本発
明がなされたものである。
On the other hand, when there is a buried layer in the SOI film, that is, when the influence of absorption of infrared light in the SOI substrate cannot be ignored, the contribution of the curve Sf (Δ) cannot be ignored. Therefore, if it is not the composite curve Y (Δ), the accurate S
Since the OI film thickness cannot be obtained, the present invention has been made paying attention to this point.

【0021】[0021]

【実施例】以下に本発明の一実施例を添付図面に基づい
て説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0022】本発明は、図1に示すSOI基板11のS
OI膜12の膜厚測定にFTIR法を適用するものであ
って、SOI膜12の誘電体層13に隣接する底部には
ドーパント濃度1×1017atoms/cm3以上の埋め込み層
(高不純物濃度層)12Aが形成されている。
The present invention is based on the S of the SOI substrate 11 shown in FIG.
The FTIR method is applied to the film thickness measurement of the OI film 12, and a buried layer (high impurity concentration of 1 × 10 17 atoms / cm 3 or more) is formed at the bottom of the SOI film 12 adjacent to the dielectric layer 13. Layer) 12A is formed.

【0023】ところで、本発明者等は、誘電体層を構成
する酸化膜の厚さが0.5,1.0,1.5,2.0,
2.5μmであって、厚さが30μmのSOI膜におい
て、不純物としてSbをシート抵抗10Ω/ □,厚さ
3.0μmに拡散して成る埋め込み層を有するSOI基
板と、同じく厚さ30μmで埋め込み層を有しないSO
I基板に対して、FTIRにおけるマイケルソン干渉計
の固定鏡と移動鏡(図6参照)の光路差Δを連続的に変
えて得られる干渉光を照射して光路差−反射赤外光強度
曲線(インターフェログラム)f(Δ)をそれぞれ求
め、次に該曲線f(Δ)を余弦フーリエ交換し、更にそ
の逆交換を施して得られる曲線(ケプストラム)Cf
(Δ)と、同じく曲線f(Δ)を正弦フーリエ変換し、
更にその逆変換を施して得られる曲線Sf(Δ)とを合
成して得られる合成曲線Y(Δ):
By the way, the present inventors have found that the thickness of the oxide film forming the dielectric layer is 0.5, 1.0, 1.5, 2.0,
An SOI substrate having a thickness of 2.5 μm and a thickness of 30 μm, in which Sb as an impurity is diffused to have a sheet resistance of 10 Ω / □ and a thickness of 3.0 μm, and an SOI substrate having a thickness of 30 μm. SO without layers
The optical path difference-reflected infrared light intensity curve is obtained by irradiating the I substrate with interference light obtained by continuously changing the optical path difference Δ of the fixed mirror and the moving mirror (see FIG. 6) of the Michelson interferometer in FTIR. (Interferogram) f (Δ) is obtained, then the curve f (Δ) is subjected to cosine Fourier exchange, and the inverse exchange thereof is performed to obtain a curve (cepstral) Cf.
(Δ) and the curve f (Δ) are also subjected to sine Fourier transform,
Further, a synthetic curve Y (Δ) obtained by synthesizing the curve Sf (Δ) obtained by performing the inverse transformation thereof:

【0024】[0024]

【数1】Y(Δ)=√(Cf(Δ)2+Sf(Δ)2) を求めた。その結果を図2、図3にそれぞれ示す(図2
は埋め込み層を有するSOI基板に対する合成曲線Y
(Δ)を、図3は埋め込み装置を有しないSOI基板に
対する合成曲線Y(Δ)をそれぞれ示す)。
## EQU1 ## Y (Δ) = √ (Cf (Δ) 2 + Sf (Δ) 2 ) was obtained. The results are shown in FIGS. 2 and 3, respectively (see FIG. 2).
Is a composite curve Y for an SOI substrate having a buried layer
(Δ), and FIG. 3 shows a synthetic curve Y (Δ) for an SOI substrate having no embedded device).

