[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0529118A - High corrosion-resistant rare earth magnet - Google Patents

High corrosion-resistant rare earth magnet

Info

Publication number
JPH0529118A
JPH0529118A JP3203319A JP20331991A JPH0529118A JP H0529118 A JPH0529118 A JP H0529118A JP 3203319 A JP3203319 A JP 3203319A JP 20331991 A JP20331991 A JP 20331991A JP H0529118 A JPH0529118 A JP H0529118A
Authority
JP
Japan
Prior art keywords
rare earth
plating
magnet
earth magnet
bright
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3203319A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
廣士 佐藤
Haruo Tomari
治夫 泊里
Fumihiro Sato
文博 佐藤
Atsushi Hanaki
敦司 花木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3203319A priority Critical patent/JPH0529118A/en
Publication of JPH0529118A publication Critical patent/JPH0529118A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To maintain excellent magnetic property for a long period by making a lustrous or semilustrous Sn plating on the surface of an RE-B-Fe sintered rare earth magnet or the surface of an RE-TM-B hot processed rare earth magnet. CONSTITUTION:The lustrous or semilustrous Sn plating made on the surface of an RE-B-Fe sintered rare earth magnet or the surface of an RE-TM-B hot processed rare earth magnet well adheres to the surface of the magnet, and the extremely efficient plating cover such that the covering is 98% or more of the surface of the magnet is possible. Furthermore, the lustrous or semilustrous plated layer has a function as a hydrogen barrier layer, and hinders the hydrogen produced in formation of the Sn plating from moving toward the magnetic alloy, so the embrittlement of surface of the magnet alloy by occlusion of hydrogen is also suppressed. Hereby, excellent magnetic property can be maintained for a long period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐食性の改善された希土
類磁石に関し、詳細には希土類磁石の表面に光沢もしく
は半光沢めっき層を形成し、それにより耐食性を高めて
優れた磁気特性を長期間維持できる様にした高耐食性希
土類磁石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnet having improved corrosion resistance, and in particular, a glossy or semi-glossy plating layer is formed on the surface of the rare earth magnet, thereby enhancing corrosion resistance and providing excellent magnetic properties for a long period of time. The present invention relates to a highly corrosion-resistant rare earth magnet that can be maintained.

【0002】[0002]

【従来の技術】磁石合金は、永久磁石等として大型コン
ピューターの周辺機器から一般家庭用の各種電気製品等
の電気もしくは電子部品用材料として幅広く利用されて
おり、特に近年におけるコンピューターや電気製品の小
型化、高性能化の要求にともなって、磁石合金に対する
磁気特性や耐食性等の要求性能はますます高度のものが
求められている。
2. Description of the Related Art Magnet alloys are widely used as permanent magnets and the like as peripheral materials for large computers, and as materials for electric or electronic parts such as various household electric appliances. With the demand for higher performance and higher performance, the demands for magnetic alloys such as magnetic properties and corrosion resistance are becoming more and more advanced.

【0003】こうした中にあってRE−B−Fe系焼結
希土類磁石またはRE−TM−B系熱間加工希土類磁石
は磁気特性に優れたものであるとされている。ところが
この希土類磁石は、非常に活性の高い希土類元素を含有
するばかりでなく、REリッチ相とFeリッチ相が混在
する合金であるため、両相間の電位差による局部電池の
影響も加わって容易に発錆する。従って実用化に当たっ
ては防錆のための表面処理が不可欠であり、たとえばN
iやZnなどの金属やそれらの合金をめっきする方法;
りん酸塩処理やクロメート処理等の化成処理を施す方
法;浸漬法やスプレー法等によりエポキシ系樹脂やアク
リル系樹脂等の樹脂コーティングを施す方法等が提案さ
れている。
Among these, the RE-B-Fe system sintered rare earth magnet or the RE-TM-B system hot-worked rare earth magnet is said to have excellent magnetic properties. However, since this rare earth magnet not only contains a highly active rare earth element but also an alloy in which a RE-rich phase and an Fe-rich phase coexist, it is easily generated by the influence of the local battery due to the potential difference between the two phases. Rust. Therefore, surface treatment for rust prevention is indispensable for practical use.
a method of plating a metal such as i or Zn or an alloy thereof;
A method of applying chemical conversion treatment such as phosphate treatment or chromate treatment; a method of applying a resin coating of epoxy resin or acrylic resin by a dipping method, a spray method or the like has been proposed.

【0004】これらの中でもNiやNi−P等を電気め
っき若しくは無電解めっきする方法は、設備が簡単でか
つ低コストであるところから、実用性の高い方法として
賞用されている。
Of these, the method of electroplating or electrolessly plating Ni, Ni-P, or the like has been praised as a highly practical method because the equipment is simple and the cost is low.

【0005】[0005]

【発明が解決しようとする課題】しかしながらNi等の
金属もしくは合金よりなる単層めっきでは、充分な密着
性が得られず、それによって得られる耐食性も十分なも
のとはいえない。しかも希土類磁石は水素吸蔵性が高
く、水素吸蔵によって脆化する性質があるので、電気め
っき或は無電解めっき法を採用すると、めっき時に発生
する水素の吸蔵によって磁石がめっき界面で脆化割れを
起こし、めっき剥離を起こして耐食性を維持できなくな
る。その結果、当該磁石を含む磁気回路の出力低下をき
たし、あるいは錆粉の飛散によって磁気回路の信頼性を
低下させるといった問題が生じてくる。また浸漬法やス
プレー法等によって樹脂コーティングを施す方法でも、
十分な密着性と耐食性は得られ難く、しかも磁石表面に
均一な樹脂コーティング皮膜を形成することは困難であ
って、特に磁石のエッジ部は耐食性不足になり易く、こ
の部分を起点として腐食が進行する。
However, single layer plating made of a metal such as Ni or an alloy does not provide sufficient adhesion, and the corrosion resistance obtained thereby cannot be said to be sufficient. Moreover, since rare earth magnets have a high hydrogen storage capacity and are prone to embrittlement due to hydrogen storage, when electroplating or electroless plating is adopted, the magnets develop brittle cracks at the plating interface due to storage of hydrogen generated during plating. Then, the plating is peeled off and the corrosion resistance cannot be maintained. As a result, the output of the magnetic circuit including the magnet is reduced, or the reliability of the magnetic circuit is reduced due to the scattering of rust powder. In addition, the method of applying resin coating by dipping method or spray method,
It is difficult to obtain sufficient adhesion and corrosion resistance, and it is difficult to form a uniform resin coating film on the magnet surface.In particular, the edge portion of the magnet tends to have insufficient corrosion resistance, and corrosion progresses from this point. To do.

【0006】そこで樹脂コーティング層の密着性や均一
性を高めるための手段として電着塗装法を採用すること
も考えられるが、樹脂の電解析出時に水素発生を伴うカ
チオン電着塗装法を採用すると、前記したのと同様の理
由により磁石が水素を吸蔵して脆化割れを起こし、樹脂
コーティング層の密着性が低下するばかりでなく、長期
間の使用によって塗膜膨れや塗膜下腐食が起こり、磁気
回路の出力低下や錆粉の飛散による汚染等の問題が生じ
てくる。
Therefore, it is conceivable to adopt an electrodeposition coating method as a means for enhancing the adhesion and uniformity of the resin coating layer, but if a cation electrodeposition coating method involving hydrogen generation at the time of electrolytic deposition of resin is adopted. For the same reason as described above, the magnet occludes hydrogen to cause embrittlement cracking, which not only lowers the adhesion of the resin coating layer, but also causes swelling of the coating film and corrosion under the coating film due to long-term use. However, problems such as a decrease in output of the magnetic circuit and contamination due to scattering of rust powder occur.

【0007】本発明は上記の様な状況に着目してなされ
たものであって、その目的は、水素吸蔵等の問題を生じ
ることなく、優れた磁気特性を長期的に維持し得る様な
高耐食性希土類磁石を提供しようとするものである。
The present invention has been made by paying attention to the above situation, and an object thereof is to obtain a high magnetic property capable of maintaining excellent magnetic characteristics for a long period of time without causing problems such as hydrogen absorption. It is intended to provide a corrosion resistant rare earth magnet.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明の構成は、RE−B−Fe系焼結希土類
磁石またはRE−TM−B系熱間加工希土類磁石の表面
に、光沢もしくは半光沢Snめっき層が形成されたもの
であるところに要旨を有するものである。
Means for Solving the Problems The constitution of the present invention which was able to solve the above-mentioned problems is that the surface of a RE-B-Fe system sintered rare earth magnet or a RE-TM-B system hot-worked rare earth magnet is glossy. Alternatively, the gist is that the semi-gloss Sn plating layer is formed.

