[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0527201U - Axial turbine - Google Patents

Axial turbine

Info

Publication number
JPH0527201U
JPH0527201U JP7530091U JP7530091U JPH0527201U JP H0527201 U JPH0527201 U JP H0527201U JP 7530091 U JP7530091 U JP 7530091U JP 7530091 U JP7530091 U JP 7530091U JP H0527201 U JPH0527201 U JP H0527201U
Authority
JP
Japan
Prior art keywords
blade
root
flow
tip
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7530091U
Other languages
Japanese (ja)
Inventor
義昭 山崎
友幸 滝
武 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7530091U priority Critical patent/JPH0527201U/en
Publication of JPH0527201U publication Critical patent/JPH0527201U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【構成】周方向に曲線的あるいは直線的に傾斜する静翼
と組み合わせて使用する動翼は、根元及び先端の近くで
は、その流出角αがその中央部における流出角より両端
部に近づくにつれて次第に連続的に漸減するように形成
する。すなわち、流出角αが根元端部から所定高さh1
まで漸増し、先端端部からh2下がった位置から先端端
部まで漸減するように捩じりを加える。 【効果】動翼での半径方向流れを抑制し、かつ、動翼の
出口における流れを適正化できるので、タービンの効率
を向上させることができる。
(57) [Summary] [Structure] A moving blade used in combination with a stationary blade that is curved or linearly inclined in the circumferential direction has a discharge angle α closer to the root and tip than the discharge angle at the center. It is formed so as to gradually and continuously decrease toward both ends. That is, the outflow angle α is a predetermined height h 1 from the root end.
And a twist is added so as to gradually decrease from the position h 2 lower than the tip end to the tip end. [Effect] Since the radial flow in the moving blade can be suppressed and the flow at the outlet of the moving blade can be optimized, the efficiency of the turbine can be improved.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は軸流タービンの段落構造に関する。 The present invention relates to a paragraph structure of an axial turbine.

【0002】[0002]

【従来の技術】[Prior Art]

例えば、大容量蒸気タービン等において、効率の向上は重要な研究課題であり 、特に、大容量化に伴って低圧段落部の効率向上が重要視されるようになってき ている。しかし、蒸気タービンの低圧段落部における蒸気流の三次元流動に関す る解明、若しくは、それに基づく改善は未だ十分に行われていない。 For example, in large-capacity steam turbines, improvement of efficiency is an important research issue, and in particular, the improvement of efficiency in the low-pressure stage is becoming more important as the capacity increases. However, the elucidation or improvement based on the three-dimensional flow of the steam flow in the low pressure stage of the steam turbine has not been sufficiently made.

【0003】 図4は、フレア角(静翼ダイヤフラム外輪が下流側に流路面積を増大するよう に拡大する角度)のある低圧タービン最終段落の子午面形状を示す。静翼1と動 翼2とが作動流体の流路内に設けられ、静翼1は流路を構成するダイヤフラム外 輪3とダイヤフラム内輪4で保持されている。動翼2は回転するロータ5のディ スク7に取り付けられている。静翼のフレア角が大きい場合、動翼2に流入する 流れは半径方向速度成分をもつ流れとなり、さらに、動翼内で遠心力により半径 方向速度成分は加速されるが、動翼のなす仕事は半径方向速度成分とは無関係で あり、半径方向速度成分はそのまま損失となってしまう。従来から対策として、 低圧タービンのフレア角の大きい場合に、特開昭62−170707号公報に記載のよう に、静翼後縁6を動翼回転方向に種々の形状にする方法が行われていた。たとえ ば、図5に示すように、周方向傾き角を静翼根元では動翼回転方向に傾け、静翼 先端部になるに従って傾き角を小さくし、時には静翼先端では動翼回転方向とは 逆方向に傾ける試みがなされている。FIG. 4 shows the meridional shape of the final stage of a low pressure turbine with a flare angle (the angle at which the stator vane diaphragm outer ring expands downstream to increase the flow passage area). A stationary blade 1 and a moving blade 2 are provided in a flow path of a working fluid, and the stationary blade 1 is held by a diaphragm outer ring 3 and a diaphragm inner ring 4 which form the flow path. The rotor blade 2 is attached to a disk 7 of a rotating rotor 5. When the flare angle of the stationary blade is large, the flow flowing into the rotor blade 2 has a radial velocity component, and the radial velocity component is accelerated by centrifugal force in the rotor blade, but the work done by the rotor blade is increased. Is independent of the radial velocity component, and the radial velocity component is lost as it is. Conventionally, as a countermeasure, when the flare angle of the low-pressure turbine is large, as described in JP-A-62-170707, a method of forming the stationary blade trailing edge 6 into various shapes in the rotating direction of the moving blade has been performed. It was For example, as shown in FIG. 5, the inclination angle in the circumferential direction is inclined toward the rotor blade rotation direction at the root of the stator blade, and the inclination angle is reduced toward the tip of the stator blade. Attempts have been made to tilt it in the opposite direction.