【0025】次に、それぞれのSOI基板を劈解し、そ
の断面をSEMで観察することによって各SOI基板に
ついてそのSOI膜の厚さを実測し、当該膜厚が図2又
は図3に示す合成曲線Y(Δ)のどの位置(光路差Δ)
に対応するか調べた。その結果、合成曲線Y(Δ)の形
状は埋め込み層の有無及び酸化膜の厚さによって異なる
が、埋め込み層を有するSOI基板及び埋め込み層を有
しないSOI基板の何れに対しても、SOI膜厚は合成
曲線Y(Δ)上のサイドバースト部に存在するピーク位
置に対応していることを見い出した。特に、ピーク位置
が複数存在する場合には、光路差Δの絶対値が最も小さ
いピーク位置がSOI膜厚に対応していることを見い出
した。
Next, each SOI substrate is cleaved, and the cross section thereof is observed by SEM to measure the thickness of the SOI film for each SOI substrate, and the film thickness is synthesized as shown in FIG. 2 or FIG. Which position on the curve Y (Δ) (optical path difference Δ)
I checked whether it corresponds to. As a result, the shape of the composite curve Y (Δ) varies depending on the presence or absence of the buried layer and the thickness of the oxide film, but the SOI film thickness is obtained for both the SOI substrate having the buried layer and the SOI substrate having no buried layer. Was found to correspond to the peak position existing in the side burst portion on the synthetic curve Y (Δ). In particular, it has been found that when there are a plurality of peak positions, the peak position where the absolute value of the optical path difference Δ is the smallest corresponds to the SOI film thickness.

【0026】従って、本発明者等は、合成曲線Y(Δ)
におけるサイドバースト部において、全てのピークの位
置(光路差Δ)及び大きさをコンピューターに記憶さ
せ、その最大のピークの大きさの30%以上の大きさを
持つピークの内で最も光路差Δの絶対値の小さいピーク
位置に対応するSOI膜厚をコンピューターのCRTに
表示した。
Therefore, the present inventors have found that the composite curve Y (Δ)
In the side burst part in, the position (optical path difference Δ) and the size of all peaks are stored in a computer, and the optical path difference Δ of the peaks having a size of 30% or more of the maximum peak size is recorded. The SOI film thickness corresponding to the peak position with a small absolute value was displayed on the CRT of the computer.

【0027】ここで、上記結果が得られる理由を考察し
てみる。
Now, let us consider the reason why the above results are obtained.

【0028】一般に不純物濃度の高いシリコン層では赤
外光は吸収され易くなる。従って、SOI基板のSOI
膜厚をFTIR法で測定する際にSOI膜の誘電体層と
の境界部に高不純物濃度層が存在する場合、この高不純
物濃度層において幾分かは赤外光が吸収される。そのた
め、SOI膜と誘電体層との界面での赤外光の反射は、
光の吸収帯が無い(即ち、高不純物層が無い)場合とは
異なってくる。
In general, infrared light is easily absorbed in a silicon layer having a high impurity concentration. Therefore, the SOI of the SOI substrate
When a high impurity concentration layer exists at the boundary between the SOI film and the dielectric layer when the film thickness is measured by the FTIR method, some infrared light is absorbed in this high impurity concentration layer. Therefore, the reflection of infrared light at the interface between the SOI film and the dielectric layer is
This is different from the case where there is no light absorption band (that is, there is no high impurity layer).

【0029】而して、FTIRの場合、マイケルソン干
渉計の固定鏡と移動鏡との光路差Δと反射光強度との関
係曲線(インターフェログラム)f(Δ)を正弦フーリ
エ変換し、これを再び逆変換して得られる曲線Sf
(Δ)は虚数部分と呼ばれ、これは光路上に光吸収があ
る場合の効果を表わすものと考えられている。
In the case of FTIR, the relational curve (interferogram) f (Δ) between the optical path difference Δ between the fixed mirror and the movable mirror of the Michelson interferometer and the reflected light intensity is sine Fourier transformed, The curve Sf obtained by inverse transformation of
(Δ) is called the imaginary part, which is considered to represent the effect when there is light absorption on the optical path.

