JPH05279715A - Method for charging raw material in bell-less blast furnace - Google Patents
Method for charging raw material in bell-less blast furnaceInfo
- Publication number
- JPH05279715A JPH05279715A JP8112592A JP8112592A JPH05279715A JP H05279715 A JPH05279715 A JP H05279715A JP 8112592 A JP8112592 A JP 8112592A JP 8112592 A JP8112592 A JP 8112592A JP H05279715 A JPH05279715 A JP H05279715A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- charging
- raw material
- blast furnace
- top bunker
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Iron (AREA)
- Blast Furnaces (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高炉炉頂部に設けられ
た炉頂バンカー(原料貯槽)と原料を高炉内に装入する
ための分配シュートを有するベルレス高炉における原料
装入方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material charging method in a bellless blast furnace having a furnace top bunker (raw material storage tank) provided at the top of a blast furnace and a distribution chute for charging the raw material into the blast furnace.
【0002】[0002]
【従来の技術】高炉操業においては、炉内径方向におけ
るガス流分布を制御し、炉内に装入した焼結鉱、鉄鉱
石、ペレット等の鉄源原料(以下、単に「鉱石」ともい
う)の還元、溶解を安定して行うことが操業上の基本課
題である。2. Description of the Related Art In a blast furnace operation, a gas flow distribution in a furnace inner diameter direction is controlled, and an iron source material such as sinter, iron ore and pellets charged in the furnace (hereinafter, also simply referred to as "ore") The stable operation of reduction and dissolution of is a basic operational task.
【0003】高炉内におけるガス流分布を制御するため
に採られる主な手段は、炉頂バンカーから炉内へ装入さ
れる原料の分布状態の制御で、そのために、(a) 炉内径
方向における鉱石とコークスの堆積重量比分布(以下、
「O/C 分布」という)の制御、および、(b) 鉱石、コー
クスなど、原料の粒径分布の制御が行われている。The main means used to control the gas flow distribution in the blast furnace is to control the distribution state of the raw material charged from the top bunker into the furnace, and therefore (a) in the inner diameter direction of the furnace. Deposition weight ratio distribution of ore and coke (hereinafter,
"O / C distribution") and (b) ore, coke, etc. particle size distribution control.
【0004】ベルレス高炉における原料装入装置(ベル
レス装入装置)は、高炉内に直接原料を供給する炉頂バ
ンカーが1基のものと複数基のものとに大きく分類でき
る。The raw material charging device (bellless charging device) in the bellless blast furnace can be roughly classified into one having a top bunker for directly supplying the raw material into the blast furnace and one having a plurality of bunkers.
【0005】図1は、直列に2段の炉頂バンカーを有す
るベルレス装入装置の一例の構成を示す図である。この
図において、原料(焼結鉱、鉄鉱石、コークスなど)1
はベルトコンベア2で搬送され、まず炉頂の上段バンカ
ー3に蓄えられ、下段バンカー4内の原料が排出された
後、下段バンカー4(同図において、以下、これを炉頂
バンカーという)に供給される。そして、炉内の装入物
が荷下がりして所定のストックライン5に達すると、装
入物流量調整用のゲート弁6およびシール弁7を開操作
して、炉頂バンカー4内の原料8を分配シュート9上に
供給し、この分配シュート9の傾動角度θを調整して原
料8を炉内10に装入する。FIG. 1 is a view showing the structure of an example of a bellless charging device having two-stage furnace top bunker in series. In this figure, raw materials (sinter ore, iron ore, coke, etc.) 1
Is conveyed by the belt conveyor 2, first stored in the upper bunker 3 of the furnace top, and after the raw materials in the lower bunker 4 are discharged, it is supplied to the lower bunker 4 (hereinafter, this is referred to as the furnace bunker). To be done. Then, when the charge in the furnace unloads and reaches the predetermined stock line 5, the gate valve 6 and the seal valve 7 for adjusting the flow rate of the charge are opened to operate the raw material 8 in the furnace top bunker 4. Is supplied to the distribution chute 9, the tilt angle θ of the distribution chute 9 is adjusted, and the raw material 8 is charged into the furnace 10.
【0006】このベルレス高炉において、前記(a) の炉
内径方向における O/C分布の制御は、分配シュート9の
運転スケジュール (具体的には、分配シュート傾動角の
設定とその傾動角での旋回数の割り付け) を定め、それ
に基づいて分配シュート9を操作することによってなさ
れるのであるが、(b) の原料の粒径分布の制御は、主に
炉頂バンカー4から炉内に装入される原料の粒径の経時
変化を調整することによりなされている。例えば特公平
2− 401号公報では、炉頂バンカー内に調整板を設け、
この調整板の位置の調整等により炉頂バンカーから排出
される装入物の粒度変化パターンを変える方法が、特公
平3−7722号公報では、炉内径方向で最適粒度分布にな
るように、炉頂バンカー内における装入原料の堆積状態
をバンカー内の整粒手段等により調整しておく方法が、
また、特開平1−119612号公報では、炉頂バンカー内に
設けられた旋回シュートの傾動角度を調整すること等に
より炉内に装入する原料の時系列粒度パターンを予め定
めた粒度パターンとする方法が提案されている。In this bellless blast furnace, the control of the O / C distribution in the inner diameter direction of the above (a) is performed by operating the distribution chute 9 (specifically, setting the distribution chute tilt angle and turning at that tilt angle). The allocation of the number is determined and the distribution chute 9 is operated based on it. The control of the particle size distribution of the raw material in (b) is mainly carried out from the top bunker 4 into the furnace. This is done by adjusting the change over time in the particle size of the raw material. For example, in Japanese Examined Patent Publication No. 2-401, an adjustment plate is provided in the bunker on the furnace top,
A method of changing the particle size change pattern of the charge discharged from the furnace top bunker by adjusting the position of the adjusting plate is disclosed in Japanese Examined Patent Publication No. 3-7722 so that the optimum particle size distribution is obtained in the furnace inner diameter direction. A method of adjusting the deposition state of the charging raw material in the top bunker by means of a sizing means in the bunker,
Further, in JP-A-1-119612, the time-series particle size pattern of the raw material charged into the furnace is set to a predetermined particle size pattern by adjusting the tilting angle of a swirling chute provided in the furnace top bunker. A method has been proposed.
【0007】すなわち、ベルレス装入装置により炉頂バ
ンカー4内の原料8を炉内に装入する場合、通常は、分
配シュート9を10回以上旋回させて原料を炉内に装入
し、かつ、その間に分配シュート9の傾動角度を1回以
上変更して原料の炉内落下位置を変化させる装入形態を
とっており、このとき分配シュート9に供給される原料
8の粒径が、炉頂バンカー4からの1回のダンプの中で
経時的に変化すると、その影響は炉の内径方向の粒径分
布に現れるので、前記従来の提案はこのことを利用して
炉内に装入される原料の粒径の経時変化を調整し、炉内
における原料の粒径分布を制御しようとするものであ
る。That is, when the raw material 8 in the furnace top bunker 4 is charged into the furnace by the bellless charging device, normally, the distribution chute 9 is swung 10 times or more to charge the raw material into the furnace, and During that time, the tilt angle of the distribution chute 9 is changed once or more to change the falling position of the raw material in the furnace, and the particle size of the raw material 8 supplied to the distribution chute 9 at this time is The above-mentioned conventional proposals are used for charging in a furnace by utilizing this fact because the influence of the change over time in one dump from the top bunker 4 appears in the particle size distribution in the inner diameter direction of the furnace. It is intended to control the particle size distribution of the raw material in the furnace by adjusting the change in the particle size of the raw material with time.
【0008】[0008]
【発明が解決しようとする課題】これらの手段は、炉頂
バンカー内の原料の径方向における粒径分布を調整し、
あるいは、バンカーからの排出時の原料の流れを変える
ことにより炉内における原料の粒径分布を制御しようと
するもので、いずれも炉頂バンカー内に工作物を設けな
ければならず、設備のメンテナンス上の問題がある。These means adjust the particle size distribution in the radial direction of the raw material in the furnace top bunker,
Alternatively, it aims to control the particle size distribution of the raw material in the furnace by changing the flow of the raw material at the time of discharging from the bunker. There is a problem above.
【0009】本発明は、上記のように、炉頂バンカー内
に工作物を設置することなく炉内における原料の粒径分
布を制御することが可能なベルレス高炉における原料装
入方法を提供することを目的とする。As described above, the present invention provides a raw material charging method in a bellless blast furnace capable of controlling the particle size distribution of the raw material in the furnace without installing a workpiece in the furnace top bunker. With the goal.
【0010】[0010]
【課題を解決するための手段】高炉の操業を安定化させ
るためには炉内径方向におけるガス流分布を制御するこ
とが必要で、炉中心部のガス流を他の領域におけるより
も強めておかなければならないことが経験的に知られて
いる。そのため炉中心部の通気性をよくしておく必要が
あり、前記のように、炉内に装入される原料の粒径の経
時変化を調整して炉内における原料の粒径分布を制御す
るのであるが、炉内における原料の粒径分布に影響を与
える要因としては、炉内に装入される原料の粒径の経時
的な変化の他に、炉内に落下した原料が最終の堆積位置
に移動する間に生ずる再分級現象も重要な影響因子とし
てあげられる。[Means for Solving the Problems] In order to stabilize the operation of a blast furnace, it is necessary to control the gas flow distribution in the inner diameter direction of the furnace, and the gas flow in the central part of the furnace should be made stronger than in other regions. It is empirically known that it must be. Therefore, it is necessary to improve the air permeability in the center of the furnace. As described above, the particle size distribution of the raw material in the furnace is controlled by adjusting the change over time in the particle size of the raw material charged into the furnace. However, factors that affect the particle size distribution of the raw material in the furnace include the change over time in the particle size of the raw material charged into the furnace, and The reclassification phenomenon that occurs while moving to the position is also an important influencing factor.
【0011】すなわち、通常の操業時において、炉内に
堆積する原料の表面形状は、炉壁あるいはそれより少し
中心寄りの炉中間から炉中心部に向かって下り勾配の斜
面を有するすり鉢状を呈しており(以下、この部分を
「すり鉢部」という)、このすり鉢部の斜面に堆積する
原料は、斜面の最上部(頂上部)から炉中心へ向かって
流下する間に細粒が篩い落とされる状態となるので、斜
面の下方へ向かうほど粗粒となり、特にこのすり鉢部の
底に当たる炉中心部には最も粒度の粗い原料が堆積す
る。従って、原料の炉内径方向における粒径分布の制御
は、装入される原料の粒径の経時変化パターンの調整に
よる他に、前記のすり鉢部の斜面上における再分級を利
用することによっても行うことが可能である。That is, in a normal operation, the surface shape of the raw material deposited in the furnace is a mortar shape having a slope inclined downward from the furnace wall or the middle of the furnace slightly closer to the center toward the center of the furnace. (Hereafter, this part is referred to as "mortar part"), and the raw materials deposited on the slope of this mortar part are finely sieved off while flowing down from the top (top) of the slope toward the center of the furnace. Since the state becomes a state, coarser grains are formed toward the lower side of the slope, and the coarsest raw material is deposited especially in the center of the furnace which is the bottom of the mortar. Therefore, the control of the particle size distribution of the raw material in the furnace inner diameter direction is performed not only by adjusting the temporal change pattern of the particle size of the charged raw material but also by utilizing the reclassification on the slope of the mortar portion. It is possible.
【0012】斜面上での原料の再分級現象は、原料の斜
面上での流量、換言すれば斜面の頂上部への原料の装入
速度によって変化することが知られている。すなわち、
原料の装入速度を低下させれば再分級は促進され、炉中
心部に堆積する原料の粒度は大きくなる。ベル式高炉に
おける原料の装入の際の大ベルの開ストロークや開速度
の調整は、炉内に装入される原料のこのような性質を利
用するものである。It is known that the reclassification phenomenon of the raw material on the slope changes depending on the flow rate of the raw material on the slope, in other words, the charging rate of the raw material at the top of the slope. That is,
If the charging rate of the raw material is reduced, reclassification is promoted, and the particle size of the raw material deposited in the center of the furnace becomes large. Adjustment of the opening stroke and the opening speed of the large bell at the time of charging the raw material in the bell-type blast furnace makes use of such properties of the raw material charged in the furnace.
【0013】一方、ベルレス高炉においては、炉頂バン
カーの排出口に開度制御装置が装備されており、この炉
頂バンカーの排出口の開度(図1のゲート弁6の開度)
の調整を行うことにより原料装入速度を制御することが
可能である。しかし、従来は主に、原料の炉内装入時間
を一定に保ったり、あるいは炉内のすり鉢部の底部最下
端の位置の炉中心からの変位を抑止したりすることを目
的として使用されており(例えば、特公昭57− 24043号
公報、特開昭55− 14856号公報参照)、通常、原料装入
中はその開度は一定の値に設定されている。On the other hand, in the bellless blast furnace, an opening control device is installed at the discharge port of the top bunker, and the opening degree of the discharge port of this top bunker (the opening of the gate valve 6 in FIG. 1).
It is possible to control the raw material charging rate by adjusting the above. However, in the past, it was mainly used for the purpose of keeping the time for entering the raw material inside the furnace constant, or suppressing the displacement of the position of the bottom end of the mortar inside the furnace from the center of the furnace. (See, for example, JP-B-57-24043 and JP-A-55-14856), the opening is usually set to a constant value during charging of raw materials.
【0014】本発明は、上記のようなすり鉢部の斜面上
における再分級を利用することによって原料の炉内径方
向における粒径分布を制御し、炉中心部に粗粒を堆積さ
せようとするもので、その要旨は、下記〜の原料装
入方法にある。According to the present invention, the particle size distribution of the raw material in the furnace inner diameter direction is controlled by utilizing the above-mentioned reclassification on the slope of the mortar portion to deposit coarse particles in the central part of the furnace. Then, the gist lies in the following raw material charging methods.
【0015】 ベルレス装入装置を有する高炉の原料
貯槽内に貯えられた原料を分配シュートの傾動角度を操
作して炉内の炉壁部から炉中心部へ順に装入するに際
し、コークスの装入過程の途中で炉頂バンカー排出口の
流量調整ゲートの開度を絞り、その装入速度を減少させ
ることを特徴とするベルレス高炉における原料装入方
法。When the raw material stored in the raw material storage tank of the blast furnace having the bellless charging device is charged in order from the furnace wall part in the furnace to the central part of the furnace by operating the tilt angle of the distribution chute, the charging of coke is performed. A method for charging a raw material in a bellless blast furnace, characterized in that the opening of a flow rate control gate at the top bunker discharge port is narrowed during the process to reduce the charging speed.
【0016】 ベルレス装入装置を有する高炉の原料
貯槽内に貯えられた原料を分配シュートの傾動角度を操
作して炉内の炉壁部から炉中心部へ順に装入するに際
し、鉄源原料の装入過程の途中で炉頂バンカー排出口の
流量調整ゲートの開度を絞り、その装入速度を減少させ
ることを特徴とするベルレス高炉における原料装入方
法。When the raw material stored in the raw material storage tank of the blast furnace having the bellless charging device is sequentially charged from the furnace wall portion in the furnace to the central portion of the furnace by operating the tilt angle of the distribution chute, A raw material charging method in a bellless blast furnace, characterized in that the opening of a flow rate adjusting gate at the top bunker discharge port is reduced during the charging process to reduce the charging speed.
【0017】 ベルレス装入装置を有する高炉の原料
貯槽内に貯えられた原料を分配シュートの傾動角度を操
作して炉内の炉壁部から炉中心部へ順に装入するに際
し、コークスの装入を2回に分け、2回目の装入の開始
時に、炉頂バンカー排出口の流量調整ゲートの開度を1
回目の装入時の開度より絞り、その装入速度を減少させ
ることを特徴とするベルレス高炉における原料装入方
法。When the raw material stored in the raw material storage tank of the blast furnace having the bellless charging device is charged in order from the furnace wall portion inside the furnace to the furnace central portion by operating the tilt angle of the distribution chute, charging of coke is performed. Is divided into two times, and the opening of the flow rate adjustment gate at the top bunker outlet is set to 1 at the start of the second charging.
A raw material charging method in a bellless blast furnace, which is characterized in that the charging speed is reduced by narrowing the opening at the time of the first charging.
【0018】 ベルレス装入装置を有する高炉の原料
貯槽内に貯えられた原料を分配シュートの傾動角度を操
作して炉内の炉壁部から炉中心部へ順に装入するに際
し、鉄源原料の装入を2回に分け、2回目の装入の開始
時に、炉頂バンカー排出口の流量調整ゲートの開度を1
回目の装入時の開度より絞り、その装入速度を減少させ
ることを特徴とするベルレス高炉における原料装入方
法。When the raw material stored in the raw material storage tank of the blast furnace having the bellless charging device is sequentially charged from the furnace wall portion in the furnace to the central portion of the furnace by operating the tilt angle of the distribution chute, The charging is divided into two, and the opening of the flow control gate at the top bunker discharge port is set to 1 at the start of the second charging.
A raw material charging method in a bellless blast furnace, which is characterized in that the charging speed is reduced by narrowing the opening at the time of the first charging.
【0019】前記の鉄源原料とは、炉内へ装入する原料
のうち、焼結鉱、塊状の鉄鉱石、ペレット等、鉄源とし
て装入する原料を意味する。The above-mentioned iron source raw material means, among the raw materials to be charged into the furnace, raw materials to be charged as an iron source, such as sintered ore, massive iron ore and pellets.
【0020】[0020]
【作用】以下に、本発明の具体的な実施方法および作用
効果について説明する。The specific method for carrying out the present invention and the operational effects will be described below.
【0021】通常、ベルレス高炉においては、コークス
と鉄源原料とを別々に、かつ交互に層別に炉内に装入
し、さらに、装入原料の炉内分布を安定化させる等の目
的から、炉内堆積原料の表面形状が炉壁部近傍で平坦部
を有する形になるように分布制御を行っている。Usually, in the bellless blast furnace, the coke and the iron source raw material are charged separately and alternately in layers into the furnace, and further, in order to stabilize the distribution of the charged raw material in the furnace, Distribution control is performed so that the surface shape of the raw material deposited in the furnace has a flat portion near the furnace wall.
【0022】図2は、直列2段炉頂バンカー型ベルレス
装入装置を有する高炉内に装入される原料の表面形状を
模式的に示す図であるが、原料は炉壁部の近傍では平坦
で、炉の中心に向かって下り勾配の斜面を有するすり鉢
状を呈している。FIG. 2 is a diagram schematically showing the surface shape of the raw material charged into the blast furnace having the in-line two-stage furnace top bunker type bellless charging device, but the raw material is flat near the furnace wall. And, it has a mortar shape having a slope that descends toward the center of the furnace.
【0023】このような堆積形態をとるように原料を装
入し、かつ、原料装入の際の分配シュートの傾動操作を
原料が炉壁部から炉中心方向へ順次装入されるように行
う場合、すり鉢部の斜面を流下して炉中心部に堆積する
原料は装入の後期に炉内に装入される原料であるから、
装入の途中で炉頂バンカー排出口の開度を絞って原料装
入速度を低下させれば、炉中心部には粒度の大きい、粗
い原料が堆積することになる。排出口の開度を絞るタイ
ミングを原料装入の後期、すなわち原料がすり鉢部の斜
面を流下するような状態になったときに合わせると、原
料の再分級は効果的に行われる。The raw materials are charged so as to have such a deposition form, and the tilting operation of the distribution chute at the time of charging the raw materials is performed so that the raw materials are sequentially charged from the furnace wall portion toward the furnace center. In this case, since the raw material that flows down the slope of the mortar and deposits in the center of the furnace is the raw material that is charged into the furnace in the latter half of the charging,
If the raw material charging speed is reduced by narrowing the opening of the furnace top bunker outlet during charging, coarse material with large grain size will be deposited in the center of the furnace. If the timing of narrowing the opening of the discharge port is adjusted at the latter stage of charging the raw material, that is, when the raw material flows down the slope of the mortar, the raw material can be effectively reclassified.
【0024】排出口の開度を絞る操作を原料装入の開始
直後から行えば、原料の再分級は効率よく行われるが、
装入に長時間を要し、操業に支障を来す。即ち、ベルレ
ス高炉においては、1回の原料の炉内装入に要する時間
は概ね2分程度で、ベル式高炉のそれの10倍以上であ
り、特に高生産操業を行っている場合、1回の原料装入
から次の原料装入までの時間的余裕が少ない。このよう
な状況下では、原料の装入開始時点から排出口の開度を
絞り、低装入速度で時間をかけて原料を炉内に装入する
方法を採ると、原料の装入が生産に追いつかなくなる事
態が起こり得る。If the operation of narrowing the opening of the discharge port is performed immediately after starting the charging of the raw material, the re-classification of the raw material can be carried out efficiently.
It takes a long time to charge, which hinders the operation. That is, in the bellless blast furnace, the time required to enter the raw material into the furnace once is about 2 minutes, which is 10 times or more that of the bell-type blast furnace, and especially when high production operation is performed. There is little time margin between charging one raw material and the next. In such a situation, if the method of charging the raw material into the furnace at a low charging speed over a long time is adopted by narrowing the opening of the discharge port from the start of charging the raw material, the raw material charging There is a possibility that you will not be able to catch up with.
【0025】従って、上述の炉壁近傍の平坦部への原料
装入を行っている間は従来の装入速度で装入し、装入後
期、即ち原料をすり鉢部の斜面を流下させ炉中心部に堆
積するように装入する時点で炉頂バンカーの排出口の開
度を絞って装入速度を低下させることにより、原料装入
の時間制約をうけることなく炉中心部に粒径の大きい、
粗い原料を堆積させることができる。Therefore, while the raw material is being charged into the flat portion near the furnace wall as described above, the material is charged at the conventional charging speed, and in the latter half of the charging, that is, the material is allowed to flow down the slope of the mortar and the center of the furnace is charged. By reducing the opening rate of the outlet of the furnace top bunker at the time of charging so that it accumulates in the furnace, the particle size is large in the center of the furnace without being restricted by the time for charging the raw materials. ,
Coarse raw materials can be deposited.
【0026】原料の装入速度を低下させることによりす
り鉢部の斜面で分級が行われるのは、コークスでも、鉄
源原料でも同じであって、上記のような原料装入方法を
コークスの装入に対して適用するのが前記の発明であ
り、鉄源原料の装入に対して適用するのがの発明であ
る。The fact that classification is performed on the slope of the mortar by reducing the charging rate of the raw material is the same for both coke and iron source raw materials. The above raw material charging method is used for charging coke. The invention is applied to the above, and the invention is applied to the charging of the iron source raw material.
【0027】ところで、上記のおよびの発明におい
ては、炉頂バンカーの排出口の開度を絞るタイミングが
変動し、上記のような原料の再分級を効率よく行えない
場合が起こりうる。すなわち、実際の高炉操業では、装
入量や炉頂バンカーの排出口の開度を変化させなくても
何らかの外乱因子によって原料の炉内装入時間に5〜10
%程度の変動はしばしば起こるが、1回の炉内装入の中
で分配シュートの傾動角を操作して連続的に原料の炉内
での落下位置を変化させる通常のベルレス高炉の原料装
入形態においては、この装入時間の変動が装入原料の炉
内における分布状態を変動させ、この装入原料の炉内分
布状態の変動に対応して炉頂バンカーの排出口の開度を
絞るべきタイミングも同様に変動することになる。通
常、およびの発明では、分配シュートのスケジュー
ルに基づいて予め設定した時点で排出口の開度を絞るの
で、炉頂バンカーの排出口の開度を絞るべきタイミング
と実際に排出口の開度を絞るタイミングにずれが生じ、
原料の再分級を効率よく行えないことになる。By the way, in the above inventions 1 and 2, there may be a case where the timing of narrowing the opening of the discharge port of the furnace top bunker is varied and the above-mentioned reclassification of the raw material cannot be efficiently carried out. That is, in the actual blast furnace operation, even if the charging amount and the opening of the discharge port of the bunker of the furnace top are not changed, it may take 5 to 10 times for the time to enter the raw material into the furnace due to some disturbance factors.
% Fluctuations often occur, but in a single furnace interior charging operation, the tilt angle of the distribution chute is manipulated to continuously change the falling position of the raw material in the furnace. In this case, the fluctuation of the charging time should fluctuate the distribution state of the charging raw material in the furnace, and the opening of the discharge port of the top bunker should be narrowed corresponding to the fluctuation of the distribution state of the charging raw material in the furnace. The timing will change as well. Normally, and in the invention, since the opening of the outlet is narrowed at a preset time point based on the schedule of the distribution chute, the timing at which the opening of the outlet of the furnace top bunker should be narrowed and the opening of the outlet are actually set. There is a gap in the squeezing timing,
Reclassification of raw materials cannot be performed efficiently.
【0028】一方、およびの発明では原料の装入を
予め前期、後期の2回に分け(それぞれ前段装入、後段
装入という)、前段装入を終了して装入を一旦停止して
いる間に炉頂バンカー排出口の開度を前段装入時におけ
るよりも小さくして後段装入を行う。すなわち、前段装
入では原料を炉壁近傍の平坦部へ装入してすり鉢部の斜
面上には堆積させず、その間は従来の装入速度で装入
し、後段装入では原料をすり鉢部の斜面上に装入し、そ
のときは炉頂バンカー排出口の開度を絞るのである。こ
のような方法を採ることによって、原料の装入に要する
時間の増加を最小限に抑えつつ炉中心部に粒径の大きい
原料を堆積させることができる。On the other hand, in the inventions 1 and 2, the charging of the raw material is divided into two times in advance in the first half and the second half (referred to as the first-stage charging and the second-stage charging respectively), and the first-stage charging is completed and the charging is temporarily stopped. In the meantime, the opening of the top bunker discharge port is made smaller than that at the time of the first-stage charging, and the second-stage charging is performed. That is, in the first-stage charging, the raw material was charged into the flat part near the furnace wall and was not deposited on the slope of the mortar, during that time the conventional charging rate was used, and in the second-stage charging the raw material was mortar-shaped. It is charged on the slope of the, and at that time, the opening of the top bunker discharge port is narrowed. By adopting such a method, it is possible to deposit a raw material having a large grain size in the central portion of the furnace while minimizing the increase in the time required for charging the raw material.
【0029】この場合は、前期のおよびの発明にお
けるタイミングのずれが起こることがなく、上記の前段
装入と後段装入が適切に行われている限り原料の再分級
は効率よく行われる。In this case, the timing deviations in the inventions of 1 and 2 do not occur, and the reclassification of the raw materials can be efficiently performed as long as the above-mentioned pre-stage charging and post-stage charging are appropriately performed.
【0030】この原料装入方法をコークスの装入に対し
て適用するのが前記の発明であり、鉄源原料の装入に
対して適用するのがの発明である。It is the above invention that this raw material charging method is applied to the charging of coke, and the invention is applied to the charging of the iron source raw material.
【0031】なお、炉内装入物の分布を数式モデルによ
り予め推定することが可能であり〔例えば、「鉄と鋼」
71(1985) p.175〜182 〕、この方法を実操業において適
用すれば、およびの発明における炉頂バンカーの排
出口の開度を絞るべきタイミングと実際に排出口の開度
を絞るタイミングのずれの問題は解消され、および
の発明においても前段装入と後段装入の際の原料の炉内
における分布状態を正確に把握できるので、本発明で意
図する原料の再分級をさらに効果的に行うことが可能で
ある。It should be noted that it is possible to pre-estimate the distribution of the furnace interior contents by a mathematical model [eg "iron and steel"].
71 (1985) p.175-182], if this method is applied in actual operation, the timing of reducing the opening of the outlet of the furnace top bunker and the timing of actually reducing the opening of the outlet of The problem of deviation is solved, and even in the invention of 1, the distribution state of the raw material in the front-stage charging and the rear-stage charging can be accurately grasped, so that the reclassification of the raw material intended in the present invention can be more effectively performed. It is possible to do.
【0032】[0032]
【実施例1】炉容積が5000m3の高炉の1/10の縮尺の模型
を用い、の発明の方法を適用して原料コークスの装入
実験を行い、装入完了後の堆積コークスをサンプリング
して炉内径方向における粒度分布を求め、 O/C分布を測
定した。[Example 1] Using a model having a scale of 1/10 of a blast furnace having a furnace volume of 5000 m 3 , the method of the invention was applied to conduct a charging experiment of raw coke, and the deposited coke after the charging was sampled. The particle size distribution in the furnace inner diameter direction was obtained and the O / C distribution was measured.
【0033】表1に用いた模型の要部の寸法および原料
(コークスおよび焼結鉱)の粒度分布と装入条件を、ま
た、表2に装入実験で用いた分配シュートの運転スケジ
ュールを示す。表2において、従来例では、コークスに
ついては、ホッパーの排出口の開度を一定(90°)と
し、分配シュートの傾斜角度を45°から30°まで段階的
に減少させながら10旋回させて一層分を装入し、焼結鉱
については、炉頂バンカーの排出口の開度を80%で一定
とし、分配シュートの傾斜角度を46°から33°まで段階
的に減少させながら12旋回させて装入した。これに対し
て、実施例1では、予め行った予備実験で、従来例の条
件でコークスを装入した場合、一層分のコークス量の最
後の40%が図2に示したすり鉢部の斜面上に堆積するこ
とが判明していたので、最初の60%に相当する分を装入
するまでは排出口の開度を90%とし、分配シュートの傾
斜角度を45°から40°まで減少させながら6旋回させて
装入し、その後炉頂バンカーの排出口の開度を45%に絞
って装入速度をそれまでの 1/2にし、同時に各傾動ノッ
チ当たりの装入量を一定に保つために各傾動ノッチでの
分配シュートの旋回数を従来例での条件(旋回 No.7〜
10の4旋回)の2倍の8旋回(旋回 No.7〜14)に設定
して装入した。なお、焼結鉱については、従来例と同じ
条件で装入した。Table 1 shows the dimensions of the main part of the model used and the particle size distribution of the raw materials (coke and sinter) and the charging conditions, and Table 2 shows the operation schedule of the distribution chute used in the charging experiment. .. In Table 2, in the conventional example, with respect to the coke, the opening of the discharge port of the hopper is kept constant (90 °), the inclination angle of the distribution chute is gradually reduced from 45 ° to 30 °, and 10 turns are further performed. For the sintered ore, the opening of the discharge port of the furnace bunker was kept constant at 80%, and the distribution chute was rotated 12 times while gradually decreasing the inclination angle from 46 ° to 33 °. Charged. On the other hand, in Example 1, in a preliminary experiment conducted in advance, when coke was charged under the conditions of the conventional example, the last 40% of the coke amount for one layer was on the slope of the mortar portion shown in FIG. It was found that the discharge opening was 90% and the distribution chute inclination angle was reduced from 45 ° to 40 ° until the first 60% was charged. 6 turns to charge, and then to reduce the opening of the outlet of the furnace top bunker to 45% to halve the charging speed, and at the same time to keep the charging amount per tilt notch constant. In addition, the number of turns of the distribution chute at each tilt notch is the same as that of the conventional example (turn No. 7-
It was set as 8 turns (turn No. 7 to 14), which is twice the 10 turns. The sintered ore was charged under the same conditions as in the conventional example.
【0034】実験結果を図3および図4に示す。図3に
おいて、横軸は炉内径で、左端が炉中心、右端が炉壁を
表す。縦軸はコークスの粒径を表す。図3の結果から明
らかなように、実施例1では、炉の中心部に堆積したコ
ークスの粒径が従来例に比べて上昇している。The experimental results are shown in FIGS. 3 and 4. In FIG. 3, the horizontal axis represents the furnace inner diameter, the left end represents the furnace center, and the right end represents the furnace wall. The vertical axis represents the particle size of coke. As is clear from the result of FIG. 3, in Example 1, the grain size of the coke deposited in the central portion of the furnace is higher than that in the conventional example.
【0035】図4は炉内径方向における O/C分布を示す
図であるが、実施例1、従来例のいずれにおいてもほと
んど変わっていない。つまり、本発明方法によれば、 O
/C分布を変えずに炉内径方向における粒度分布を制御す
ることができる。FIG. 4 is a diagram showing the O / C distribution in the inner diameter direction of the furnace, but there is almost no change in both Example 1 and the conventional example. That is, according to the method of the present invention, O
The particle size distribution in the furnace inner diameter direction can be controlled without changing the / C distribution.
【0036】[0036]
【表1】 [Table 1]
【0037】[0037]
【表2】 [Table 2]
【0038】[0038]
【実施例2】実施例1で用いた模型によりの発明の方
法を適用して焼結鉱の装入実験を行い、装入完了後の堆
積焼結鉱をサンプリングして炉内径方向における粒度分
布を求めた。[Example 2] A sinter ore charging experiment was performed by applying the method of the invention using the model used in Example 1, and the deposited sinter after completion of charging was sampled to obtain a particle size distribution in the furnace inner diameter direction. I asked.
【0039】表2に分配シュートの運転スケジュールを
示す(実施例2)。この場合は、予め行った予備実験
で、従来例の条件で焼結鉱を装入した場合、一層分の焼
結鉱の量の最後の30%がすり鉢部の斜面上に堆積するこ
とが判明していたので、最初の70%に相当する分を装入
するまでは排出口の開度を80%とし、分配シュートの傾
斜角度を46°から38°まで段階的に減少させながら8旋
回させて装入し、その後炉頂バンカーの排出口の開度を
40%に絞って装入速度をそれまでの 1/2にし、その後の
旋回数を従来例での2倍の8旋回に設定して装入した。
なお、コークスについては、従来例と同じ条件で装入し
た。Table 2 shows the operation schedule of the distribution chute (Example 2). In this case, in a preliminary experiment conducted in advance, it was found that when the sinter ore was charged under the conditions of the conventional example, the last 30% of the amount of sinter for one layer was deposited on the slope of the mortar. Therefore, the opening of the discharge port was set to 80% until the first 70% was charged, and the distribution chute was rotated 8 times while gradually decreasing the inclination angle from 46 ° to 38 °. The upper bunker outlet opening
The charging speed was reduced to 40% to halve the charging speed, and the number of turns after that was set to 8 times, which was twice as much as that of the conventional example.
The coke was charged under the same conditions as the conventional example.
【0040】実験結果を図5に示す。図5において、横
軸は図3の場合と同じであり、縦軸は焼結鉱の粒径を表
す。図5の結果から、実施例2では、コークスの場合と
同様に、炉の中心部に堆積した焼結鉱の粒径は従来例に
比べて上昇していることがわかる。The experimental results are shown in FIG. In FIG. 5, the horizontal axis is the same as in the case of FIG. 3, and the vertical axis represents the particle size of the sintered ore. From the results of FIG. 5, it can be seen that in Example 2, as in the case of coke, the grain size of the sintered ore deposited in the central portion of the furnace is higher than in the conventional example.
【0041】[0041]
【実施例3】実施例1で用いた模型によりの発明の方
法を適用して焼結鉱の装入実験を行い、装入完了後の堆
積焼結鉱をサンプリングして炉内径方向における粒度分
布を求め、 O/C分布を測定した。用いた原料(コークス
および焼結鉱)の粒度分布も実施例1と同じであるが、
コークスベースは 37kg/ch (装入O/C 3.52)で若干異な
る。また、表3に装入実験で用いた分配シュートの運転
スケジュールを示す。[Example 3] A sinter ore charging experiment was performed by applying the method of the invention using the model used in Example 1, and the deposited sinter after completion of charging was sampled to obtain a particle size distribution in the furnace inner diameter direction. Then, the O / C distribution was measured. The particle size distribution of the raw materials used (coke and sintered ore) is the same as in Example 1, but
The coke base is 37 kg / ch (charge O / C 3.52), which is slightly different. Table 3 shows the operation schedule of the distribution chute used in the charging experiment.
【0042】表3において、従来例は表2に示したもの
と同じである。これに対して、実施例3では、予備実験
で、一層分のコークス量の最後の40%が図2に示したす
り鉢部の斜面上に堆積することが判明していたので、前
段装入で最初の60%に相当する分を装入し、後段装入で
残りの40%に相当する分を装入した。排出口の開度は、
前段装入では90%とし、後段装入では45%に絞って装入
速度を 1/2にし、同時に後段装入における各傾動ノッチ
当たりの装入量を一定に保つために各傾動ノッチでの分
配シュートの旋回数を従来例での条件(旋回 No.7〜10
の4旋回)の2倍の8旋回(旋回 No.1〜8)に設定し
て装入した。なお、焼結鉱については、従来例と同じ条
件で装入した。In Table 3, the conventional example is the same as that shown in Table 2. On the other hand, in Example 3, it was found in the preliminary experiment that the last 40% of the amount of coke for one layer was deposited on the slope of the mortar shown in FIG. The first 60% was charged, and the latter 40% was charged in the latter stage. The opening of the outlet is
90% for the first-stage charging, and 45% for the second-stage charging to halve the charging speed. At the same time, in order to keep the charging amount per tilting notch in the second-stage charging constant, The number of turns of the distribution chute is the same as the conventional condition (turn No. 7 to 10
It was set as 8 turns (turns No. 1 to 8), which is twice the number of 4 turns. The sintered ore was charged under the same conditions as in the conventional example.
【0043】実験結果を図6および図7に示す。図6に
おいて、横軸は図3および図5の場合と同じで、左端が
炉中心、右端が炉壁を表し、縦軸はコークスの粒径を表
す。The experimental results are shown in FIGS. 6 and 7. In FIG. 6, the horizontal axis is the same as in FIGS. 3 and 5, the left end represents the furnace center, the right end represents the furnace wall, and the vertical axis represents the coke particle size.
【0044】図6の結果から明らかなように、炉の中心
部に堆積したコークスの粒径が従来例に比べて上昇して
いる。As is clear from the results shown in FIG. 6, the grain size of the coke deposited in the center of the furnace is higher than that of the conventional example.
【0045】図7は炉内径方向における O/C分布を示す
図であるが、実施例3、従来例のいずれにおいてもほと
んど変わっていない。つまり、本発明方法によれば、 O
/C分布を変えずに炉内径方向における粒度分布を制御す
ることができる。FIG. 7 is a diagram showing the O / C distribution in the inner diameter direction of the furnace, but there is almost no change in both Example 3 and the conventional example. That is, according to the method of the present invention, O
The particle size distribution in the furnace inner diameter direction can be controlled without changing the / C distribution.
【0046】[0046]
【表3】 [Table 3]
【0047】[0047]
【実施例4】実施例1で用いた模型によりの発明の方
法を適用して焼結鉱の装入実験を行い、装入完了後の堆
積焼結鉱をサンプリングして炉内径方向における粒度分
布を求めた。Example 4 A sinter ore charging experiment was carried out by applying the method of the invention based on the model used in Example 1, and the deposited sinter after completion of the charging was sampled to obtain a particle size distribution in the furnace inner diameter direction. I asked.
【0048】表3に分配シュートの運転スケジュールを
示す(実施例4)。この場合は、予備実験で、一層分の
コークス量の最後の30%が図2に示したすり鉢部の斜面
上に堆積することが判明していたので、前段装入で最初
の70%に相当する分を装入し、後段装入で残りの30%に
相当する分を装入した。排出口の開度は、前段装入では
80%とし、後段装入では40%に絞って装入速度を 1/2に
し、その後の旋回数を従来例での2倍の8旋回に設定し
て装入した。なお、コークスについては、従来例と同じ
条件で装入した。Table 3 shows the operation schedule of the distribution chute (Example 4). In this case, it was found in the preliminary experiment that the last 30% of the amount of coke for one layer was deposited on the slope of the mortar shown in Fig. 2, so it was equivalent to the first 70% of the initial charging. The remaining amount of 30% was charged in the latter stage charging. The opening of the discharge port is
It was set to 80%, and in the latter-stage charging, it was reduced to 40% and the charging speed was halved, and the number of turns after that was set to 8 times, which is twice as much as the conventional example. The coke was charged under the same conditions as the conventional example.
【0049】実験結果を図8に示す。図8において、横
軸は前期の図6の場合と同じであり、縦軸は焼結鉱の粒
径を表す。図8の結果から、実施例4では、コークスの
場合と同様に、炉の中心部に堆積した焼結鉱の粒径は従
来例に比べて上昇していることがわかる。The experimental results are shown in FIG. In FIG. 8, the horizontal axis is the same as in the case of FIG. 6 of the previous term, and the vertical axis represents the particle size of the sintered ore. From the results shown in FIG. 8, it can be seen that in Example 4, as in the case of coke, the particle size of the sintered ore deposited in the central portion of the furnace is higher than in the conventional example.
【0050】[0050]
【発明の効果】ベルレス装入装置を有する高炉に原料を
装入するに際し本発明方法を適用すれば、炉頂バンカー
内に工作物を設置することなく炉内における原料の粒径
分布を制御し、 O/C分布を変化させることなく、炉中心
部に粒度の大きい、粗い原料を堆積させることができ
る。これによって、炉中心部のガス流を高めることがで
き、高炉の安定操業ができる。When the method of the present invention is applied when charging the raw material into the blast furnace having the bellless charging device, the particle size distribution of the raw material in the furnace can be controlled without installing the work in the furnace bunker. , Coarse raw materials with large grain size can be deposited in the center of the furnace without changing the O / C distribution. As a result, the gas flow in the center of the furnace can be increased, and stable operation of the blast furnace can be achieved.
【図1】直列に2段の炉頂バンカーを有するベルレス装
入装置の一例の構成を示す図である。FIG. 1 is a diagram showing a configuration of an example of a bellless charging device having a two-stage furnace top bunker in series.
【図2】ベルレス装入装置を有する高炉における炉内堆
積原料の表面形状を模式的に示す図である。FIG. 2 is a diagram schematically showing a surface shape of a raw material deposited in a furnace in a blast furnace having a bellless charging device.
【図3】実施例1におけるコークスの炉内粒径分布を示
す図である。FIG. 3 is a diagram showing a particle size distribution of coke in the furnace in Example 1.
【図4】実施例1における O/C分布を示す図である。FIG. 4 is a diagram showing an O / C distribution in Example 1.
【図5】実施例2における焼結鉱の炉内粒径分布を示す
図である。FIG. 5 is a diagram showing a particle size distribution in a furnace of a sintered ore in Example 2.
【図6】実施例3におけるコークスの炉内粒径分布を示
す図である。FIG. 6 is a diagram showing a particle size distribution of coke in a furnace in Example 3;
【図7】実施例3における O/C分布を示す図である。FIG. 7 is a diagram showing an O / C distribution in Example 3.
【図8】実施例4における焼結鉱の炉内粒径分布を示す
図である。FIG. 8 is a diagram showing a furnace particle size distribution of a sintered ore in Example 4.
Claims (4)
カー内に貯えられた原料を分配シュートの傾動角度を操
作して炉内の炉壁部から炉中心部へ順に装入するに際
し、コークスの装入過程の途中で炉頂バンカー排出口の
流量調整ゲートの開度を絞り、その装入速度を減少させ
ることを特徴とするベルレス高炉における原料装入方
法。1. A coke when charging raw materials stored in a bunker top bunker of a blast furnace having a bellless charging device in sequence from a furnace wall portion to a furnace central portion by operating a tilt angle of a distribution chute. The method for charging raw materials in a bellless blast furnace, characterized in that the opening of a flow rate control gate at the top bunker discharge port is narrowed during the charging process to reduce the charging speed.
カー内に貯えられた原料を分配シュートの傾動角度を操
作して炉内の炉壁部から炉中心部へ順に装入するに際
し、鉄源原料の装入過程の途中で炉頂バンカー排出口の
流量調整ゲートの開度を絞り、その装入速度を減少させ
ることを特徴とするベルレス高炉における原料装入方
法。2. When the raw material stored in the bunker top bunker of a blast furnace having a bellless charging device is charged in sequence from the furnace wall to the furnace center by operating the tilt angle of the distribution chute, A raw material charging method in a bellless blast furnace, characterized in that the opening of a flow rate adjusting gate at the top bunker discharge port is reduced during the charging process of the source material to reduce the charging speed.
カー内に貯えられた原料を分配シュートの傾動角度を操
作して炉内の炉壁部から炉中心部へ順に装入するに際
し、コークスの装入を2回に分け、2回目の装入の開始
時に、炉頂バンカー排出口の流量調整ゲートの開度を1
回目の装入時の開度より絞り、その装入速度を減少させ
ることを特徴とするベルレス高炉における原料装入方
法。3. Coke when the raw materials stored in the top bunker of a blast furnace having a bellless charging device are charged in sequence from the furnace wall to the center of the furnace by controlling the tilt angle of the distribution chute. The charging is divided into two times, and at the start of the second charging, the opening of the flow rate adjustment gate at the top bunker discharge port is set to 1
A raw material charging method in a bellless blast furnace, which is characterized in that the charging speed is reduced by narrowing the opening at the time of the first charging.
カー内に貯えられた原料を分配シュートの傾動角度を操
作して炉内の炉壁部から炉中心部へ順に装入するに際
し、鉄源原料の装入を2回に分け、2回目の装入の開始
時に、炉頂バンカー排出口の流量調整ゲートの開度を1
回目の装入時の開度より絞り、その装入速度を減少させ
ることを特徴とするベルレス高炉における原料装入方
法。4. When the raw material stored in the top bunker of a blast furnace having a bellless charging device is charged in sequence from the furnace wall to the center of the furnace by operating the tilt angle of the distribution chute, The charge of the source material is divided into two, and the opening of the flow rate adjustment gate at the top bunker discharge port is set to 1 at the start of the second charge.
A raw material charging method in a bellless blast furnace, which is characterized in that the charging speed is reduced by narrowing the opening at the time of the first charging.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8112592A JPH05279715A (en) | 1992-04-02 | 1992-04-02 | Method for charging raw material in bell-less blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8112592A JPH05279715A (en) | 1992-04-02 | 1992-04-02 | Method for charging raw material in bell-less blast furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05279715A true JPH05279715A (en) | 1993-10-26 |
Family
ID=13737676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8112592A Pending JPH05279715A (en) | 1992-04-02 | 1992-04-02 | Method for charging raw material in bell-less blast furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05279715A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100477066B1 (en) * | 2002-08-22 | 2005-03-17 | 주식회사 포스코 | An method of charging a fuels and raw materials by controlling the trace of charg-material |
-
1992
- 1992-04-02 JP JP8112592A patent/JPH05279715A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100477066B1 (en) * | 2002-08-22 | 2005-03-17 | 주식회사 포스코 | An method of charging a fuels and raw materials by controlling the trace of charg-material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20040058021A (en) | Raw material charging method for bell-less blast furnace | |
JPH05279715A (en) | Method for charging raw material in bell-less blast furnace | |
JP4296912B2 (en) | Raw material charging method for vertical furnace | |
JP2001279309A (en) | Method for charging raw material into blast furnace | |
JP2782786B2 (en) | Raw material charging apparatus and charging method for bellless blast furnace | |
JPH046761B2 (en) | ||
JP3874319B2 (en) | Method and apparatus for charging small amounts of charged materials into a bell-less blast furnace | |
JPH05179320A (en) | Raw material charging method for bell-less blast furnace | |
JP2847995B2 (en) | Raw material charging method for bellless blast furnace | |
JPH02305911A (en) | Bell-less type raw material charging method for vertical furnace | |
JP4045897B2 (en) | Raw material charging method for bell-less blast furnace | |
JPS61227109A (en) | Charging method for blast furnace charge | |
JPH0225507A (en) | Method and apparatus for charging raw material in bell-less type blast furnace | |
JP3995380B2 (en) | Raw material charging method to blast furnace | |
JP2847994B2 (en) | Raw material charging method for bellless blast furnace | |
JPH04235206A (en) | Method and apparatus for charging raw material in bellless blast furnace | |
JPS61157604A (en) | Introducting method of raw material for blast furnace | |
JPH06256828A (en) | Method for charging raw material into bell-less blast furnace | |
JPH04183809A (en) | Method for changing raw material in ball-less blast furnace | |
JPH051312A (en) | Method for charging raw material in bell-less blast furnace | |
JP2892065B2 (en) | Bell-less blast furnace raw material charging method | |
JP4317505B2 (en) | Raw material charging method for bell-type blast furnace | |
JP4622278B2 (en) | Raw material charging method to blast furnace | |
JPH02401B2 (en) | ||
JP4915119B2 (en) | Raw material charging method for blast furnace |