[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05279033A - Production of oxide superconductor having high critical current density - Google Patents

Production of oxide superconductor having high critical current density

Info

Publication number
JPH05279033A
JPH05279033A JP4101953A JP10195392A JPH05279033A JP H05279033 A JPH05279033 A JP H05279033A JP 4101953 A JP4101953 A JP 4101953A JP 10195392 A JP10195392 A JP 10195392A JP H05279033 A JPH05279033 A JP H05279033A
Authority
JP
Japan
Prior art keywords
oxide
phase
superconductor
molding
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4101953A
Other languages
Japanese (ja)
Other versions
JP3155333B2 (en
Inventor
Akihiro Kondo
藤 章 弘 近
Hiroyuki Fujimoto
本 浩 之 藤
Masahito Murakami
上 雅 人 村
Naoki Koshizuka
塚 直 己 腰
Shoji Tanaka
中 昭 二 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Railway Technical Research Institute
Kawasaki Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Railway Technical Research Institute
Kawasaki Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Railway Technical Research Institute, Kawasaki Heavy Industries Ltd, Nippon Steel Corp filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Priority to JP10195392A priority Critical patent/JP3155333B2/en
Priority to DE69330762T priority patent/DE69330762T2/en
Priority to DE69318875T priority patent/DE69318875T2/en
Priority to EP93105034A priority patent/EP0562618B1/en
Priority to EP97118391A priority patent/EP0834931B1/en
Publication of JPH05279033A publication Critical patent/JPH05279033A/en
Application granted granted Critical
Publication of JP3155333B2 publication Critical patent/JP3155333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the critical current density by mixing and molding the compd. expressed by specific formula, Ba oxide and Cu oxide, then subjecting the molding to a heat treatment, thereby growing a superconducting phase. CONSTITUTION:Raw material powders of the compd., such as Y2Cu2O5, expressed by the formula (RE is a rare earth element, such as Y, Sm, Eu or Gd), BaCO3, CuO, etc., are so mixed that Y/B/Cu attain prescribed atomic ratios. Pt or a Pt compd. is added and mixed at 0.1 to 2wt.% (hereafter %) in terms of Pt to and with this mixture or a Ce oxide at 0.1 to 2% in terms of CeO2. The mixture is then press molded and the molding is heated to 950 to 1250 deg.C and is held for a prescribed period of time, by which the molding is partially melted to allow an REBa2CuO5 phase and a liquid phase to coexist. The molding is cooled until REBa2Cu3Ox grows from the liquid phase and is then slowly cooled down to 850 to 950'C at 0.2 to 20 deg.C/hour to allow the crystal to grow. The molding is then heat treated at 650 to 300 deg.C in an oxygen enriched atmosphere and is cooled, by which the REBaCuO oxide superconductor having the high critical current density is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規なREBaCuO 系酸化物
超電導体の製造方法、特に臨界電流密度の高い酸化物超
電導体の製造方法に関するものである。ここにREはY,
Sm,Eu,Gd,Dy,Ho,Er,Ybのグリープより選ばれた希
土類元素を表わす。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a novel REBaCuO-based oxide superconductor, and more particularly to a method for producing an oxide superconductor having a high critical current density. Where RE is Y,
Represents a rare earth element selected from the group of Sm, Eu, Gd, Dy, Ho, Er, and Yb.

【0002】[0002]

【発明が解決しようとする課題】REBaCuO 系酸化物バル
ク超電導体は従来、MTG(Melt Textured Growth)法
(S.Jin らAppl. Phys.Lett. Vol 52 No.207 1988 P297
4 )等の方法で製造されていた。MTG法で製造する一
例を示す。まず原料粉をREBa2 Cu3 O x 組成になるよう
に調合し、成型する。その成型体を部分溶融させ、さら
に温度勾配下で徐冷し超電導相を成長させる。その後、
超電導相に酸素を付加させるために、酸素富化雰囲気中
でアニールを行う。この方法ではRE2 BaCuO 5 相(以下
211相と称す)を意識的に分散させておらず、臨界電
流密度は77K,1T(テスラ)で4,000A/cm2 程度で
あり、実用化に向けて十分に高いとは言えない。
REBaCuO-based oxide bulk superconductors have been conventionally manufactured by the MTG (Melt Textured Growth) method (S. Jin et al. Appl. Phys. Lett. Vol 52 No. 207 1988 P297.
4) etc. were manufactured. An example of manufacturing by the MTG method will be shown. First, the raw material powders are blended so as to have the REBa 2 Cu 3 O x composition and molded. The molded body is partially melted, and then gradually cooled under a temperature gradient to grow a superconducting phase. afterwards,
Annealing is performed in an oxygen-rich atmosphere to add oxygen to the superconducting phase. In this method, the RE 2 BaCuO 5 phase (hereinafter referred to as the 211 phase) is not intentionally dispersed, and the critical current density is about 4,000 A / cm 2 at 77K, 1T (Tesla). Is not high enough.

【0003】一方、最近MPMG(Melt Powder Melt G
rowth )法(H.FujimotoらProc. ofISS’89 Springer-V
erlag 1990 P285)等が開発され、臨界電流密度が77K,1
Tで10,000A/cm2 を越えるようになった。以下に、M
PMGで製造する一例を示す。まず原料粉、例えばY 2
O 3 ,BaCO3 ,CuO を所定の割合に混合する。これを仮
焼・粉砕してもよい。さらにこの粉をRE2 O 3 相と液相
が共存する温度、例えば1400℃に加熱し混合粉を部
分溶融(M)させる。さらに、冷却することにより凝固
させる。その後粉砕(P)混合し加圧成型する。成型体
を211相と液相が共存する温度、例えば1100℃ま
で加熱し、部分溶融(M)させる。その後、超電導相で
ある123相が生成する温度まで冷却し、その温度より
例えば1℃/hで除冷することにより123相を生成・
成長(G)させることにより超電導体を製造する。
On the other hand, recently MPMP (Melt Powder Melt G
rowth) method (H. Fujimoto et al. Proc. of ISS'89 Springer-V
erlag 1990 P285) etc. were developed and the critical current density was 77K, 1
It has exceeded 10,000 A / cm 2 at T. Below, M
An example of manufacturing with PMG is shown. First, the raw material powder, for example Y 2
O 3 , BaCO 3 , and CuO are mixed in a predetermined ratio. This may be calcined and crushed. Further, this powder is heated to a temperature at which the RE 2 O 3 phase and the liquid phase coexist, for example, 1400 ° C. to partially melt (M) the mixed powder. Further, it is solidified by cooling. After that, it is crushed (P) mixed and pressure molded. The molded body is heated to a temperature at which the 211 phase and the liquid phase coexist, for example, 1100 ° C. to partially melt (M). Thereafter, the 123 phase which is the superconducting phase is cooled to a temperature at which the 123 phase is generated, and the 123 phase is generated by cooling the temperature from that temperature, for example, at 1 ° C./h.
A superconductor is manufactured by growing (G).

【0004】前記の高い臨界電流密度はYBa 2 Cu3 O x
相(以下123相と称す)中に211相を微細分散させ
ることにより達成された。さらに、211相のサイズが
小さくなるほど臨界電流密度が向上することも報告され
ている(M.MurakamiらProc.of M 2 S HTSC III Confere
nce 1991) 。従って、高い臨界電流密度を得るための一
手段として、211相を123相中に分散させ、さらに
211相のサイズを小さくすることは重要である。
The high critical current density is YBa 2 Cu 3 O x
It was achieved by finely dispersing the 211 phase in the phase (hereinafter 123 phase). Furthermore, it has been reported that the critical current density improves as the size of the 211 phase decreases (M. Murakami et al. Proc. Of M 2 S HTSC III Confere.
nce 1991). Therefore, as one means for obtaining a high critical current density, it is important to disperse the 211 phase in the 123 phase and further reduce the size of the 211 phase.

【0005】一方、前記超電導体の示す磁気浮上力は、
臨界電流密度が高くなり、超電導結晶が大きくなる程高
くなるので(M.MurakamiらJapanese Journal of Applie
d Physics Vol.29 No.11 1990 L1991)、高い磁気浮上力
を得るには、高い臨界電流密度を有することが重要であ
る。
On the other hand, the magnetic levitation force exhibited by the superconductor is
The higher the critical current density and the larger the superconducting crystal, the higher (M. Murakami et al. Japanese Journal of Applie
d Physics Vol.29 No.11 1990 L1991), it is important to have a high critical current density in order to obtain a high magnetic levitation force.

【0006】しかし、上述のように、MTG法では、比
較的簡単で少ない工程で超電導体を製造できるが、臨界
電流密度が比較的低い。また、MPMG法では臨界電流
密度は高いが、製造工程が複雑になる難点があった。
However, as described above, according to the MTG method, although the superconductor can be manufactured in a relatively simple and small number of steps, the critical current density is relatively low. Further, although the MPMG method has a high critical current density, it has a drawback that the manufacturing process is complicated.

【0007】かくして、本発明はMTG法で得られる超
電導体の臨界電流密度よりも高い臨界電流密度を有する
REBaCuO 系酸化物超電導体を、MPMG法よりも簡単で
少ない製造工程で製造することができる方法を提供する
ものである。
Thus, the present invention has a critical current density higher than that of the superconductor obtained by the MTG method.
It is intended to provide a method capable of manufacturing a REBaCuO-based oxide superconductor with a simpler and fewer manufacturing process than the MPMG method.

【0008】[0008]

【課題を解決するための手段】本発明者等は、RE2 Cu2
O 5 ,Ba酸化物,およびCu酸化物を原料として、混合・
成型し、その成型体を211相と液相が共存する温度ま
で加熱し、部分溶融させ、さらに超電導相である123
相が生成する温度まで冷却し、その温度より除冷するこ
とにより123相を生成・成長させる方法で製造した超
電導体は、従来の他の原料の組み合わせ、すなわちRE2
O 3 ,BaO 2 CuO あるいはRE2 BaCuO 5,REBa2 Cu3 Ox
あるいはRE2 O 3 ,BaCuO 2 ,CuO 等を用いて前記と同
様に製造した超電導体よりも、前記123相に分散して
いる前記211相のサイズが小さく、臨界電流密度およ
び磁気浮上力をさらに向上させ得ることを見いだし、本
発明をなすに至ったものである。
The present inventors have SUMMARY OF THE INVENTION may, RE 2 Cu 2
Using O 5 , Ba oxide, and Cu oxide as raw materials,
After molding, the molded body is heated to a temperature at which the 211 phase and the liquid phase coexist, is partially melted, and is a superconducting phase 123.
A superconductor produced by a method of producing and growing 123 phases by cooling to a temperature at which a phase is produced and then cooling from that temperature is a conventional combination of other raw materials, that is, RE 2
O 3 , BaO 2 CuO or RE 2 BaCuO 5 , REBa 2 Cu 3 Ox
Alternatively, the size of the 211 phase dispersed in the 123 phase is smaller than that of the superconductor manufactured in the same manner as above using RE 2 O 3 , BaCuO 2 , CuO, etc., and the critical current density and the magnetic levitation force are further improved. The inventors have found that they can be improved and have completed the present invention.

【0009】さらに、上記原料の調合の際に、白金ある
いは白金化合物を白金として0.1〜2重量%添加、ま
たはロジウムを0.01〜2重量%添加、またはセリウ
ム酸化物をCeOとして0.1〜2重量%添加し、前
記方法で超電導体を製造すれば、前記添加剤を添加しな
いで製造した超電導体よりも、123相に分散している
211相のサイズがさらに小さく、臨界電流密度がさら
に高くなることも見いだした。
Further, in the preparation of the above raw materials, 0.1 to 2% by weight of platinum or a platinum compound is added as platinum, or 0.01 to 2 % by weight of rhodium is added, or cerium oxide is added as CeO 2 of 0%. If 1 to 2 wt% is added and a superconductor is manufactured by the above method, the size of the 211 phase dispersed in the 123 phase is smaller than that of the superconductor manufactured without adding the additive, and the critical current It has also been found that the density is even higher.

【0010】よって、本発明はRE2 Cu2 O 5 ,Ba酸化物
およびCu酸化物を原料として、混合・成型し、さらに熱
処理を施すことにより、超電導相を生成・成長させるこ
とを特徴とするREBaCuO 系酸化物超電導体の製造方法を
提供するものである。
Therefore, the present invention is characterized in that the superconducting phase is generated and grown by mixing and molding RE 2 Cu 2 O 5 , Ba oxide and Cu oxide as raw materials and further subjecting to heat treatment. The present invention provides a method for producing a REBaCuO-based oxide superconductor.

【0011】本発明に係る超電導体の製造方法の手順の
一例について以下に示す。これに、沿って本発明を詳し
く説明する。
An example of the procedure of the method for producing a superconductor according to the present invention is shown below. The present invention will be described in detail along with this.

【0012】(工程 )まずREBaCuO 系超電導体製造
する最初の段階として、部分溶融前の成型体を製造す
る。REとしては、Y,Sm,Eu,Gd,Dy,Ho,Er,Ybから少なく
とも1種類が選択される。原料粉として、RE2 Cu2 O
5 ,Ba酸化物,およびCu酸化物の組み合わせあるいはR
E2 Cu2 O 5 ,BaCu酸化物の組み合わせを用いる。これ
らの原料粉を所定の割合に混合し、REBaCuO からなる混
合粉を作製する。
(Process) First, as a first step of manufacturing a REBaCuO-based superconductor, a molded body before partial melting is manufactured. At least one kind of RE is selected from Y, Sm, Eu, Gd, Dy, Ho, Er, and Yb. As raw material powder, RE 2 Cu 2 O
5 , a combination of Ba oxide and Cu oxide or R
A combination of E 2 Cu 2 O 5 and BaCu oxide is used. These raw material powders are mixed in a predetermined ratio to prepare a mixed powder made of REBaCuO 2.

【0013】このときに、さらに臨界電流密度を向上さ
せる方法として、白金あるいは白金化合物を0.1〜2
重量%添加、またはロジウムを0.01〜2重量%添
加、またはセリウム酸化物を0.1〜2重量%添加する
ことも可能である。白金化合物としては例えばPt2 Ba4
CuO 9 が用いられる。またセリウム酸化物としては、例
えばCeO,CeBaOが用いられる。
At this time, as a method for further improving the critical current density, 0.1 to 2 of platinum or a platinum compound is added.
It is also possible to add 0.01% to 2% by weight of rhodium or 0.1 to 2% by weight of cerium oxide. Examples of platinum compounds include Pt 2 Ba 4
CuO 9 is used. Further, as the cerium oxide, for example, CeO 2 or CeBaO 3 is used.

【0014】(工程 )さらに、この混合粉を所望の
形状に成型し、成型体を作製する。
(Step) Further, this mixed powder is molded into a desired shape to prepare a molded body.