【0030】ところで、埋め込み層を有しないSOI膜
の膜厚測定方法として本発明者等が先に提案した方法で
は、FTIRにおけるマイケルソン干渉計の固定鏡と移
動鏡との光路差Δと反射光強度との関係曲線(インター
フェログラム)f(Δ)を求め、そのサイドバースト部
における複数のピークの内、光路差Δの絶対値が最も小
さいピーク位置(光路差Δ)からSOI膜厚を求めるよ
うにした。実際には、ピークの形を良くするために、関
係曲線(インターフェログラム)f(Δ)を一旦は余弦
フーリエ交換し、更にその逆交換を施して曲線(ケプス
トラム)Cf(Δ)を得、この曲線Cf(Δ)のみによ
ってSOI膜厚を求めるようにした。
By the way, in the method previously proposed by the present inventors as a method for measuring the film thickness of an SOI film having no buried layer, the optical path difference Δ between the fixed mirror and the movable mirror of the Michelson interferometer in FTIR and the reflected light. The relationship curve (interferogram) f (Δ) with the intensity is obtained, and the SOI film thickness is obtained from the peak position (optical path difference Δ) having the smallest absolute value of the optical path difference Δ among a plurality of peaks in the side burst portion. I did it. Actually, in order to improve the shape of the peak, the relational curve (interferogram) f (Δ) is once subjected to cosine Fourier exchange, and then the inverse exchange thereof is performed to obtain the curve (cepstral) Cf (Δ), The SOI film thickness is determined only by this curve Cf (Δ).

【0031】而して、埋め込み層を有しないSOI基板
のSOI膜層の測定に対して本発明方法を適用した場
合、即ち、埋め込み層を有しない基板に対する関係曲線
(インターフェログラム)f(Δ)を余弦フーリエ交換
し、更にその逆交換を施して得られる曲線(ケプストラ
ム)Cf(Δ)と、同じく関係曲線f(Δ)を正弦フー
リエ変換し、更にその逆変換を施して得られる曲線Sf
(Δ)とを合成して得られる合成曲線Y(Δ)を用いて
SOI膜厚を測定した場合の結果と、先に提案した方
法、つまり曲線(ケプストラム)Cf(Δ)のみを用い
てSOI膜厚を測定した場合の結果との比較を図4に示
す。図4は先に提案した方法によって測定されたSOI
膜厚(δ2)と本発明方法によって測定されたSOI膜
厚(δ0)との差(δ2−δ0)を誘電体膜厚に対して
示したものであって、これによれば両者(δ0),(δ
2)は略々一致していることがわかる。これは、埋め込
み層を有しないSOI基板中での赤外光の吸収が小さい
ため、曲線Sf(Δ)の寄与は殆んど無視し得ることに
基づくものであって、SOI膜厚としては曲線Sf
(Δ)、合成曲線Y(Δ)の何れを用いても同じ値が得
られるのは当然である。
Thus, when the method of the present invention is applied to the measurement of the SOI film layer of the SOI substrate having no buried layer, that is, the relation curve (interferogram) f (Δ) for the substrate having no buried layer. ) Is subjected to cosine Fourier exchange, and then the inverse exchange thereof is performed, and a curve (cepstrum) Cf (Δ) and a relational curve f (Δ) are also subjected to sine Fourier transform, and a curve Sf obtained by further performing the inverse transform thereof.
(Δ) and the resultant curve when the SOI film thickness is measured using the synthetic curve Y (Δ) and the previously proposed method, that is, only the curve (cepstrum) Cf (Δ) is used. FIG. 4 shows a comparison with the result when the film thickness was measured. FIG. 4 shows the SOI measured by the previously proposed method.
The difference (δ2-δ0) between the film thickness (δ2) and the SOI film thickness (δ0) measured by the method of the present invention is shown with respect to the dielectric film thickness. , (Δ
It can be seen that 2) is almost the same. This is because the contribution of the curve Sf (Δ) is almost negligible since the absorption of infrared light in the SOI substrate having no buried layer is small, and the curve of the SOI film thickness is the curve. Sf
It is natural that the same value can be obtained by using either (Δ) or the composite curve Y (Δ).

【0032】これに対し、SOI膜中に埋め込み層が存
在する場合、即ち、SOI基板中での赤外光の吸収の影
響が無視できない場合には、曲線Sf(Δ)の寄与が無
視できず、従って合成曲線Y(Δ)でなければ正確なS
OI膜厚を求めることができず、この点に着目して本発
明がなされたものである。
On the other hand, when there is a buried layer in the SOI film, that is, when the influence of absorption of infrared light in the SOI substrate cannot be ignored, the contribution of the curve Sf (Δ) cannot be ignored. Therefore, if it is not the composite curve Y (Δ), the accurate S
Since the OI film thickness cannot be obtained, the present invention has been made paying attention to this point.

【0033】ここで、本発明方法によるSOI膜厚測定
の具体例について述べる。
Here, a specific example of measuring the SOI film thickness by the method of the present invention will be described.

【0034】被測定対象であるSOI基板は、直径12
5mm、N型<100>単結晶基板(図1における支持基
板層14に相当)に、不純物としてSbをシート抵抗1
0Ω/ □,厚さ3.0μmに拡散した後、厚さ1,2,
3μmの3種類の酸化膜を形成した別の単結晶シリコン
ウエーハを接合し、接合後に別の単結晶シリコンウエー
ハの露出表面の酸化膜を除去して単結晶面を露出させ、
この単結晶面を研削して厚さ4〜35μmに薄層化され
たSOI膜を形成することによって得られた。
The SOI substrate to be measured has a diameter of 12
A 5 mm, N-type <100> single crystal substrate (corresponding to the supporting substrate layer 14 in FIG. 1) was doped with Sb as an impurity and had a sheet resistance
0Ω / □, thickness after diffusion to 3.0μm, thickness 1, 2,
Another single crystal silicon wafer on which three types of 3 μm oxide films are formed is bonded, and after bonding, the oxide film on the exposed surface of another single crystal silicon wafer is removed to expose the single crystal surface,
It was obtained by grinding the single crystal surface to form a thin SOI film having a thickness of 4 to 35 μm.

【0035】而して、上記によって得られたSOI膜厚
及び酸化膜厚の異なる複数枚のSOI基板についてその
SOI膜厚を本発明方法によって測定した。その後、各
SOI基板を劈解し、その断面をSEMで観察すること
によってSOI膜厚を測定した。
The SOI film thicknesses of the plurality of SOI substrates having different SOI film thicknesses and oxide film thicknesses obtained as described above were measured by the method of the present invention. After that, each SOI substrate was cleaved and the cross section thereof was observed with an SEM to measure the SOI film thickness.

【0036】図5に本発明方法によって測定されたSO
I膜厚(δ0)とSEMを用いて測定されたSOI膜厚
との偏差を示すが、この図によると、酸化膜厚で層別す
ることなしにオーバーオールで見た場合、両者のデータ
の相関係数は0.999であり、両者には非常に高い相
関があることがわかる。このことは、本発明方法の正し
さを立証するものであって、本発明方法によれば、酸化
膜厚とは無関係に、埋め込み層を有するSOI膜厚を非
破壊で高精度に測定することができる。
FIG. 5 shows the SO measured by the method of the present invention.
The deviation between the I film thickness (δ0) and the SOI film thickness measured using the SEM is shown. According to this figure, when viewed in overall without stratification by the oxide film thickness, the phase of the data of both is shown. The relation number is 0.999, and it can be seen that the two have a very high correlation. This proves the correctness of the method of the present invention, and according to the method of the present invention, the SOI film thickness having a buried layer can be measured nondestructively and with high accuracy regardless of the oxide film thickness. You can