【0004】[0004]

【考案が解決しようとする課題】[Problems to be solved by the device]

上記従来技術は、フレア角が大きい段落内の半径方向のフローパターンを静翼 形状で改善することを目的としたものであり、動翼には特別の考慮がされていな い。 The above-mentioned prior art is intended to improve the radial flow pattern in the paragraph having a large flare angle by the stationary blade shape, and no special consideration is given to the moving blade.

【0005】 図6は動翼2から流出する蒸気の軸流速度の翼長方向分布を示したものである が、図5の静翼の複合周方向傾き角により流れが根元及び先端側に押しつけられ たために動翼出口の軸流速度Vaが根元部及び先端部で平均値より速く、中央部 で遅くなっている。この動翼出口の軸流速度Vaは、性能的には半径方向に一様 な流れが好ましい。特に、動翼根元部における半径方向流れ、極端な場合の根元 部の剥離流を抑制することは重要であるが、動翼根元部を流れる蒸気量を多くす ることは性能的に得策ではない。なぜならば、動翼2の根元部は翼形コード長が 大きく、さらに、流れの転向角が大きいために翼形損失が大きく、この根元部の 流量を多くして、根元部の負荷割合を大きくすることは段落全体性能からみて得 策でない。FIG. 6 shows the distribution of the axial flow velocity of the steam flowing out from the rotor blade 2 in the blade length direction. The flow is pressed toward the root and the tip side by the compound circumferential inclination angle of the stator blade in FIG. As a result, the axial flow velocity Va at the blade outlet is faster than the average value at the root and tip, and slower at the center. The axial flow velocity Va at the blade outlet is preferably a uniform flow in the radial direction in terms of performance. In particular, it is important to suppress radial flow at the root of the blade and separation flow at the root in extreme cases, but increasing the amount of steam flowing at the root of the blade is not a good performance measure. . This is because the root of the blade 2 has a large airfoil cord length, and since the turning angle of the flow is large, the airfoil loss is large, and the flow rate at this root is increased to increase the load ratio at the root. Doing this is not a good idea in terms of overall paragraph performance.

【0006】 図6に示した現象は、静翼の周方向傾き角により流れが根元側及び先端側に押 しつけられたことによるものである。さらに、先端部では動翼内での遠心力によ り外周部に流れが偏ったためである。これは端部に流れを押しつけたにもかかわ らず動翼が、従来の静翼の周方向傾き角を考慮しない設計のままであるためであ る。The phenomenon shown in FIG. 6 is due to the flow being pressed to the root side and the tip side by the circumferential inclination angle of the stationary blade. Furthermore, at the tip, the flow was biased toward the outer periphery due to the centrifugal force in the blade. This is because the rotor blade is designed so that the circumferential tilt angle of the conventional stator blade is not taken into consideration despite the fact that the flow is pressed to the end.

【0007】 本考案の目的は、動翼内の半径方向の流れを抑制するとともに動翼出口の軸流 速度を一様にして、段落性能を向上するタービン段落構造を提供することにある 。An object of the present invention is to provide a turbine stage structure that suppresses radial flow in the rotor blade and uniformizes the axial flow velocity at the outlet of the rotor blade to improve the stage performance.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するために、本考案は周方向に傾けた静翼と合わせて、動翼端 部の流出角を所定の高さから端部に向かって急に小さくする方向に翼を捩ったこ とを特徴とする。 In order to achieve the above object, the present invention twists a blade in a direction in which the outlet angle of the moving blade end is suddenly reduced from a predetermined height toward the end, in combination with a stationary blade inclined in the circumferential direction. Characterized by an octopus.

【0009】[0009]

【作用】[Action]

本考案は、静翼周方向に傾き角を持たせることにより、静翼出口根元部の流れ を動翼根元方向に押しつけ、動翼での半径方向外向き流れを抑制するとともに、 動翼の根元部で隣接翼との最小流路幅(スロート幅)を連続的に急に狭くするの で動翼根元部から流出する蒸気量を減少させ、かつ、軸流速度を小さくすること ができる。 The present invention has an inclination angle in the circumferential direction of the stationary blade to press the flow at the root of the stationary blade toward the root of the moving blade to suppress the outward radial flow of the moving blade and Since the minimum flow passage width (throat width) between adjacent blades is continuously and sharply narrowed in the section, it is possible to reduce the amount of steam flowing out from the root portion of the blade and to reduce the axial flow velocity.

【0010】 また、静翼周方向傾き角を静翼先端部になるに従って傾き角を小さくし、時に は静翼先端では動翼回転方向とは逆方向に傾けることにより、静翼先端部を作動 流体が流れ易くし、動翼先端部での半径方向外向き流れを抑制するとともに、動 翼の先端部で隣接翼との最小流路幅(スロート幅)を連続的に急に狭くするので 動翼先端部から流出する蒸気量を減少させ、かつ、軸流速度を小さくすることが できる。In addition, the inclination angle of the stationary blade in the circumferential direction is reduced toward the tip portion of the stationary blade, and sometimes the tip portion of the stationary blade is tilted in the direction opposite to the rotating direction of the moving blade to operate the stationary blade tip portion. This facilitates the flow of fluid, suppresses the outward radial flow at the blade tip, and continuously and suddenly narrows the minimum flow channel width (throat width) with the adjacent blade at the blade tip. It is possible to reduce the amount of steam flowing out from the blade tip and reduce the axial flow velocity.

【0011】 これによって動翼根元部、及び、先端部から流出する蒸気の流出角を適正にす るとともに、根元部と先端部を流れる蒸気量の不均一を無くすことができる。This makes it possible to make the outflow angle of the steam flowing out from the root portion and the tip portion of the moving blade proper and to eliminate the nonuniformity of the amount of steam flowing between the root portion and the tip portion.

【0012】[0012]

【実施例】【Example】

本考案を適用した時の動翼列を図1に示す。動翼2は、動翼後縁8の先端部位 置9と根元部位置10の間はほぼ直線的に変化している。そして、動翼の先端部 9の位置から先端に向かってスロート幅が狭くなるように翼形が捩られており、 また、根元部10の位置から根元に向かってスロート幅が狭くなるように捩じら れている。図2は本考案による動翼の幾何学的流出角αの翼長方向分布を従来法 による分布と比較して示したものである。翼の捩じりによって、従来翼に比べて 先端よりh2 の位置から幾何学的流出角αは連続的に従来翼より急に小さくなっ ている。また、h2 の位置は図4に示す静翼1の入口端11とダイヤフラム外輪 壁との交点12の半径位置付近とする。一方、根元よりh1 の位置から端部に向 かって幾何学的流出角α は連続的に従来翼より急に小さくなっている。また、 h1 の位置は無次元翼高さh/H=0.1〜0.3程度とする。なお、翼長中央 部は逆に従来翼より幾何学的流出角α が若干大きくしてある。FIG. 1 shows a rotor blade row when the present invention is applied. The rotor blade 2 changes substantially linearly between the tip end position 9 of the rotor blade trailing edge 8 and the root position 10. The blade shape is twisted so that the throat width decreases from the position of the tip 9 of the moving blade toward the tip, and the throat width is twisted so that the width of the throat decreases from the position of the root 10 toward the root. It is twisted. FIG. 2 shows the distribution of the geometrical outflow angle α of the rotor blade according to the present invention in the blade length direction in comparison with the distribution according to the conventional method. Due to the twisting of the blade, the geometrical outflow angle α continuously decreases suddenly from the position h 2 from the tip compared to the conventional blade compared to the conventional blade. The position of h 2 is near the radial position of the intersection 12 between the inlet end 11 of the stationary blade 1 and the diaphragm outer ring wall shown in FIG. On the other hand, the geometrical outflow angle α continuously decreases sharply from the conventional blade toward the end from the position h 1 from the root. Further, the position of h 1 is set to a dimensionless blade height h / H = about 0.1 to 0.3. On the contrary, the geometrical outflow angle α is slightly larger in the central portion of the blade length than in the conventional blade.

【0013】 図3は、本考案の段落構造を適用した場合の動翼から流出する蒸気の軸流速度 分布を示したものであるが、図6に比べて根元部及び先端部の軸流速度の増大が ほとんどなく、均一な軸流速度になっている。FIG. 3 shows the axial flow velocity distribution of the steam flowing out from the rotor blade when the paragraph structure of the present invention is applied. Compared with FIG. 6, the axial flow velocity at the root portion and the tip portion is shown. There is almost no increase in and the axial velocity is uniform.

【0014】 本考案の実施例は、図5に示した静翼後縁6の傾きが曲線的に変化する場合で ある。図7に示す静翼後縁の傾きが直線的に変化する静翼の場合、動翼出口の軸 流速度分布は図8に示すように根元部のみ大きくなることがある。この場合には 図9に示すように幾何学的流出角α は根元側のみ小さくすることがある。The embodiment of the present invention is the case where the inclination of the trailing edge 6 of the stationary blade shown in FIG. 5 changes in a curve. In the case of the stationary blade shown in FIG. 7 in which the inclination of the trailing edge of the stationary blade changes linearly, the axial velocity distribution at the blade outlet may be large only at the root portion as shown in FIG. In this case, the geometric outflow angle α may be reduced only on the root side as shown in FIG.

【0015】[0015]

【考案の効果】[Effect of the device]

本考案によれば、下流側に流路面積が拡大するタービン段落の動翼での半径方 向外向流れを抑制し、しかも、内外壁面の近くでの動翼から流出する流体の流出 角の適正化を図り、比較的翼形損失の大きい内外壁面近傍を流れる流量の増加を 抑え、比較的損失の少ない翼中央の流量を増加させることができ、流体の持つエ ネルギを動翼で有効に仕事に変換できるので軸流タービンの効率を向上させるこ とができる。 According to the present invention, the radial outward flow is suppressed in the moving blades of the turbine stage where the flow passage area expands to the downstream side, and the outflow angle of the fluid flowing out from the moving blades near the inner and outer wall surfaces is controlled appropriately. To reduce the flow rate near the inner and outer wall surfaces, where the airfoil loss is relatively large, and to increase the flow rate in the center of the blade, where the loss is relatively small. The efficiency of the axial flow turbine can be improved because it can be converted to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例の動翼列の説明図。FIG. 1 is an explanatory diagram of a rotor blade row according to an embodiment of the present invention.

【図2】動翼の幾何学的流出角の分布図。FIG. 2 is a distribution diagram of geometrical outflow angles of moving blades.

【図3】本考案の段落構造を適用した場合の動翼出口の
軸流速度分布図。
FIG. 3 is an axial flow velocity distribution diagram at the blade outlet when the paragraph structure of the present invention is applied.

【図4】低圧タービン段落の子午面断面図。FIG. 4 is a meridional section view of a low pressure turbine stage.

【図5】静翼の後縁形状説明図。FIG. 5 is an explanatory view of a trailing edge shape of a stationary blade.

【図6】従来の段落構造を適用した場合の動翼出口の軸
流速度分布図。
FIG. 6 is an axial flow velocity distribution diagram at the rotor blade outlet when a conventional paragraph structure is applied.

【図7】静翼の後縁形状図。FIG. 7 is a trailing edge shape diagram of a stationary blade.

【図8】従来の他の段落構造を適用した場合の動翼出口
の軸流速度分布図。
FIG. 8 is an axial flow velocity distribution diagram at the rotor blade outlet when another conventional paragraph structure is applied.

【図9】本考案の他の実施例の動翼の幾何学的流出角の
分布図。
FIG. 9 is a distribution diagram of a geometrical outflow angle of a moving blade according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…静翼、2…動翼、3…ダイヤフラム外輪、4…ダイ
ヤフラム内輪、6…静翼後縁部、7…ディスク、8…動
翼後縁部。
DESCRIPTION OF SYMBOLS 1 ... Stationary blade, 2 ... Moving blade, 3 ... Diaphragm outer ring, 4 ... Diaphragm inner ring, 6 ... Stationary blade trailing edge, 7 ... Disc, 8 ... Moving blade trailing edge.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】静翼群と動翼群で構成される軸流タービン
段落において、 前記静翼の後縁のあるいは翼形重心線をロータ周方向に
傾かせ、かつ、前記動翼の所定の高さ位置から端部に向
かうにつれ流出角が連続的に急に小さくなるように捩っ
たことを特徴とする軸流タービン。
1. An axial flow turbine stage comprising a group of stationary blades and a group of moving blades, wherein a trailing edge of the stationary blade or an airfoil center of gravity line is inclined in a rotor circumferential direction, and a predetermined blade of the moving blade is provided. An axial flow turbine characterized by being twisted so that the outflow angle continuously decreases sharply from the height position toward the end.
【請求項2】請求項1において、所定の高さ位置から根
元側端部に向かってのみ流出角が連続的に小さくなるよ
うに捩った軸流タービン。
2. The axial turbine according to claim 1, wherein the outflow angle is continuously reduced only from the predetermined height position toward the root-side end.
JP7530091U 1991-09-19 1991-09-19 Axial turbine Pending JPH0527201U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7530091U JPH0527201U (en) 1991-09-19 1991-09-19 Axial turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7530091U JPH0527201U (en) 1991-09-19 1991-09-19 Axial turbine

Publications (1)

Publication Number Publication Date
JPH0527201U true JPH0527201U (en) 1993-04-09

Family

ID=13572263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7530091U Pending JPH0527201U (en) 1991-09-19 1991-09-19 Axial turbine

Country Status (1)

Country Link
JP (1) JPH0527201U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032579A (en) * 1995-11-17 2007-02-08 United Technol Corp <Utc> Turbomachine blade
JP2014015858A (en) * 2012-07-06 2014-01-30 Hitachi Ltd Axial flow turbine rotor blade
JP2014532829A (en) * 2011-11-03 2014-12-08 ジエ・アヴィオ・エッセ・エッレ・エッレ Method for manufacturing a turbine molded aerofoil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032579A (en) * 1995-11-17 2007-02-08 United Technol Corp <Utc> Turbomachine blade
JP2014532829A (en) * 2011-11-03 2014-12-08 ジエ・アヴィオ・エッセ・エッレ・エッレ Method for manufacturing a turbine molded aerofoil
JP2014015858A (en) * 2012-07-06 2014-01-30 Hitachi Ltd Axial flow turbine rotor blade

Similar Documents

Publication Publication Date Title
JP3896169B2 (en) Turbine blade
JP3876195B2 (en) Centrifugal compressor impeller
JP5333170B2 (en) Centrifugal compressor and design method thereof
EP0886070B1 (en) Centrifugal compressor and diffuser for the centrifugal compressor
JP4718599B2 (en) Turbine wheel
JP5608062B2 (en) Centrifugal turbomachine
EP1921278A1 (en) Diffuser and exhaust system for turbine
CN111577655B (en) Blade and axial flow impeller using same
JP4888436B2 (en) Centrifugal compressor, its impeller and its operating method
CN108506247B (en) Blade and axial flow impeller using same
CN109667790B (en) Bionic front edge blade of high-speed centrifugal compressor
CN109505790B (en) High-load high-through-flow-capacity axial flow fan
CN108317092B (en) Impeller and centrifugal compressor comprising same
WO1990002265A1 (en) Partial height blades in a compressor impeller
JP3604533B2 (en) Wing for axial compressor
JPH0527201U (en) Axial turbine
WO2024001739A1 (en) Blade and axial impeller using same
US20210340992A1 (en) Blade and axial flow impeller using same
JPH03267506A (en) Stationary blade of axial flow turbine
CN107313977B (en) Centrifugal fan blade, centrifugal fan and air conditioner
CN112303010B (en) High-efficiency low-noise centrifugal fan
CN109505788B (en) Reversible axial flow fan
JPH01247798A (en) High speed centrifugal compressor
JP2993164B2 (en) Axial flow type fluid machine
JPH07102903A (en) Stress reduction type impeller blade