【0009】[0009]

【作用】本発明において、RE−B−Fe系焼結希土類
磁石またはRE−TM−B系熱間加工希土類磁石の表面
に形成される光沢もしくは半光沢Snめっき層は、該磁
石表面に対して優れた密着性を有しており、該磁石表面
において98%以上という極めて効率の良いめっき被覆
が可能である。しかも光沢もしくは半光沢Snめっき層
は、水素バリヤー層としての作用を有しており、当該S
nめっき層形成時に生成する水素が磁石合金方向へ移行
するのを阻止するので、水素吸蔵による磁石合金表面の
脆化も抑えられる。
In the present invention, the bright or semi-bright Sn plating layer formed on the surface of the RE-B-Fe system sintered rare earth magnet or the RE-TM-B system hot-worked rare earth magnet is applied to the surface of the magnet. It has excellent adhesion and enables extremely efficient plating coating of 98% or more on the surface of the magnet. Moreover, the bright or semi-bright Sn plating layer functions as a hydrogen barrier layer.
Since hydrogen generated when the n-plated layer is formed is prevented from moving toward the magnet alloy, embrittlement of the magnet alloy surface due to hydrogen absorption can be suppressed.

【0010】また光沢もしくは半光沢Snめっき層は、
種々の光沢剤が配合された例えばアルカリ浴、フェロス
タン浴、硫酸酸性浴、ほうふっ酸酸性浴等を用いた電気
めっき法によって形成されるが、このめっき法は、Ni
やNi−Pの如き他の金属もしくは合金めっきを無電解
めっきする場合に比べて水素発生量が少なく、上記Sn
めっき層の水素バリヤー効果とも相まって磁石合金の水
素脆化は殆ど無視し得る程度に抑えられ、その結果、該
めっき層の磁石表面への密着性は高レベルに維持され、
ひいては優れた表面保護効果を維持し高耐食性を長期に
わたって保持し得ることとなる。
The bright or semi-bright Sn plating layer is
It is formed by an electroplating method using, for example, an alkaline bath, a ferrostane bath, a sulfuric acid acid bath, a fluoric acid acid bath, etc. containing various brighteners.
The amount of hydrogen generated is smaller than in the case of electroless plating of other metal or alloy plating such as Ni or P,
Combined with the hydrogen barrier effect of the plating layer, hydrogen embrittlement of the magnet alloy is suppressed to a negligible level, and as a result, the adhesion of the plating layer to the magnet surface is maintained at a high level.
As a result, it is possible to maintain an excellent surface protection effect and maintain high corrosion resistance for a long period of time.

【0011】なお光沢もしくは半光沢Snめっきに当た
っては、公知の無機質もしくは有機質の種々の光沢剤が
めっき浴に添加されるが、浴温度や電流密度等は、用い
られるめっき浴組成あるいは光沢剤の種類や添加量によ
って変わってくるので、それらを考慮して最適のめっき
条件を設定すればよい。
In the case of bright or semi-bright Sn plating, various known inorganic or organic brighteners are added to the plating bath. The bath temperature, current density, etc., depend on the composition of the plating bath or the kind of brightener used. The optimum plating conditions may be set in consideration of these factors as well as the amount added.

【0012】また上記以外の光沢もしくは半光沢めっき
法として、気相めっき法や溶融めっき法を採用すること
もでき、またSnめっきをソフロー処理すれば、めっき
法に関係なく光沢を与えることができる。
Further, as a glossy or semi-glossy plating method other than the above, a vapor phase plating method or a hot dip plating method can be adopted, and if the Sn plating is subjected to soflow treatment, gloss can be provided regardless of the plating method. ..

【0013】光沢もしくは半光沢Snめっき層の肉厚は
5〜15μmの範囲が好ましく、5μm未満では磁石表
面全面が完全に被覆されないでピンホール等の欠陥が残
る恐れがあり、また15μmを超えても耐食性はそれ以
上改善されないので経済的に無駄である。
The thickness of the bright or semi-bright Sn plating layer is preferably in the range of 5 to 15 μm, and if it is less than 5 μm, the entire surface of the magnet may not be completely covered, and defects such as pinholes may remain, and if it exceeds 15 μm. However, since the corrosion resistance cannot be improved any more, it is economically wasteful.

【0014】なお上記光沢もしくは半光沢Snめっき層
は、前述の如く磁石合金に対して強く密着しており、そ
れ自身で優れた耐食性を発揮するが、要求される耐食性
の程度によっては、該めっき層の表面に更にクロメート
処理等の化成処理や酸化処理あるいは有機コーティング
処理等を施して耐食性を一段と改善することも有効であ
る。
The bright or semi-bright Sn plating layer adheres strongly to the magnet alloy as described above, and exhibits excellent corrosion resistance by itself, but depending on the required degree of corrosion resistance, the plating layer may have an excellent corrosion resistance. It is also effective to further improve the corrosion resistance by subjecting the surface of the layer to chemical conversion treatment such as chromate treatment, oxidation treatment or organic coating treatment.

【0015】次に本発明で使用されるRE−B−Fe系
焼結希土類磁石及びRE−TM−B系熱間加工希土類磁
石について説明する。まずRE−B−Fe系焼結希土類
磁石は、希土類元素の少なくとも1種とB及びFeを必
須元素として含むものであり、REで示される希土類元
素としては、Pr,Nd,La,Ce,Td,Dy,H
o,Er,Eu,Sm,Gd,Pm,Tm,Yb,L
u,Yなどを挙げることができ、これらは単独で使用し
てもよく或は必要により2種以上を併用することもでき
る。上記希土類元素の中でも特に好ましいのはPrとN
dである。
Next, the RE-B-Fe system sintered rare earth magnet and the RE-TM-B system hot-worked rare earth magnet used in the present invention will be explained. First, the RE-B-Fe based sintered rare earth magnet contains at least one kind of rare earth element and B and Fe as essential elements, and the rare earth element represented by RE is Pr, Nd, La, Ce, Td. , Dy, H
o, Er, Eu, Sm, Gd, Pm, Tm, Yb, L
Examples thereof include u and Y, and these may be used alone or, if necessary, may be used in combination of two or more kinds. Among the above rare earth elements, Pr and N are particularly preferable.
It is d.

【0016】これらRE−B−Fe系焼結希土類磁石中
に占めるREの好ましい含有量(以下、特記しない限り
原子%を意味する)は8〜30%であり、8%未満では
十分な保磁力が得られにくく、30%を超えると残留磁
束密度が不足気味となる。またBの好ましい含有率は2
〜28%であり、2%未満では十分な保磁力が得られ難
く、一方28%を超えると残留磁束密度が不十分とな
る。Feは40〜90%の範囲が好ましく、40%未満
では残留磁束密度が不足気味となり、一方90%を超え
ると高レベルの保磁力が得られ難くなる。
The preferred RE content in these RE-B-Fe sintered rare earth magnets (hereinafter, referred to as atomic% unless otherwise specified) is 8 to 30%, and if it is less than 8%, a sufficient coercive force is obtained. Is difficult to obtain, and if it exceeds 30%, the residual magnetic flux density tends to be insufficient. Further, the preferable content ratio of B is 2
If it is less than 2%, it is difficult to obtain a sufficient coercive force, and if it exceeds 28%, the residual magnetic flux density becomes insufficient. Fe is preferably in the range of 40 to 90%, and if it is less than 40%, the residual magnetic flux density tends to be insufficient, while if it exceeds 90%, it becomes difficult to obtain a high level of coercive force.

【0017】尚上記RE−B−Fe系焼結希土類磁石に
おいては、Feの一部をCoやNiで置換することもで
きる。しかしCoの置換量が多くなり過ぎると高保磁力
が得られにくくなるので、Feに対する置換量は50%
以下に抑えるべきであり、またNi置換量が多くなり過
ぎると残留磁束密度が低下する傾向があるので、Feに
対する置換量は8%以下とすべきである。
In the RE-B-Fe system sintered rare earth magnet, part of Fe may be replaced with Co or Ni. However, if the substitution amount of Co becomes too large, it becomes difficult to obtain a high coercive force, so the substitution amount of Fe is 50%.
The residual magnetic flux density tends to decrease when the Ni substitution amount becomes too large, so the substitution amount for Fe should be 8% or less.

【0018】更にこの磁石には、他の元素として以下に
示す様な元素の1種以上をFeに置換して含有させるこ
とによって保磁力を更に高めることが可能である(但
し、2種以上を併用する場合の許容含有量は、各添加元
素のうち最大値を示すものの含有量を上限とする)。
Further, in this magnet, the coercive force can be further increased by substituting one or more of the following elements as Fe as the other element for Fe (provided that two or more elements are included). When used in combination, the allowable content is the upper limit of the content of each additive element that shows the maximum value).

【0019】Al:9.5%以下、 Ti:4.5%以
下、 V:9.5%以下、Cr:8.5%以下、 M
n:8.0%以下、 Bi:5.0%以下、Nb:9.
5%以下、 Ta:9.5%以下、 Mo:9.5%以
下、W: 9.5%以下、 Sb:2.5%以下、 G
e:7.0%以下、Sn:3.5%以下、 Zr:5.
5%以下、 Ni:9.0%以下、Si:9.0%以
下、 Zn:1.1%以下、 Hf:5.5%以下。
Al: 9.5% or less, Ti: 4.5% or less, V: 9.5% or less, Cr: 8.5% or less, M
n: 8.0% or less, Bi: 5.0% or less, Nb: 9.
5% or less, Ta: 9.5% or less, Mo: 9.5% or less, W: 9.5% or less, Sb: 2.5% or less, G
e: 7.0% or less, Sn: 3.5% or less, Zr: 5.
5% or less, Ni: 9.0% or less, Si: 9.0% or less, Zn: 1.1% or less, Hf: 5.5% or less.

【0020】次にRE−TM−B系熱間加工希土類磁石
は、Yを含む希土類元素(RE)の少なくとも1種と遷
移元素(TM)およびBを必須元素として含むものであ
り、REとしては前記RE−B−Fe系焼結希土類磁石
の構成元素として挙げたものが再び例示されるが、これ
らのうち最も高い磁気的性質はPrを用いたときに得ら
れ易いので、実質的にはPrのみ、もしくはREのうち
50%以上がPrであるものが好ましい。またDyやT
d等の重希土類元素を少量併用することは、保磁力の向
上に有効である。
Next, the RE-TM-B hot-worked rare earth magnet contains at least one rare earth element (RE) containing Y, a transition element (TM) and B as essential elements. The constituent elements of the RE-B-Fe-based sintered rare earth magnet are exemplified again, but the highest magnetic property among these is easily obtained when Pr is used, and therefore, it is substantially Pr. It is preferable that only 50% or more of RE is Pr. Also Dy and T
The combined use of a small amount of heavy rare earth element such as d is effective for improving the coercive force.

【0021】該RE−TM−B系熱間加工希土類磁石全
量中に占めるREの好ましい含有量は、8〜25%、よ
り好ましくは10〜20%、更に好ましくは12〜18
%の範囲である。REとTMおよびBを基本成分とする
磁石の主相はRE2 TM14B(たとえばPr2 Fe
14B)であるが、REが不足するとこの化合物が形成さ
れず、α−鉄と同一構造の立方晶組織となるため良好な
磁気的特性(特に保磁率)が得られ難く、他方、REが
多過ぎると非磁性のREリッチ相が多くなって残留磁束
密度が低下傾向を示す様になる。
The RE content in the total amount of the RE-TM-B hot-worked rare earth magnet is preferably 8 to 25%, more preferably 10 to 20%, further preferably 12 to 18%.
% Range. The main phase of a magnet having RE, TM and B as its basic components is RE 2 TM 14 B (eg Pr 2 Fe).
14B ), when RE is insufficient, this compound is not formed and a cubic crystal structure having the same structure as α-iron is formed, so that it is difficult to obtain good magnetic properties (especially coercivity). If it is too large, the amount of non-magnetic RE rich phase increases and the residual magnetic flux density tends to decrease.

【0022】次にBの含有量は、2〜8%、より好まし
くは4〜6%が適当である。B量が不足する場合は、R
E−Fe系の菱面体となるため満足な保磁力が得られ難
く、逆に多過ぎるとたとえば非磁性のRE2 Fe4 B相
が析出して残留磁束密度が低くなる。
Next, the content of B is preferably 2 to 8%, more preferably 4 to 6%. If the amount of B is insufficient, R
Since it becomes an E—Fe rhombohedral, it is difficult to obtain a sufficient coercive force. On the other hand, when the coercive force is too large, for example, a nonmagnetic RE 2 Fe 4 B phase is precipitated and the residual magnetic flux density becomes low.

【0023】TMは40〜90%、より好ましくは65
〜90%が適当であり、TM量が不足すると残留磁束密
度が低くなり、また多過ぎると保磁力が不十分となる。
尚、TMのうち最も代表的なものはFeであるが、その
一部をCoおよび/またはNiで代替することができ
る。Coは磁石のキュリー点を上げるのに有効であり、
基本的には主相のFeサイトを置換してRE2 Co14
を形成するが、この化合物は結晶異方性磁界が小さく、
Coの代替量が多くなるにつれて磁石全体としての保磁
力が低下するので、Feの50%以下、より好ましくは
20%以下に抑えるのがよい。またNiの代替量が多く
なると残留磁束密度が低下する傾向があるので、Feの
8%程度以下に抑えることが望まれる。
TM is 40 to 90%, more preferably 65.
90% is appropriate. If the amount of TM is insufficient, the residual magnetic flux density becomes low, and if it is too large, the coercive force becomes insufficient.
The most typical one of TM is Fe, but a part of it can be replaced with Co and / or Ni. Co is effective in raising the Curie point of the magnet,
Basically, by replacing the Fe site of the main phase, RE 2 Co 14 B
However, this compound has a small crystal anisotropy field,
Since the coercive force of the magnet as a whole decreases as the substitution amount of Co increases, it is preferable to suppress the content of Fe to 50% or less, more preferably 20% or less. Further, since the residual magnetic flux density tends to decrease as the substitution amount of Ni increases, it is desirable to suppress Fe to about 8% or less.

【0024】RE−TM−B系熱間加工希土類磁石の基
本的構成元素は上記の通りであるが、必要により更に他
の元素としてAg,Au,Al,Cu,Ga,Sn,P
t,Zn等の1種以上を含有させることにより保磁力を
更に高めることができ、その効果は0.2 %以上の添加で
有効に発揮される。しかし多過ぎると非磁性の粒界相が
増加して磁気特性の低下を招くので2%以下に抑えるべ
きである。
The basic constituent elements of the RE-TM-B hot-working rare earth magnet are as described above, but if necessary, other elements such as Ag, Au, Al, Cu, Ga, Sn and P are used.
The coercive force can be further increased by containing at least one of t, Zn and the like, and the effect is effectively exhibited by the addition of 0.2% or more. However, if it is too large, the non-magnetic grain boundary phase increases and the magnetic properties are deteriorated. Therefore, it should be suppressed to 2% or less.

【0025】上記元素の中でも特にAg,Au,Al,
Cu,Pt,Sn,Znは結晶組織を微細化し、後述す
るような異方性付与のための熱間加工に伴う表面劣化層
の生成を抑制する作用があり、例えば3mm程度の薄肉形
状のものであっても優れた磁気特性を持った磁石を与え
るという効果を発揮する。
Among the above elements, especially Ag, Au, Al,
Cu, Pt, Sn, and Zn have the effect of refining the crystal structure and suppressing the formation of a surface-deteriorated layer that accompanies hot working for imparting anisotropy as described later. Even in that case, the effect of giving a magnet having excellent magnetic properties is exhibited.

【0026】かくして得られるRE−TM−B系合金
を、好ましくは800℃以上の温度で熱間加工して配向
させると、異方性の永久磁石が得られる。尚、このRE
−TM−B系熱間加工希土類磁石は、耐食性や磁気特性
において前述のRe−B−Fe系焼結希土類磁石よりも
優れた効果を有しているので特に好ましい。
An anisotropic permanent magnet is obtained by hot working the RE-TM-B based alloy thus obtained, preferably at a temperature of 800 ° C. or higher, and orienting it. In addition, this RE
The -TM-B hot-worked rare earth magnet is particularly preferable because it has a better effect in corrosion resistance and magnetic properties than the Re-B-Fe sintered rare earth magnet described above.

【0027】本発明では、上記のようなRE−B−Fe
系焼結希土類磁石もしくはRE−TM−B系熱間加工希
土類磁石に、前述の光沢もしくは半光沢Snめっきを施
すことによって高耐食性の永久磁石を得ることができ
る。すなわち上記の磁石合金は、その中に含まれる酸素
や希土類元素酸化物の量が非常に少なく、表層部に脆弱
でめっき密着性の乏しい酸化物層が存在しないばかりで
なく、めっき工程中あるいはその後に水素を吸蔵して脆
化することもなく、こうした効果と、光沢もしくは半光
沢Snめっき層の優れた密着性が相まって卓越した耐食
性を示し、高レベルの磁気特性を長期間に渡って維持し
得るものとなる。
In the present invention, RE-B-Fe as described above is used.
A highly corrosion-resistant permanent magnet can be obtained by applying the above-described bright or semi-bright Sn plating to the system sintered rare earth magnet or the RE-TM-B system hot worked rare earth magnet. That is, the above magnet alloy has a very small amount of oxygen and rare earth element oxides contained therein, and not only does the oxide layer having weak plating adhesion poor in the surface layer portion not exist, but also during or after the plating step. It does not become brittle by occluding hydrogen on its own, and this effect is combined with the excellent adhesion of the glossy or semi-bright Sn plating layer to show outstanding corrosion resistance, which maintains a high level of magnetic properties for a long period of time. You will get it.

【0028】[0028]

【実施例】実施例1 純度99.9%の鉄粉、純度99.9%のフェロボロン
合金および純度99.7%以上のNdを原料とし、これら
を配合して高周波溶解した後水冷銅鋳型を用いて鋳造
し、組成がNd147 Fe79の鋳塊を得た。
Example 1 Iron powder having a purity of 99.9%, ferroboron alloy having a purity of 99.9% and Nd having a purity of 99.7% or more are used as raw materials, and these are blended and subjected to high frequency melting, and then a water-cooled copper mold is formed. Casting was performed to obtain an ingot having a composition of Nd 14 B 7 Fe 79 .

【0029】この鋳塊をスタンプミルで粗粉砕した後ボ
ールミルで微粉砕し、粒径が2.8〜8μmの微粉末を
得た。この微粉末を金型に装入して、10KOeの磁界
中で配向させると共に1.5トン/cm2 の圧力で成形
した。
The ingot was roughly crushed with a stamp mill and then finely crushed with a ball mill to obtain a fine powder having a particle size of 2.8 to 8 μm. The fine powder was charged into a mold, oriented in a magnetic field of 10 KOe, and molded at a pressure of 1.5 ton / cm 2 .

【0030】この成形体を、Ar雰囲気中1000℃で
1時間焼結した後放冷し、その後Ar雰囲気中600℃
で2時間時効処理することにより希土類磁石を得た。得
られた磁石より20mm×30mm×3mmサイズの試
験片を切り出し、表面研磨(No.150)及びアセト
ン脱脂後、下記条件で光沢もしくは半光沢Snめっき層
を形成した。
This compact was sintered in an Ar atmosphere at 1000 ° C. for 1 hour and then allowed to cool, and then 600 ° C. in an Ar atmosphere.
A rare earth magnet was obtained by aging treatment for 2 hours. A 20 mm × 30 mm × 3 mm size test piece was cut out from the obtained magnet, and after surface polishing (No. 150) and degreasing with acetone, a glossy or semi-glossy Sn plating layer was formed under the following conditions.

【0031】(めっき条件)めっき浴組成:硫酸酸性光
沢もしくは半光沢Snめっき浴光沢剤:光沢めっき用
(市販の添加剤)、半光沢めっき用(市販の添加剤)電
流密度:2A/dm2また比較法として従来法に準拠
し、ワット浴を用いて電流密度8A/dm2 でNiめっ
きを行なった。
(Plating conditions) Plating bath composition: Sulfuric acid bright or semi-bright Sn plating bath Brightening agent: For bright plating (commercial additive), for semi-bright plating (commercial additive) Current density: 2 A / dm 2 Further, as a comparative method, Ni plating was performed using a Watt bath at a current density of 8 A / dm 2 according to the conventional method.

【0032】光沢もしくは半光沢めっきあるいはNiめ
っきの後夫々着磁処理を行ない、下記の初期磁気特性を
有する供試材を得た。 残留磁束密度(Br)=12.5KG 保磁力(iHc)=12.0KQe エネルギー積(BH)max =35.0MGOe 得られた各供試材について下記の方法で耐食性試験を行
なった。
Magnetization treatment was performed after bright or semi-bright plating or Ni plating to obtain a test material having the following initial magnetic characteristics. Residual magnetic flux density (Br) = 12.5 KG Coercive force (iHc) = 12.0 KQe Energy product (BH) max = 35.0 MGOe Each of the obtained test materials was subjected to a corrosion resistance test by the following method.

【0033】(耐食性試験)供試材を80℃×90%R
Hの恒温恒湿雰囲気に300時間放置した後、外観(目
視観察)、めっき密着性(JIS K 5400:碁盤
目テープ法)および磁気特性を調べた。結果を表1に一
括して示す。
(Corrosion resistance test) The test material is 80 ° C. × 90% R
After being left in a constant temperature and humidity atmosphere of H for 300 hours, the appearance (visual observation), plating adhesion (JIS K 5400: cross-cut tape method) and magnetic properties were examined. The results are collectively shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】表1からも明らかであるように、実施例
(No.1〜4)では耐食性試験後の外観変化は殆ど見
られず、まためっき密着性の低下を生じることもなく、
磁気特性も試験前の値をそのまま維持しているのに対
し、比較例(No.5,6)では発錆による外観劣化お
よびめっき密着性の低下が著しく、また磁気特性もかな
り低下している。
As is clear from Table 1, in Examples (Nos. 1 to 4), almost no change in appearance was observed after the corrosion resistance test, and the plating adhesion was not deteriorated.
The magnetic properties also maintained the values before the test as they were, but in Comparative Examples (Nos. 5 and 6), appearance deterioration due to rusting and deterioration of plating adhesion were remarkable, and magnetic properties were also considerably decreased. ..

【0036】実施例2 純度99.9%の電解鉄と純度99.9%のフェロボロ
ンおよび純度99%以上のPrを原料とし、これらを配
合した後高周波溶解後水冷銅鋳型を用いて表2に示す組
成の鋳塊を得た。
Example 2 Electrolytic iron having a purity of 99.9%, ferroboron having a purity of 99.9%, and Pr having a purity of 99% or more were used as raw materials, which were blended and then subjected to high frequency melting. An ingot having the composition shown was obtained.

【0037】この鋳塊を切断してから鉄製カプセルに封
入し、950℃にて全圧下率76%の熱間圧延を行な
い、次いで1000℃×6時間および480℃×2時間
の条件で熱処理することにより、表2に示す磁気特性の
希土類磁石を得た。この磁石より20mm×30mm×
3mmの試験片を切り出し、表面研磨(No.150)
およびアセトン脱脂の後、上記実施例1と同様にして光
沢もしくは半光沢Snめっきを行ない、以下実施例1と
同様にして着磁処理および耐食性試験を行なった。
This ingot is cut, encapsulated in an iron capsule, hot-rolled at a total reduction of 76% at 950 ° C., and then heat-treated at 1000 ° C. × 6 hours and 480 ° C. × 2 hours. As a result, rare earth magnets having the magnetic characteristics shown in Table 2 were obtained. 20mm x 30mm x from this magnet
A 3 mm test piece is cut out and surface polishing (No. 150)
After degreasing with acetone and degreasing with acetone, bright or semi-bright Sn plating was performed in the same manner as in Example 1 above, and a magnetization treatment and a corrosion resistance test were performed in the same manner as in Example 1 below.

【0038】結果を表3に示す。The results are shown in Table 3.

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】表2,3はいずれも本発明の規定要件を満
足するものであり、耐食性試験後の外観劣化および塗膜
密着性の低下並びに磁気特性の低下は全く認められな
い。
Tables 2 and 3 both satisfy the specified requirements of the present invention, and no deterioration of appearance, deterioration of coating film adhesion and deterioration of magnetic properties are observed after the corrosion resistance test.

【0042】[0042]

【発明の効果】本発明は以上の様に構成されており、R
E−B−Fe系焼結希土類磁石またはRE−TM−B系
熱間加工希土類磁石の表面を光沢もしくは半光沢Snめ
っき層で被覆することによって耐食性を著しく高めるこ
とができ、優れた磁気特性を長期間維持する高耐食性の
希土類磁石を提供し得ることになった。
The present invention is constructed as described above, and R
By coating the surface of the EB-Fe-based sintered rare earth magnet or the RE-TM-B-based hot-worked rare earth magnet with a bright or semi-bright Sn plating layer, the corrosion resistance can be remarkably enhanced and excellent magnetic properties can be obtained. It has become possible to provide a highly corrosion-resistant rare earth magnet that can be maintained for a long time.

Claims (1)

【特許請求の範囲】 【請求項1】 RE−B−Fe系焼結希土類磁石または
RE−TM−B系熱間加工希土類磁石(REは希土類元
素の1種以上、TMは遷移元素の1種以上を表す:以下
同じ)の表面に、光沢Snもしくは半光沢Snめっき層
が形成されたものであることを特徴とする高耐食性希土
類磁石。
Claims: 1. RE-B-Fe system sintered rare earth magnet or RE-TM-B system hot-worked rare earth magnet (RE is one or more rare earth elements, TM is one transition element). A high corrosion resistant rare earth magnet, characterized in that a bright Sn or semi-bright Sn plating layer is formed on the surface of the above (the same applies hereinafter).
JP3203319A 1991-07-18 1991-07-18 High corrosion-resistant rare earth magnet Withdrawn JPH0529118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3203319A JPH0529118A (en) 1991-07-18 1991-07-18 High corrosion-resistant rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3203319A JPH0529118A (en) 1991-07-18 1991-07-18 High corrosion-resistant rare earth magnet

Publications (1)

Publication Number Publication Date
JPH0529118A true JPH0529118A (en) 1993-02-05

Family

ID=16472054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3203319A Withdrawn JPH0529118A (en) 1991-07-18 1991-07-18 High corrosion-resistant rare earth magnet

Country Status (1)

Country Link
JP (1) JPH0529118A (en)

Similar Documents

Publication Publication Date Title
US7438768B2 (en) Rare earth element sintered magnet and method for producing rare earth element sintered magnet
US9607743B2 (en) R-T-B based sintered magnet
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JP2003257721A (en) Sintered rare-earth magnet
JPH0529119A (en) High corrosion-resistant rare earth magnet
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
JPH05226129A (en) Manufacture of highly corrosion-resistant rare-earth magnet
JP2007300791A (en) Method for using rare earth sintered magnet
JPH0529118A (en) High corrosion-resistant rare earth magnet
US5286366A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JPH0569282B2 (en)
JPH05226125A (en) Manufacture of highly corrosion-resistant rare-earth magnet
JPH0541313A (en) High corrosion resistant rare earth magnet
JPH06290935A (en) Rare earth magnet
JPH0529120A (en) High corrosion-resistant rare earth magnet and manufacture thereof
JPH05226126A (en) Highly corrosion-resistant rare-earth magnet
JPH05109519A (en) High corrosion resistant rare earth magnet and manufacture thereof
WO2006054617A1 (en) Rare earth sintered magnet
US5348639A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JP2001295091A (en) Surface-treating method and method for manufacturing magnet
JPH0529116A (en) High corrosion-resistant rare earth magnet
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP3914557B2 (en) Rare earth sintered magnet
JP5036207B2 (en) Magnet member
JP2941446B2 (en) R-TM-B permanent magnet with improved corrosion resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008