【0037】尚、SOI基板の製造方法としては、誘電
体として単結晶若しくは多結晶シリコンウエーハAを用
い、該ウエーハAに、その表面の一方に埋め込み層を有
する別の単結晶シリコンウエーハBに酸化膜を形成した
後、該ウエーハBの高濃度ドープ層側を前記ウエーハA
に接合した後、ウエーハBを、その接合部とは反対側面
の酸化膜を除去して単結晶面を露出させた後、更にその
面を研削、研磨等によって薄層化してSOI膜とする方
法が採られる。
As a method of manufacturing an SOI substrate, a single crystal or polycrystalline silicon wafer A is used as a dielectric, and the wafer A is oxidized to another single crystal silicon wafer B having a buried layer on one of its surfaces. After the film is formed, the high-concentration doped layer side of the wafer B is transferred to the wafer A.
After the wafer B is bonded to the wafer B, the oxide film on the side opposite to the bonding part is removed to expose the single crystal surface, and the surface is further thinned by grinding, polishing or the like to form an SOI film. Is taken.

【0038】[0038]

【発明の効果】以上の説明で明らかな如く、本発明によ
れば、マイケルソン干渉計を構成する固定鏡と移動鏡と
の光路差Δを連続的に変えて得られる干渉光をSOI基
板上に照射して得られる光路差−反射赤外光強度曲線f
(Δ)を余弦フーリエ変換及び逆変換して得られる曲線
Cf(Δ)と、同曲線f(Δ)を正弦フーリエ変換及び
逆変換して得られる曲線Sf(Δ)とを合成して得られ
る曲線Y(Δ)において、単結晶薄膜厚に対応する光路
差領域に存在する複数のピークの内、光路差の絶対値が
最も小さいピークの光路差から単結晶薄膜の膜厚を求め
るようにしたため、誘電体層に隣接する部位にドーパン
ト濃度1×1017atoms/cm3以上の高濃度ドープ層(埋
め込み層)を有する単結晶薄膜(SOI膜)の膜厚を非
破壊で高精度に測定することができるという効果が得ら
れる。
As is apparent from the above description, according to the present invention, the interference light obtained by continuously changing the optical path difference Δ between the fixed mirror and the movable mirror which compose the Michelson interferometer can be obtained on the SOI substrate. Path difference-reflected infrared light intensity curve f obtained by irradiating
A curve Cf (Δ) obtained by cosine Fourier transform and inverse transform of (Δ) and a curve Sf (Δ) obtained by sine Fourier transform and inverse transform of the same curve f (Δ) are obtained. In the curve Y (Δ), the film thickness of the single crystal thin film is obtained from the optical path difference of the peak having the smallest absolute value of the optical path difference among the plurality of peaks existing in the optical path difference region corresponding to the single crystal thin film thickness. , Non-destructively and highly accurately measure the thickness of a single crystal thin film (SOI film) having a high-concentration doped layer (buried layer) with a dopant concentration of 1 × 10 17 atoms / cm 3 or more in a region adjacent to a dielectric layer The effect that can be obtained is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】埋め込み層を有するSOI基板の断面図であ
る。
FIG. 1 is a cross-sectional view of an SOI substrate having a buried layer.

【図2】埋め込み層を有しないSOI基板に対する合成
曲線Y(Δ)を示す図である。
FIG. 2 is a diagram showing a synthetic curve Y (Δ) for an SOI substrate having no buried layer.

【図3】埋め込み層を有するSOI基板に対する合成曲
線Y(Δ)を示す図である。
FIG. 3 is a diagram showing a synthetic curve Y (Δ) for an SOI substrate having a buried layer.

【図4】先に提案した方法によって測定されたSOI膜
厚δ2と本発明方法によって測定されたSOI膜厚δ0
との差(δ2−δ0)を誘電体膜厚に対して示す図であ
る。
FIG. 4 is an SOI film thickness δ2 measured by the previously proposed method and an SOI film thickness δ0 measured by the method of the present invention.
It is a figure which shows the difference ((delta) 2- (delta) 0) with respect to a dielectric film thickness.

【図5】本発明方法によって測定されたSOI膜厚(δ
0)のSEMを用いて測定されたSOI膜厚に対する偏
差を示す図である。
FIG. 5: SOI film thickness (δ measured by the method of the present invention
It is a figure which shows the deviation with respect to the SOI film thickness measured using the SEM of 0).

【図6】FTIR法によるシリコンエピタキシャル層厚
測定系の基本構成図である。
FIG. 6 is a basic configuration diagram of a silicon epitaxial layer thickness measuring system by an FTIR method.

【図7】赤外光のシリコンエピタキシャル層での反射の
状態を示す図である。
FIG. 7 is a diagram showing a state of reflection of infrared light on a silicon epitaxial layer.

【図8】シリコンエピタキシャル基板における光路差と
反射赤外光強度との関係を示す図である。
FIG. 8 is a diagram showing a relationship between optical path difference and reflected infrared light intensity in a silicon epitaxial substrate.

【図9】先に提案した方法によって測定されたSOI膜
厚(δ2)のSEMを用いて測定されたSOI膜厚に対
する偏差を示す図である。
FIG. 9 is a diagram showing a deviation of the SOI film thickness (δ2) measured by the previously proposed method with respect to the SOI film thickness measured using the SEM.

【符号の説明】[Explanation of symbols]

1 光源 2 固定鏡 3 移動鏡 11 SOI基板 12 SOI膜 12A 埋め込み層(高不純物濃度層) 13 誘電体層 1 Light Source 2 Fixed Mirror 3 Moving Mirror 11 SOI Substrate 12 SOI Film 12A Buried Layer (High Impurity Concentration Layer) 13 Dielectric Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片山 正健 群馬県安中市磯部2丁目13番1号信越半導 体株式会社半導体磯部研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masatake Katayama 2-13-1 Isobe, Annaka-shi, Gunma Shin-Etsu Semiconductor Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 誘電体側にドーパント濃度1×1017at
oms/cm3以上の高濃度ドープ層を有する単結晶薄膜を誘
電体基板上に接合して成るSOI基板における前記単結
晶薄膜の膜厚をフーリエ変換赤外分光光度計を用いて測
定する方法であって、マイケルソン干渉計を構成する固
定鏡と移動鏡との光路差Δを連続的に変えて得られる干
渉光をSOI基板上に照射して得られる光路差−反射赤
外光強度曲線f(Δ)を余弦フーリエ変換及び逆変換し
て得られる曲線Cf(Δ)と、同曲線f(Δ)を正弦フ
ーリエ変換及び逆変換して得られる曲線Sf(Δ)とを
合成して得られる曲線Y(Δ): Y(Δ)=√(Cf(Δ)2+Sf(Δ)2) において、単結晶薄膜厚に対応する光路差領域に存在す
る複数のピークの内、光路差の絶対値が最も小さいピー
クの光路差から単結晶薄膜の膜厚を求めることを特徴と
するSOI基板における単結晶薄膜の膜厚測定方法。
1. A dopant concentration of 1 × 10 17 at on the dielectric side.
A method for measuring the thickness of the single crystal thin film on an SOI substrate formed by bonding a single crystal thin film having a highly doped layer of oms / cm 3 or more on a dielectric substrate using a Fourier transform infrared spectrophotometer. Therefore, the optical path difference-reflected infrared light intensity curve f obtained by irradiating the SOI substrate with the interference light obtained by continuously changing the optical path difference Δ between the fixed mirror and the movable mirror constituting the Michelson interferometer A curve Cf (Δ) obtained by cosine Fourier transform and inverse transform of (Δ) and a curve Sf (Δ) obtained by sine Fourier transform and inverse transform of the same curve f (Δ) are obtained. Curve Y (Δ): In Y (Δ) = √ (Cf (Δ) 2 + Sf (Δ) 2 ), the absolute value of the optical path difference among a plurality of peaks existing in the optical path difference region corresponding to the thickness of the single crystal thin film Is characterized in that the film thickness of the single crystal thin film is obtained from the optical path difference of the smallest peak. A method for measuring the thickness of a single crystal thin film on an SOI substrate.
【請求項2】 前記SOI基板は、誘電体基板としてそ
の表面に酸化膜を形成した単結晶シリコンウエーハAを
用い、該ウエーハAに、ドーパント濃度1×1017atom
s/cm3以上の高濃度ドープ層を有する別の単結晶シリコ
ンウエーハBを高濃度ドープ層側で接合し、ウエーハB
の露出表面側を薄層化して得られるものであることを特
徴とする請求項1記載のSOI基板における単結晶薄膜
の膜厚測定方法。
2. The SOI substrate is a single crystal silicon wafer A having an oxide film formed on its surface as a dielectric substrate, and the wafer A has a dopant concentration of 1 × 10 17 atom.
Another single crystal silicon wafer B having a heavily doped layer of s / cm 3 or more is bonded on the heavily doped layer side to form a wafer B.
The method for measuring the film thickness of a single crystal thin film on an SOI substrate according to claim 1, wherein the exposed surface side is obtained by thinning.
【請求項3】 前記SOI基板は、誘電体基板として単
結晶若しくは多結晶シリコンウエーハAを用い、その表
面の一方にドーパント濃度1×1017atoms/cm3以上の
高濃度ドープ層を有する別の単結晶シリコンウエーハB
に酸化膜を形成した後、該ウエーハBの高濃度ドープ層
側を前記ウエーハAに接合し、ウエーハBを、これの露
出表面の酸化膜を除去して単結晶面を露出させた後、薄
層化して得られるものであることを特徴とする請求項1
記載のSOI基板における単結晶薄膜の膜厚測定方法。
3. The SOI substrate uses a single crystal or polycrystalline silicon wafer A as a dielectric substrate, and has a high concentration doped layer having a dopant concentration of 1 × 10 17 atoms / cm 3 or more on one of its surfaces. Single crystal silicon wafer B
After an oxide film is formed on the wafer B, the high-concentration doped layer side of the wafer B is bonded to the wafer A, and the oxide film on the exposed surface of the wafer B is removed to expose the single crystal surface, It is a thing obtained by layering, Claim 1 characterized by the above-mentioned.
A method for measuring the film thickness of a single crystal thin film on an SOI substrate as described above.
JP13771992A 1992-04-28 1992-04-28 Method for measuring thickness of single crystal thin film on SOI substrate Expired - Fee Related JP2855964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13771992A JP2855964B2 (en) 1992-04-28 1992-04-28 Method for measuring thickness of single crystal thin film on SOI substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13771992A JP2855964B2 (en) 1992-04-28 1992-04-28 Method for measuring thickness of single crystal thin film on SOI substrate

Publications (2)

Publication Number Publication Date
JPH05306910A true JPH05306910A (en) 1993-11-19
JP2855964B2 JP2855964B2 (en) 1999-02-10

Family

ID=15205231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13771992A Expired - Fee Related JP2855964B2 (en) 1992-04-28 1992-04-28 Method for measuring thickness of single crystal thin film on SOI substrate

Country Status (1)

Country Link
JP (1) JP2855964B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2023394A1 (en) * 2006-05-30 2009-02-11 Shin-Etsu Handotai Co., Ltd Method for evaluating soi wafer
JP2010002327A (en) * 2008-06-20 2010-01-07 Otsuka Denshi Co Ltd Film thickness measuring instrument and film thickness measuring method
KR20160037993A (en) * 2013-07-26 2016-04-06 마포스 쏘시에타 페르 아지오니 Method and apparatus for optically checking by interferometry the thickness of an object being machined
JP2022523054A (en) * 2019-01-28 2022-04-21 ケーエルエー コーポレイション Mid-infrared spectroscopy for measuring high aspect ratio structures
CN114858065A (en) * 2022-04-26 2022-08-05 兰州空间技术物理研究所 Method for detecting thickness of flexible siloxane film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2023394A1 (en) * 2006-05-30 2009-02-11 Shin-Etsu Handotai Co., Ltd Method for evaluating soi wafer
EP2023394A4 (en) * 2006-05-30 2012-02-22 Shinetsu Handotai Kk Method for evaluating soi wafer
JP2010002327A (en) * 2008-06-20 2010-01-07 Otsuka Denshi Co Ltd Film thickness measuring instrument and film thickness measuring method
KR20160037993A (en) * 2013-07-26 2016-04-06 마포스 쏘시에타 페르 아지오니 Method and apparatus for optically checking by interferometry the thickness of an object being machined
JP2016534332A (en) * 2013-07-26 2016-11-04 マーポス、ソチエタ、ペル、アツィオーニMarposs S.P.A. Method and apparatus for optically measuring the thickness of an object being machined by interferometry
JP2022523054A (en) * 2019-01-28 2022-04-21 ケーエルエー コーポレイション Mid-infrared spectroscopy for measuring high aspect ratio structures
CN114858065A (en) * 2022-04-26 2022-08-05 兰州空间技术物理研究所 Method for detecting thickness of flexible siloxane film
CN114858065B (en) * 2022-04-26 2024-02-20 兰州空间技术物理研究所 Method for detecting thickness of flexible siloxane film

Also Published As

Publication number Publication date
JP2855964B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
US9400172B2 (en) Film thickness measurement method
De Wolf Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits
US4807994A (en) Method of mapping ion implant dose uniformity
US9759546B2 (en) Method for measuring thickness variations in a layer of a multilayer semiconductor structure
CN104011499B (en) Film thickness distribution assay method
CN102918639B (en) With the evaluation method of the wafer of film
JP4137999B2 (en) Reflective semiconductor substrate
US7930113B1 (en) Measuring stresses in multi-layer thin film systems with variable film thickness
US6025596A (en) Method for measuring epitaxial film thickness of multilayer epitaxial wafer
JPH09115787A (en) Soi substrate and manufacturing method therefor
JP2855964B2 (en) Method for measuring thickness of single crystal thin film on SOI substrate
Schmidt et al. OCD enhanced: implementation and validation of spectral interferometry for nanosheet inner spacer indentation
TW200426344A (en) Methods for determining the depth of a buried structure
JP2914009B2 (en) Method for measuring thickness of single crystal thin film on SOI substrate
Dial et al. THICKNESS MEASUREMENTS OF SILICON DIOXIDE FILMS ON SILICON BY INFRARED ADSORPTION TECHNIQUES
EP0968081A1 (en) Flattening process for bonded semiconductor substrates
US6731386B2 (en) Measurement technique for ultra-thin oxides
Nakashima et al. Characterization of ion implanted and laser annealed polycrystalline Si by a Raman microprobe
JP2625362B2 (en) Method for manufacturing semiconductor device
JPH07183477A (en) Manufacture of semiconductor substrate
JP2970217B2 (en) Method for making SOI film thickness uniform on SOI substrate
JP2890588B2 (en) Method of measuring film thickness
US5827771A (en) Readout backside processing for hybridization
Ferrieu et al. Nondestructive characterization of silicon‐on‐insulator structures using infrared spectroscopic ellipsometry
Volkov et al. Optical monitoring of substrate temperature and etching speed of multilayered structures during plasmochemical etching

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees