JPH05296245A - Fluid linear guide apparatus - Google Patents
Fluid linear guide apparatusInfo
- Publication number
- JPH05296245A JPH05296245A JP9816692A JP9816692A JPH05296245A JP H05296245 A JPH05296245 A JP H05296245A JP 9816692 A JP9816692 A JP 9816692A JP 9816692 A JP9816692 A JP 9816692A JP H05296245 A JPH05296245 A JP H05296245A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- fluid
- linear guide
- shaft body
- spherical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Bearings For Parts Moving Linearly (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、工作機械,測定器,
産業装置等において高精度の直線案内として用いられる
流体リニアガイド装置に関する。This invention relates to a machine tool, a measuring instrument,
The present invention relates to a fluid linear guide device used as a highly accurate linear guide in industrial equipment and the like.
【0002】[0002]
【従来の技術】従来のこの種の流体リニアガイド装置と
しては、静圧形と動圧形とが知られている。いずれも、
軸方向に受面を設けた軸体と、その受面に対向する軸受
面を設けた軸受体とを備え、受面と軸受面との間の軸受
すきまに送り込まれた流体の圧力で軸体または軸受体を
支承しつつ非接触で直線運動を行わせるものである。前
者の静圧形流体リニアガイド装置は空気などの気体また
は油などの液体を加圧して軸受に送り込み、気体または
液体膜を形成して重さを支える。動圧形流体リニアガイ
ド装置の方は、軸受面または受面に予め動圧発生用のみ
ぞを形成し、そのみぞのポンピング作用で軸体と軸受体
との相対運動時に軸受すきまに圧力流体膜を形成して重
さを支える。したがって、動圧形の場合には、運動状態
でのみ軸体と軸受とが非接触になる。2. Description of the Related Art As a conventional fluid linear guide device of this type, a static pressure type and a dynamic pressure type are known. Both
The shaft body is provided with a shaft body having a bearing surface in the axial direction and a bearing body having a bearing surface facing the bearing surface, and the shaft body is formed by the pressure of the fluid sent into the bearing clearance between the bearing surface and the bearing surface. Alternatively, the bearing body is supported while linearly moving without contact. The former static pressure type fluid linear guide device pressurizes gas such as air or liquid such as oil and sends it to the bearing to form a gas or liquid film to support the weight. The dynamic pressure type linear guide device has a groove for generating dynamic pressure formed in advance on the bearing surface or the receiving surface, and the pumping action of the groove causes a pressure fluid film in the bearing clearance during relative movement between the shaft body and the bearing body. To support the weight. Therefore, in the case of the dynamic pressure type, the shaft body and the bearing are not in contact with each other only in the moving state.
【0003】[0003]
【発明が解決しようとする課題】このような流体リニア
ガイド装置の流体膜の厚さは数μmから数十μm程度に
維持することが必要である。この流体膜は、例えば鋼球
等の転動体を用いたリニアガイド装置ほどの剛性はない
から、例えば軸受体の一部に外力が加わりモーメント力
が作用した場合には均一な厚さを維持するのが難しい。
そこで従来の流体リニアガイド装置の場合、一般に軸受
体を軸体と同じ長さに形成し、軸体のほぼ全長を軸受体
で囲む構成にして剛性を高め、外力による軸体と軸受体
との相対的な変位の抑制を図っている。しかしながら、
長さが数mにも及ぶ長大な流体リニアガイド装置を制作
する場合には、長大な受面や軸受面を全面的に正確に仕
上げるために大型のマザーマシンによる高精度の機械加
工やキサゲ加工が必要で生産性の向上が難しいという問
題があった。また、ユーザの方も、流体リニアガイド装
置を使用するに際しては、高精度に仕上げたベッドを用
意し、かつ軸受体と軸体との同軸度等を厳密に測定して
設置するなど準備に手間がかかるという問題があった。It is necessary to maintain the thickness of the fluid film of such a fluid linear guide device in the range of several μm to several tens of μm. Since this fluid film is not as rigid as a linear guide device using rolling elements such as steel balls, for example, a uniform thickness is maintained when an external force is applied to a part of the bearing body and a moment force acts. Is difficult.
Therefore, in the case of the conventional fluid linear guide device, in general, the bearing body is formed to have the same length as the shaft body, and substantially the entire length of the shaft body is surrounded by the bearing body to increase the rigidity, and the shaft body and the bearing body The relative displacement is controlled. However,
When producing a large fluid linear guide device with a length of several meters, high precision machining and scraping with a large mother machine in order to finish the long bearing surface and bearing surface accurately. However, there is a problem that productivity is difficult to improve. Also, the user needs to prepare a bed with high accuracy and to measure the coaxiality between the bearing body and the shaft body strictly before installing the fluid linear guide device. There was a problem that it took.
【0004】ちなみに、転動体を用いたリニアガイド装
置では、高剛性のため軸受体の長さが短くてもモーメン
ト力に対抗可能であり、従来の流体リニアガイド装置に
おける長大な軸受体は不要で、制作も取付けも遙かに容
易で簡便に使用できる。そこで、この発明は、上記従来
の問題点に着目してなされたものであり、軸受体を短く
分割し、複数個の短い軸受体で長い軸体の数カ所を分割
支持するとともに、各軸受を個々に姿勢調整できるよう
にした流体リニアガイド装置を提供することにより上記
従来の問題点を解決することを目的とする。By the way, in the linear guide device using the rolling elements, since the rigidity is high, it is possible to withstand the moment force even if the length of the bearing body is short, and the long bearing body in the conventional fluid linear guide device is unnecessary. It is much easier to make and install and can be used easily. Therefore, the present invention has been made by paying attention to the above-mentioned conventional problems. The bearing body is divided into short pieces, and a plurality of short bearing bodies divides and supports several portions of the long shaft body, and each bearing is individually supported. An object of the present invention is to solve the above-mentioned conventional problems by providing a fluid linear guide device capable of adjusting its posture.
【0005】[0005]
【課題を解決するための手段】この発明は、軸方向に受
面を設けた軸体と、該軸体の受面に対向するとともに受
面との間に流体を供給して流体軸受を形成する軸受面を
設けた複数個の軸受体と、該軸受体の外面の前記軸体と
は反対側の位置に取付けた球面軸受とを備えている。SUMMARY OF THE INVENTION According to the present invention, a fluid bearing is formed by supplying a fluid between a shaft body having a bearing surface provided in the axial direction and a bearing surface of the shaft body and facing the bearing surface. A plurality of bearing bodies provided with a bearing surface, and a spherical bearing mounted on the outer surface of the bearing body at a position opposite to the shaft body.
【0006】[0006]
【作用】複数個の短い軸受体で軸体の数カ所を支持する
から、個々の軸受体の機械加工が容易で生産性が良い。
また、球面軸受により各軸受体の球面運動が許容される
から、X,Y,Z軸回りのモーメント力を吸収でき、ベ
ッドの取付面をそれほど高精度に仕上げないでも長尺の
ものを容易に設置できる。Since a plurality of short bearing bodies support several places of the shaft body, the individual bearing bodies can be easily machined and the productivity is good.
Further, since the spherical bearings allow the spherical motion of each bearing body, the moment force around the X, Y, and Z axes can be absorbed, and the long one can be easily manufactured without finishing the bed mounting surface with high accuracy. Can be installed.
【0007】[0007]
【実施例】以下、この発明の実施例を図面を参照して説
明する。図1は、この発明の一実施例の一部を省略して
示す斜視図、第2図はそのII−II線断面図である。断面
角形の長い軸体1が、軸方向に間隔を置いて配した複数
個の(図では3個)の短い軸受体2で支持されている。
軸体1は、両側面1bと下面1cとが流体軸受の受面と
され、上面1aにはテーブル3が図外のボルトで固定さ
れている。軸受体2は、断面コ字状で、その内側面2b
と底面2cとが軸受面とされ、両内側面2bは軸体の受
面の両側面1bと、底面2cは軸体の受面の下面1c
と、それぞれに僅かの軸受すきまを介して対向してい
る。この実施例の流体軸受は多孔質形の静圧空気軸受で
あり、軸受体2の軸受面2b,2cには多孔質材4が配
設され、外部の圧縮空気源からエア配管5を経て軸受体
2に供給される圧縮空気が、エア通路6を通って多孔質
材4の表面から軸受すきま内に送り込まれるようになっ
ている。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a part of an embodiment of the present invention with a part omitted, and FIG. 2 is a sectional view taken along line II-II thereof. A long shaft body 1 having a rectangular cross section is supported by a plurality of (three in the figure) short bearing bodies 2 arranged at intervals in the axial direction.
Both side surfaces 1b and a lower surface 1c of the shaft body 1 are receiving surfaces of the fluid bearing, and a table 3 is fixed to the upper surface 1a by bolts (not shown). The bearing body 2 has a U-shaped cross section and has an inner surface 2b.
And the bottom surface 2c are bearing surfaces, both inner side surfaces 2b are both side surfaces 1b of the bearing surface of the shaft body, and the bottom surface 2c is a lower surface 1c of the bearing surface of the shaft body.
, And each face each other through a slight bearing clearance. The fluid bearing of this embodiment is a porous static pressure air bearing, and a porous material 4 is disposed on the bearing surfaces 2b and 2c of the bearing body 2, and the bearing is passed from an external compressed air source through an air pipe 5. The compressed air supplied to the body 2 is sent from the surface of the porous material 4 into the bearing clearance through the air passage 6.
【0008】上記軸受体2の前記底面2cとは反対側の
外面2dには、球面軸受10が図示しないボルトで取付
けられている。球面軸受10の凸球面部材11にはその
軸心を貫通するボルト取付け孔12が、座ぐり12aを
有して設けてあり、その座ぐり12a内に予圧用コイル
ばね13を入れてボルト14を通し、そのボルト14を
凹球面部材15に螺合してある。この実施例の球面軸受
10はやはり多孔質形の静圧空気軸受であり、凸球面部
材11の凸球面11aと対向する凹球面部材15の凹球
面15aには多孔質材4が配設され、外部の圧縮空気源
からエア配管5を経て供給される圧縮空気が、エア通路
6を通って多孔質材4の表面から軸受すきま内に送り込
まれて流体膜を形成するようになっている。A spherical bearing 10 is attached to an outer surface 2d of the bearing body 2 opposite to the bottom surface 2c by a bolt (not shown). The convex spherical member 11 of the spherical bearing 10 is provided with a bolt mounting hole 12 penetrating its axial center with a counterbore 12a. The preloading coil spring 13 is inserted into the counterbore 12a to attach the bolt 14 thereto. The bolt 14 is threaded through the concave spherical member 15. The spherical bearing 10 of this embodiment is also a porous static pressure air bearing, and the porous material 4 is disposed on the concave spherical surface 15a of the concave spherical member 15 which faces the convex spherical surface 11a of the convex spherical member 11. Compressed air supplied from an external compressed air source through the air pipe 5 is sent from the surface of the porous material 4 into the bearing clearance through the air passage 6 to form a fluid film.
【0009】上記球面軸受10の凹球面部材15は、断
面L形のベース板20に、位置決めプレート21,22
を介して図外のボルトで固定される。位置決めプレート
21は凹球面部材の底面15cとベース板20の間に介
在して流体リニアガイド装置の高さ(Z方向)を位置決
めする。一方、位置決めプレート22は凹球面部材の一
側面15bとベース板20の間に介在して流体リニアガ
イド装置の横方向(Y方向)の位置決めをする。The concave spherical member 15 of the spherical bearing 10 has positioning plates 21, 22 on a base plate 20 having an L-shaped cross section.
It is fixed with a bolt (not shown) through. The positioning plate 21 is interposed between the bottom surface 15c of the concave spherical member and the base plate 20 to position the height (Z direction) of the fluid linear guide device. On the other hand, the positioning plate 22 is interposed between the one side surface 15b of the concave spherical member and the base plate 20 to position the fluid linear guide device in the lateral direction (Y direction).
【0010】次に作用を説明する。この流体リニアガイ
ド装置をベッドB上に取付ける際は、Y方向とZ方向に
ついてストレートエッジ法もしくはレーザ法により位置
出しを行い、位置決めプレート21,22の厚みを調整
して各軸受体2を位置決めする。軸受体2は球面軸受の
作用によりX,Y,Z軸回りの変位を吸収するから、ベ
ッドBの上面(流体リニアガイド装置の取付面)をそれ
程高精度に仕上げる必要はない。また、軸受体2の仕上
げについても従来のもの程高精度の加工は必要とされな
い。したがって、軸体1のみが比較的高精度に制作され
ていれば、長尺の流体リニアガイド装置でも容易に制作
でき、取付けも容易で、転動体リニアガイド装置と同様
に簡便に使用することができる。Next, the operation will be described. When this fluid linear guide device is mounted on the bed B, positioning is performed in the Y and Z directions by the straight edge method or the laser method, and the thickness of the positioning plates 21, 22 is adjusted to position each bearing body 2. .. Since the bearing body 2 absorbs the displacement around the X, Y, and Z axes by the action of the spherical bearing, it is not necessary to finish the upper surface of the bed B (the mounting surface of the fluid linear guide device) with high accuracy. Further, the finishing of the bearing body 2 does not require as high precision machining as the conventional one. Therefore, if only the shaft body 1 is manufactured with relatively high accuracy, a long fluid linear guide device can be easily manufactured, installation is easy, and it can be used as easily as a rolling element linear guide device. it can.
【0011】図3に他の実施例を示す。この実施例は、
上記の実施例の軸受体2が、軸体1の三方を囲む断面コ
字状のシングルフィルム型であるのに対して、軸体1の
四方を囲む箱形のダブルフィルム型である点が異なって
いる。すなわち、軸体1の上部の幅を狭めて頸部25と
受面としての肩面26を形成し、軸受体2の上部を頸部
25に向かって内側へ張出させて肩面26に軸受すきま
を介して対向する軸受面27を設けている。そしてこの
軸受面27に多孔質材4を配設し、エア配管5を経て供
給される圧縮空気を、エア回路6を通って多孔質材4の
表面から軸受すきま内に送り込み、流体膜を形成して軸
体1を上下左右から非接触に支持するもので、シングル
フィルム型より剛性が高い利点がある。FIG. 3 shows another embodiment. This example
The difference is that the bearing body 2 of the above-mentioned embodiment is a single film type having a U-shaped cross section surrounding three sides of the shaft body 1, whereas it is a box-shaped double film type surrounding the four sides of the shaft body 1. ing. That is, the width of the upper portion of the shaft body 1 is narrowed to form the neck portion 25 and the shoulder surface 26 as a receiving surface, and the upper portion of the bearing body 2 is inwardly projected toward the neck portion 25 so that the shoulder surface 26 has a bearing. A bearing surface 27 is provided so as to be opposed to the other via a clearance. Then, the porous material 4 is arranged on the bearing surface 27, and the compressed air supplied through the air pipe 5 is sent from the surface of the porous material 4 into the bearing clearance through the air circuit 6 to form a fluid film. Then, the shaft 1 is supported from above, below, left and right in a non-contact manner, and has an advantage of higher rigidity than the single film type.
【0012】その他の構成,作用効果は、第1の実施例
と同様である。なお、上記各実施例では、流体軸受とし
て多孔質形の静圧空気軸受を用いた場合を説明したが、
その他、多数孔形や表面絞り形の静圧形軸受あるいは動
圧形軸受を用いても良い。また、球面軸受としては、上
記同様に各種の静圧形軸受や動圧形軸受を用いることが
できるが、これに限らず、固体潤滑軸受を用いても良
い。The other structure, function and effect are similar to those of the first embodiment. In each of the above embodiments, the case where a porous static pressure air bearing is used as the fluid bearing has been described.
Alternatively, a multi-hole type or surface drawing type static pressure type bearing or a dynamic pressure type bearing may be used. As the spherical bearing, various types of static pressure type bearings and dynamic pressure type bearings can be used as in the above, but the present invention is not limited to this, and solid lubricating bearings may be used.
【0013】また、上記各実施例は軸体1を軸受体2で
支承するものを示したが、上下を逆にして軸体1の方を
ベースに固定し、その上に軸受体2を非接触に支承する
ようにすることも可能である。In each of the above embodiments, the shaft body 1 is supported by the bearing body 2. However, the shaft body 1 is fixed upside down and the shaft body 1 is fixed to the base, and the bearing body 2 is not mounted thereon. It is also possible to support contact.
【0014】[0014]
【発明の効果】以上説明したように、この発明によれ
ば、複数個の短い軸受体で長い軸体の複数カ所を支持す
るとともに、各軸受体に球面軸受を取付けて姿勢調整で
きるようにした。そのため、軸受体の機械加工が容易で
生産性が良く、また、球面軸受により各軸受体の球面運
動が許容されるから、X,Y,Z軸回りのモーメント力
を吸収でき、設置するベッドの取付面をそれほど高精度
に仕上げずに設置できる等、ユーザの使い勝手も良い流
体リニアガイド装置が提供できるという効果が得られ
る。As described above, according to the present invention, a plurality of short bearing members support a plurality of positions of a long shaft member, and a spherical bearing is attached to each bearing member so that the posture can be adjusted. .. Therefore, the bearing body can be easily machined and the productivity is good, and since the spherical bearing allows the spherical movement of each bearing body, the moment force around the X, Y, and Z axes can be absorbed, and the bearing bed can be installed. It is possible to provide an effect that a fluid linear guide device that is convenient for the user can be provided, such that the mounting surface can be installed without finishing with high accuracy.
【図1】この発明の一実施例の全体斜視図である。FIG. 1 is an overall perspective view of an embodiment of the present invention.
【図2】図1のII−II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG.
【図3】この発明の他の実施例の図2に対応する断面図
である。FIG. 3 is a sectional view corresponding to FIG. 2 of another embodiment of the present invention.
1 軸体 2 軸受体 10 球面軸受 1 shaft body 2 bearing body 10 spherical bearing
Claims (1)
の受面に対向するとともに受面との間に流体を供給して
流体軸受を形成する軸受面を設けた複数個の軸受体と、
該軸受体の外面の前記軸体とは反対側の位置に取付けた
球面軸受とを備えた流体リニアガイド装置。1. A plurality of shaft bodies provided with a bearing surface in the axial direction, and a plurality of bearing surfaces facing the bearing surface of the shaft body and supplying a fluid between the bearing surface to form a fluid bearing. Bearing body,
A fluid linear guide device comprising: a spherical bearing attached to a position on the outer surface of the bearing body opposite to the shaft body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9816692A JPH05296245A (en) | 1992-04-17 | 1992-04-17 | Fluid linear guide apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9816692A JPH05296245A (en) | 1992-04-17 | 1992-04-17 | Fluid linear guide apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05296245A true JPH05296245A (en) | 1993-11-09 |
Family
ID=14212496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9816692A Pending JPH05296245A (en) | 1992-04-17 | 1992-04-17 | Fluid linear guide apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05296245A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002048533A1 (en) * | 2000-12-13 | 2002-06-20 | Sharp Kabushiki Kaisha | Stirling engine, and stirling refrigerator |
JP2003056562A (en) * | 2001-08-10 | 2003-02-26 | Nagase Integrex Co Ltd | Linear guide device and control method therefor |
JP2008045652A (en) * | 2006-08-14 | 2008-02-28 | Oiles Ind Co Ltd | Static pressure gas bearing |
JP2010539878A (en) * | 2007-09-20 | 2010-12-16 | フェスト アーゲー ウント コー カーゲー | Direct drive linear electromagnetic drive device comprising a stator having two guide rails for linearly guiding the drive carriage |
-
1992
- 1992-04-17 JP JP9816692A patent/JPH05296245A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002048533A1 (en) * | 2000-12-13 | 2002-06-20 | Sharp Kabushiki Kaisha | Stirling engine, and stirling refrigerator |
US6945043B2 (en) | 2000-12-13 | 2005-09-20 | Sharp Kabushiki Kaisha | Stirling engine, and stirling refrigerator |
JP2003056562A (en) * | 2001-08-10 | 2003-02-26 | Nagase Integrex Co Ltd | Linear guide device and control method therefor |
JP2008045652A (en) * | 2006-08-14 | 2008-02-28 | Oiles Ind Co Ltd | Static pressure gas bearing |
JP2010539878A (en) * | 2007-09-20 | 2010-12-16 | フェスト アーゲー ウント コー カーゲー | Direct drive linear electromagnetic drive device comprising a stator having two guide rails for linearly guiding the drive carriage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5228358A (en) | Motion guiding device | |
JP2881363B2 (en) | Parallel moving device and lens moving device | |
KR100293298B1 (en) | A device for fixing the workpiece in a predetermined position on the workbench of the processing unit. | |
US4392642A (en) | Workpiece positioning table with air bearing pads | |
US7293337B2 (en) | Machining apparatus | |
US4802774A (en) | Gas bearing for guiding relative movement of precision machine parts | |
US4129291A (en) | Two-dimensional precision table | |
EP0443831B1 (en) | Motion guiding device | |
JPH03502608A (en) | Measuring probe for positioning equipment | |
JPH0439011B2 (en) | ||
JPS5986712A (en) | Sliding bearing | |
US5257461A (en) | Coordinate measuring machine construction | |
US6238092B1 (en) | Air bearing for a motion system | |
US4652148A (en) | Guide system | |
JPH05296245A (en) | Fluid linear guide apparatus | |
JP2009076521A (en) | Precise fine positioning device and fine positioning stage having the same, aligner, and inspection apparatus | |
JP5048243B2 (en) | Positioning device | |
JPH0123262B2 (en) | ||
US10364842B2 (en) | Long travel air bearing linear stage | |
US6120004A (en) | Variable capillary apparatus for hydrostatic bearing and motion error compensating method using same | |
JPH0516167B2 (en) | ||
JPH0647135Y2 (en) | Air slide device | |
JPS61112216A (en) | Noncontacting drive type planar shift stage | |
JPH0347803Y2 (en) | ||
JP3991000B2 (en) | Linear scale mounting method and apparatus |