【0015】(工程 )この成型体を前記211相が
生成する950〜1250℃の範囲に加熱し、その温度
に15〜90分間保持し、その温度から前記211相と
前記液相から前記123相が生成し始める温度、例えば
REがYで空気中の場合1000℃まで10〜1000℃
/hの冷却速度で冷却し、さらに、850〜950℃ま
で0.2〜20℃/hの冷却速度で徐冷する。この徐冷
時にたとえば成型体の一端の温度を最高にするように1
℃/cm以上の温度勾配下で徐冷することが可能である。
(Step) This molded body is heated to a temperature range of 950 to 1250 ° C. at which the 211 phase is formed, and kept at that temperature for 15 to 90 minutes, from that temperature to the 211 phase and from the liquid phase to the 123 phase. The temperature at which the
When RE is Y and in air 10 to 1000 ℃ up to 1000 ℃
It is cooled at a cooling rate of / h, and is gradually cooled to a temperature of 850 to 950 ° C at a cooling rate of 0.2 to 20 ° C / h. During this slow cooling, for example, to maximize the temperature at one end of the molded body,
It is possible to gradually cool under a temperature gradient of ℃ / cm or more.

【0016】(工程 )その後、850〜950℃か
ら室温までは任意の冷却速度で冷却することが可能であ
る。
(Step) After that, it is possible to cool from 850 to 950 ° C. to room temperature at an arbitrary cooling rate.

【0017】必要に応じて、製造した超電導体への酸素
を十分に付加させるために酸素富化雰囲気において65
0〜300℃の温度範囲で2〜500時間保持するか、
もしくは最高650℃、最低300℃の温度範囲を2〜
500時間かけて冷却する。その後は任意の冷却速度で
冷却することが可能である。
If necessary, 65% in an oxygen-enriched atmosphere in order to add sufficient oxygen to the manufactured superconductor.
Hold for 2 to 500 hours in the temperature range of 0 to 300 ° C,
Or the temperature range of maximum 650 ℃, minimum 300 ℃ 2
Cool for 500 hours. After that, it is possible to cool at an arbitrary cooling rate.

【0018】このように原料としてRE2 Cu2 O 5 ,Ba酸
化物およびCu酸化物を用いて、臨界電流密度の高いREBa
CuO 系酸化物超電導体を製造することができた。
As described above, by using RE 2 Cu 2 O 5 , Ba oxide and Cu oxide as raw materials, REBa with high critical current density is obtained.
We were able to manufacture CuO-based oxide superconductors.

【0019】図1はRE2 Cu2 O 5 (ただし、RE=Y) ,Ba
O 2 ,CuO を原料として、本発明に従って製造された、
超電導体組織の偏光顕微鏡写真であり、図2〜4はいず
れも比較のために実施例にあげられた前記以外の従来の
原料を用い、本発明によらずに製造された超電導体組織
の偏光顕微鏡写真である。図1に見られる前記123相
に分散している前記211相の大きさは、図2〜4に見
られる従来の原料より製造した超電導体123相に分散
しているそれよりも小さいことは明らかである。
FIG. 1 shows RE 2 Cu 2 O 5 (where RE = Y), Ba
O 2 and CuO were used as raw materials and were produced according to the present invention.
2 is a polarization microscope photograph of a superconductor structure, and FIGS. 2 to 4 are all polarized light of a superconductor structure produced by a conventional raw material other than the above-mentioned examples for comparison and not manufactured by the present invention. It is a micrograph. It is clear that the size of the 211 phase dispersed in the 123 phase shown in FIG. 1 is smaller than that dispersed in the 123 phase of the superconductor manufactured from the conventional raw material shown in FIGS. Is.

【0020】図5〜7に前記Y 2 Cu2 O 5 ,BaO 2 ,Cu
O 原料粉に白金、ロジウム、酸化セリウムをそれぞれ
0.5重量%添加し、本発明に従って製造された超電導
体組織の偏光顕微鏡写真である。図5〜7で見られる前
記添加物をそれぞれ添加して製造された超電導体123
相に分散している211相の大きさは、図1で見られる
添加物を添加しないで製造された超電導体123相に分
散しているそれと同程度に小さいことは明らかである。
5 to 7 show the above Y 2 Cu 2 O 5 , BaO 2 and Cu.
2 is a polarization micrograph of a superconductor structure produced according to the present invention by adding platinum, rhodium and cerium oxide at 0.5% by weight to O 2 raw material powder. Superconductor 123 manufactured by adding each of the additives shown in FIGS.
It is clear that the size of the 211 phase dispersed in the phase is as small as that dispersed in the superconductor 123 phase produced without addition of the additive found in FIG.

【0021】従って、本発明により得られた超電導体
は、本発明によらないものより123相中に分散する2
11相の大きさは小さい。従って、臨界電流密度おび磁
気浮上力も高くなることは明らかである。しかも前記超
電導体を簡単な製造工程で得ることができ、本発明は有
効である。
Therefore, the superconductor obtained according to the present invention disperses in 123 phases more than those not according to the present invention.
The size of 11 phases is small. Therefore, it is clear that the critical current density and the magnetic levitation force are also increased. Moreover, the superconductor can be obtained by a simple manufacturing process, and the present invention is effective.

【0022】[0022]

【実施例】【Example】

実施例1 Y 2 Cu2 O 5 ,BaO 2 ,CuO を出発原料とし、Y:Ba:Cu
の比が1.8:2.4:3.4になるように混合する。
さらに成型し、その後1030℃で20分加熱し、10
00℃まで2分で冷却した後、890℃まで1℃/hの
割合で徐冷し、その後炉冷する。さらに、1気圧の酸素
気流中で600℃で1h加熱後炉冷することにより超電
導体を製造した。
Example 1 Using Y 2 Cu 2 O 5 , BaO 2 and CuO as starting materials, Y: Ba: Cu
Are mixed in a ratio of 1.8: 2.4: 3.4.
Mold further, then heat at 1030 ℃ for 20 minutes,
After cooling to 00 ° C. in 2 minutes, it is gradually cooled to 890 ° C. at a rate of 1 ° C./h and then furnace cooled. Further, a superconductor was manufactured by heating at 600 ° C. for 1 hour in an oxygen stream of 1 atm and then cooling the furnace.

【0023】図1は、このようにして得られた超電導体
の結晶の偏光顕微鏡写真である。別に、従来の出発原料
として、Y 2 BaCuO 5 とY Ba2 Cu3 O x ,Y 2 BaCuO 5
とBaCuO 2 とCuO ,Y 2 O 3 とBaCuO 2 とCuO を用い
て、同様にして超電導体を製造した。図2〜4は、順に
このようにして従来の出発原料が得られた3つの超電導
体の組織の偏光顕微鏡写真である。
FIG. 1 is a polarization microscope photograph of the crystal of the superconductor thus obtained. Separately, as conventional starting materials, Y 2 BaCuO 5 and Y Ba 2 Cu 3 O x , Y 2 BaCuO 5
A superconductor was manufactured in the same manner using BaCuO 2 and CuO, Y 2 O 3 , BaCuO 2 and CuO. 2 to 4 are polarization microscope photographs of the structures of three superconductors from which the conventional starting materials were obtained in this order.

【0024】これらを比較すれば明らかなように、図1
に示す本発明による超電導体の結晶中に分散しているY
2 BaCuO 5 のサイズは図2〜4に示す従来の出発原料よ
り製造した超電導体のそれよりも小さかった。 実施例2 実施例1と同様に超電導体を製造した。出発原料も実施
例1と同様である。表1に示すようにY 2 Cu2 O 5 ,Ba
O 2 ,CuO を出発原料とした超電導体の77K,1T(テス
ラ)における磁化測定での臨界電流密度は、従来の出発
原料より製造した超電導体のそれよりも高かった。 実施例3 実施例1と同様に超電導体ペレットを製造した。ペレッ
トサイズは直径約16mm、高さ約7mmである。これらの
ペレットを直径12mm、表面磁束密度0.4Tの永久磁
石を用いて磁気浮上力を測定したところ、表2に示すよ
うにY 2 Cu2 O5 ,BaO 2 ,CuO を出発原料にしたペレ
ットの磁気浮上力は、他の従来の出発原料より製造した
ペレットのそれよりも高かった。 実施例4 Y 2 Cu2 O 5 の代わりにY以外のREを含むSm2 Cu2 O
5 ,Eu2 Cu2 O 5 ,Gd2Cu2 O 5 ,Dy2 Cu2 O 5 ,Ho2
Cu2 O 5 ,Er2 Cu2 O 5 ,Yb2 Cu2 O 5 を用いて実施例
1と同様にして超電導体を製造した。得られた超電導体
の77K,1Tで磁化測定により得られた臨界電流密度を表3
に示す。すべてのRE系で効果が認められた。 実施例5 白金、ロジウム、酸化セリウムを夫々0.5重量%原料
に添加以外実施例1と同様にして超電導体を製造した。
得られた超電導体の臨界電流密度を実施例4と同様な方
法で測定した結果を表4に示す。これらを添加した場合
は、添加しない場合に比べて臨界電流密度がかなり向上
したことが明らかである。 実施例6 Y2 Cu2 O 5 ,BaO2 ,BaCuO2 を出発原料とし、Y:Ba:Cu
の比が1.8:2.4:3.4になるように混合する。
さらに成型し、その後1030℃で20分加熱し、10
10℃になるまで20分で冷却した後、ペレット下面が
最も温度が低くなるように、その周囲にそれぞれ1℃/
cm、5℃/cm、9℃/cmの温度勾配をつけ、880℃ま
で1℃/h の割合で徐冷し、その後炉冷する。
As is clear from comparing these, as shown in FIG.
Y dispersed in the crystal of the superconductor according to the present invention shown in
The size of 2 BaCuO 5 was smaller than that of the superconductor manufactured from the conventional starting materials shown in FIGS. Example 2 A superconductor was manufactured in the same manner as in Example 1. The starting materials are the same as in Example 1. As shown in Table 1, Y 2 Cu 2 O 5 , Ba
The critical current densities of the superconductors made from O 2 and CuO as starting materials at 77K, 1T (Tesla) were higher than those of the superconductors made from conventional starting materials. Example 3 A superconductor pellet was produced in the same manner as in Example 1. The pellet size is about 16 mm in diameter and about 7 mm in height. The magnetic levitation force of these pellets was measured using a permanent magnet with a diameter of 12 mm and a surface magnetic flux density of 0.4 T. As shown in Table 2, pellets using Y 2 Cu 2 O 5 , BaO 2 , and CuO as starting materials were obtained. Magnetic levitation force was higher than that of pellets made from other conventional starting materials. Example 4 Sm 2 Cu 2 O containing RE other than Y in place of Y 2 Cu 2 O 5
5 , Eu 2 Cu 2 O 5 , Gd 2 Cu 2 O 5 , Dy 2 Cu 2 O 5 , Ho 2
A superconductor was produced in the same manner as in Example 1 using Cu 2 O 5 , Er 2 Cu 2 O 5 , and Yb 2 Cu 2 O 5 . Table 3 shows the critical current densities obtained by measuring the magnetization of the obtained superconductors at 77K and 1T.
Shown in. The effect was recognized in all RE systems. Example 5 A superconductor was produced in the same manner as in Example 1 except that 0.5% by weight of platinum, rhodium and cerium oxide were added to the raw materials.
Table 4 shows the results of measuring the critical current density of the obtained superconductor by the same method as in Example 4. It is clear that the critical current density is considerably improved when these are added as compared with the case where they are not added. Example 6 Using Y 2 Cu 2 O 5 , BaO 2 and BaCuO 2 as starting materials, Y: Ba: Cu
Are mixed in a ratio of 1.8: 2.4: 3.4.
Mold further, then heat at 1030 ℃ for 20 minutes,
After cooling to 10 ° C for 20 minutes, the pellet bottom surface was cooled to 1 ° C /
A temperature gradient of 5 ° C./cm, 9 ° C./cm, 9 ° C./cm is applied, and the temperature is gradually cooled to 880 ° C. at a rate of 1 ° C./h and then furnace cooled.

【0025】さらに1気圧の酸素気流中で600℃で1
h加熱後炉冷することにより超電導体を製造した。
Further, at 1 ° C in an oxygen stream at 600 ° C, 1
After heating for h, the furnace was cooled to produce a superconductor.

【0026】これらの超電導体を実施例3と同様な方法
で、磁気浮上力を測定した。その結果を表5に示すよう
に、高い磁気浮上力を示した。
The magnetic levitation force of these superconductors was measured in the same manner as in Example 3. As the result is shown in Table 5, a high magnetic levitation force was exhibited.

【0027】 表1 出発原料と臨界電流密度 出発原料 臨界電流密度(77K,1T) (A/cm2 ) Y 2 Cu2 O 5 +BaO 2 +CuO 11,500 Y 2 BaCuO 5 +YBa 2 Cu3 O x 8,000 Y 2 BaCuO 5 +BaCuO 2 +CuO 7,800 Y 2 O 3 +BaCuO 2 +CuO 6,000 表2 出発原料と磁気浮上力 出発原料 磁気浮上力(Kgf) Y 2 Cu2 O 5 +BaO 2 +CuO 0.72 Y 2 BaCuO 5 +YBa 2 Cu3 O x 0.28 Y 2 BaCuO 5 +BaCuO 2 +CuO 0.26 Y 2 O 3 +BaCuO 2 +CuO 0.27 表3 置換物質と臨界電流密度 Yと置換する物質 磁界電流密度(77K,1T) (A/cm2 ) Sm 11,000 Eu 10,500 Gd 10,000 Dy 10,500 Ho 11,000 Er 10,000 Yb 9,500 表4 添加物と臨界電流密度 添加物(添加量0.5重量%) 臨界電流密度(77K,1T) (A/cm2 ) 白金 17,500 ロジウム 18,000 酸化セリウム 16,500 表5 温度勾配と磁気浮上力 温度勾配(℃/cm) 磁気浮上力(kgf) 1 1.10 5 1.05 9 0.91Table 1 Starting Material and Critical Current Density Starting Material Critical Current Density (77K, 1T) (A / cm 2 ) Y 2 Cu 2 O 5 + BaO 2 + CuO 11,500 Y 2 BaCuO 5 + YBa 2 Cu 3 O x 8 2,000 Y 2 BaCuO 5 + BaCuO 2 + CuO 7,800 Y 2 O 3 + BaCuO 2 + CuO 6,000 Table 2 Starting materials and magnetic levitation Starting materials Magnetic levitation (Kgf) Y 2 Cu 2 O 5 + BaO 2 + CuO 0.72 Y 2 BaCuO 5 + YBa 2 Cu 3 O x 0.28 Y 2 BaCuO 5 + BaCuO 2 + CuO 0.26 Y 2 O 3 + BaCuO 2 + CuO 0.27 Table 3 Substituents and critical current density Y 77K, 1T) (A / cm 2 ) Sm 11,000 Eu 10,500 Gd 10,000 Dy 10,500 Ho 11,000 Er 10,000 Yb 9,500 Table 4 Additives and critical current density additives (additions 0.5% by weight) Critical current density (77K, 1T) (A / cm 2 ) Platinum 17,500 18,000 cerium oxide 16,500 Table 5 Temperature gradient and magnetic levitation force Temperature gradient (℃ / cm) Magnetic levitation force (kgf) 1 1.10 5 1.05 9 0.91

【0028】[0028]

【発明の効果】以上から明らかなように、本発明にれ
ば、結晶のサイズが小さく臨界電流密度と磁気浮上力が
高い酸化物系超電導体を、簡単な製造工程で製造するこ
とができる。
As is apparent from the above, according to the present invention, an oxide superconductor having a small crystal size and a high critical current density and a high magnetic levitation force can be manufactured by a simple manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従ってY 2 Cu2 O 5 ,BaとCuの酸化物
からつくられた超電導体の結晶の顕微鏡写真。
FIG. 1 is a micrograph of a crystal of a superconductor made of Y 2 Cu 2 O 5 , Ba and Cu oxides according to the present invention.

【図2】Y 2 BaCuO 5 とYBa 2 Cu3 O x からつくられた
超電導体の結晶の顕微鏡写真。
FIG. 2 is a photomicrograph of a crystal of a superconductor made of Y 2 BaCuO 5 and YBa 2 Cu 3 O x .

【図3】Y 2 BaCuO 5 とBaCuO 2 とCuO からつくられた
超電導体の結晶の顕微鏡写真。
FIG. 3 is a photomicrograph of a crystal of a superconductor made of Y 2 BaCuO 5 , BaCuO 2 and CuO.

【図4】Y 2 O 3 とBaCuO 2 とCuO からつくられた超電
導体の結晶の顕微鏡写真。
FIG. 4 is a micrograph of a crystal of a superconductor made of Y 2 O 3 , BaCuO 2 and CuO.

【図5】本発明による原料に白金を添加して得られた超
電導体の結晶の顕微鏡写真。
FIG. 5 is a micrograph of a crystal of a superconductor obtained by adding platinum to the raw material according to the present invention.

【図6】本発明による原料にロジウムを添加して得られ
た超電導体の結晶の顕微鏡写真。
FIG. 6 is a micrograph of a crystal of a superconductor obtained by adding rhodium to the raw material according to the present invention.

【図7】本発明による原料に酸化セリウムを添加して得
られた超電導体の結晶の顕微鏡写真。
FIG. 7 is a micrograph of a crystal of a superconductor obtained by adding cerium oxide to the raw material according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000006655 新日本製鐵株式会社 東京都千代田区大手町2丁目6番3号 (72)発明者 近 藤 章 弘 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 藤 本 浩 之 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 村 上 雅 人 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 腰 塚 直 己 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 (72)発明者 田 中 昭 二 東京都江東区東雲1−14−3 財団法人国 際超電導産業技術研究センター 超電導工 学研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 000006655 Nippon Steel Co., Ltd. 2-3-6 Otemachi, Chiyoda-ku, Tokyo (72) Inventor Akihiro Kondo 1-14-3 Shinonome, Koto-ku, Tokyo International Superconductivity Industrial Technology Research Center Superconductivity Institute of Technology (72) Inventor Hiroyuki Fujimoto 1-14-3 Shinonome, Koto-ku, Tokyo Inside Superconductivity Research Institute (72) Inventor Masato Murakami 1-14-3 Shinonome, Koto-ku, Tokyo International Superconductivity Industrial Technology Research Center Superconductivity Institute of Technology (72) Inventor Naoki Koshizuka 1-14-3 Shinonome, Koto-ku, Tokyo Foundation Corporation International Superconductivity Industrial Technology Research Center Superconductivity Research Institute (72) Inventor Shoji Tanaka 1-14-3 Shinonome Foundation, Koto-ku, Tokyo When people Country Superconductivity Technology Center superconducting Engineering Institute in

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】RE2 Cu2 O 5 (REはY,Sm,Eu,Gd,Dy,
Ho,Er,Ybのグループより選ばれる希土類元素を示
す),Ba酸化物,およびCu酸化物を原料として、混合・
成型し、さらに熱処理を施すことにより超電導相を成長
させることを特徴とするREBaCuO系酸化物超電導体の製
造方法。
1. RE 2 Cu 2 O 5 (RE is Y, Sm, Eu, Gd, Dy,
A rare earth element selected from the group of Ho, Er, and Yb), Ba oxide, and Cu oxide are used as raw materials and mixed.
A method for producing a REBaCuO-based oxide superconductor, which comprises molding and further heat treatment to grow a superconducting phase.
【請求項2】Ba酸化物,Cu酸化物の代わりにBaCu酸化物
を原料として用いる請求項1記載の方法。
2. The method according to claim 1, wherein BaCu oxide is used as a raw material instead of Ba oxide or Cu oxide.
【請求項3】前記熱処理は部分溶融後、徐冷することに
より超電導相を成長させることを特徴とする熱処理であ
る請求項1記載の方法。
3. The method according to claim 1, wherein the heat treatment is a partial heat treatment followed by slow cooling to grow a superconducting phase.
【請求項4】前記部分溶融温度が950〜1250℃で
ある請求項3記載の方法。
4. The method according to claim 3, wherein the partial melting temperature is 950 to 1250 ° C.
【請求項5】前記徐冷速度が0.2〜20℃/hである
請求項3記載の方法。
5. The method according to claim 3, wherein the slow cooling rate is 0.2 to 20 ° C./h.
【請求項6】1℃/cm以上の温度勾配下で、前記徐冷を
実施する請求項3記載の方法。
6. The method according to claim 3, wherein the slow cooling is performed under a temperature gradient of 1 ° C./cm or more.
【請求項7】原料に白金あるいは白金化合物を白金とし
て0.1〜2重量%添加する請求項1記載の方法。
7. The method according to claim 1, wherein 0.1 to 2% by weight of platinum or a platinum compound is added to the raw material as platinum.
【請求項8】原料にロジウムを0.01〜2重量%添加
する請求項1記載の方法。
8. The method according to claim 1, wherein 0.01 to 2% by weight of rhodium is added to the raw material.
【請求項9】原料にセリウム酸化物を酸化セリウム(C
eO)として0.1〜2重量%添加する請求項1記載
の方法。
9. A cerium oxide (Cerium oxide (C
The method according to claim 1, wherein 0.1 to 2 % by weight is added as eO 2 ).
【請求項10】超電導相を成長させた後、酸素富化雰囲
気において650〜300℃の温度範囲で2〜500時
間保持するか、もしくは最高650℃、最低300℃の
温度範囲を2〜500時間かけて冷却することにより、
超電導相に酸素を付加する請求項1記載の方法。
10. After growing the superconducting phase, it is held in an oxygen-enriched atmosphere at a temperature range of 650 to 300 ° C. for 2 to 500 hours, or at a temperature range of 650 ° C. maximum and 300 ° C. minimum for 2 to 500 hours. By cooling over
The method according to claim 1, wherein oxygen is added to the superconducting phase.
JP10195392A 1992-03-27 1992-03-27 Method for producing oxide superconductor having high critical current density Expired - Fee Related JP3155333B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10195392A JP3155333B2 (en) 1992-03-27 1992-03-27 Method for producing oxide superconductor having high critical current density
DE69330762T DE69330762T2 (en) 1992-03-27 1993-03-26 Oxide superconductor with high magnetic levitation and process for its manufacture
DE69318875T DE69318875T2 (en) 1992-03-27 1993-03-26 Oxide superconductor with high magnetic levitation and process for its manufacture
EP93105034A EP0562618B1 (en) 1992-03-27 1993-03-26 Oxide superconductor having large magnetic levitation force and its production method
EP97118391A EP0834931B1 (en) 1992-03-27 1993-03-26 Oxide superconductor having large magnetic levitation force and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10195392A JP3155333B2 (en) 1992-03-27 1992-03-27 Method for producing oxide superconductor having high critical current density

Publications (2)

Publication Number Publication Date
JPH05279033A true JPH05279033A (en) 1993-10-26
JP3155333B2 JP3155333B2 (en) 2001-04-09

Family

ID=14314254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10195392A Expired - Fee Related JP3155333B2 (en) 1992-03-27 1992-03-27 Method for producing oxide superconductor having high critical current density

Country Status (1)

Country Link
JP (1) JP3155333B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968878A (en) * 1997-02-28 1999-10-19 International Superconductivity Technology Center Oxide superconductor and method of producing same
US5998338A (en) * 1997-03-24 1999-12-07 Superconductivity Research Laboratory Method for preparing oxide superconductors
US6255255B1 (en) 1998-11-30 2001-07-03 Nippon Steel Corporation Oxide superconducting material and method of producing the same
KR101456152B1 (en) * 2012-08-06 2014-11-03 서울대학교산학협력단 Superconductor and method of forming the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968878A (en) * 1997-02-28 1999-10-19 International Superconductivity Technology Center Oxide superconductor and method of producing same
US5998338A (en) * 1997-03-24 1999-12-07 Superconductivity Research Laboratory Method for preparing oxide superconductors
US6255255B1 (en) 1998-11-30 2001-07-03 Nippon Steel Corporation Oxide superconducting material and method of producing the same
KR101456152B1 (en) * 2012-08-06 2014-11-03 서울대학교산학협력단 Superconductor and method of forming the same
JP2015532630A (en) * 2012-08-06 2015-11-12 エスエヌユー アールアンドディービー ファウンデイション Superconductor and method of forming superconductor

Also Published As

Publication number Publication date
JP3155333B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
EP0562640B1 (en) Production of oxide superconductors having large magnetic levitation force
JP2839415B2 (en) Method for producing rare earth superconducting composition
EP0423375B1 (en) Oxide superconductor and method of producing the same
JPH05279033A (en) Production of oxide superconductor having high critical current density
EP0834931B1 (en) Oxide superconductor having large magnetic levitation force and its production method
JP3115696B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JP4628041B2 (en) Oxide superconducting material and manufacturing method thereof
US5270292A (en) Method for the formation of high temperature semiconductors
JP3330962B2 (en) Manufacturing method of oxide superconductor
JP2854758B2 (en) Oxide superconductor with large magnetic levitation force
JP2801811B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JP3115695B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JP3159764B2 (en) Manufacturing method of rare earth superconductor
JP3155334B2 (en) Oxide superconductor having high magnetic levitation force and method of manufacturing the same
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JP3260410B2 (en) Oxide superconductor containing rare earth element and manufacturing method thereof
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JP2004161504A (en) Re-barium-copper-oxygen-based superconductive material precursor, re-barium-copper-oxygen-based superconductive material and method of manufacturing the same
JPH08325013A (en) Neodymium based oxide superconducting formed body and its manufacture
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JP2004203727A (en) Oxide superconductor having high critical current density
JPH04243917A (en) Preparation of oxide superconducting sintered compact
JPH03112810A (en) Production of oxide superconducting film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees