JPH05261397A - Pure water production equipment - Google Patents
Pure water production equipmentInfo
- Publication number
- JPH05261397A JPH05261397A JP4060278A JP6027892A JPH05261397A JP H05261397 A JPH05261397 A JP H05261397A JP 4060278 A JP4060278 A JP 4060278A JP 6027892 A JP6027892 A JP 6027892A JP H05261397 A JPH05261397 A JP H05261397A
- Authority
- JP
- Japan
- Prior art keywords
- water
- reverse osmosis
- distiller
- pure water
- osmosis module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 115
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 238000001223 reverse osmosis Methods 0.000 claims abstract description 44
- 238000004821 distillation Methods 0.000 claims abstract description 14
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 26
- 239000003513 alkali Substances 0.000 abstract description 12
- 239000001569 carbon dioxide Substances 0.000 abstract description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 12
- 239000007789 gas Substances 0.000 abstract description 12
- 150000002500 ions Chemical class 0.000 abstract description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 abstract description 5
- 239000001301 oxygen Substances 0.000 abstract description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 abstract description 2
- 238000006386 neutralization reaction Methods 0.000 abstract 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 25
- 230000000694 effects Effects 0.000 description 22
- 238000001704 evaporation Methods 0.000 description 14
- 230000008020 evaporation Effects 0.000 description 11
- 239000007788 liquid Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000003595 mist Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 230000003139 buffering effect Effects 0.000 description 3
- 239000003673 groundwater Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000008235 industrial water Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000008400 supply water Substances 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 238000005276 aerator Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Physical Water Treatments (AREA)
Abstract
(57)【要約】
【目的】 単段の蒸留操作によっても理論純水の抵抗率
に近い、例えば抵抗率18MΩ・cm以上の純水を製造
することができ、しかも蒸留器をコンパクトにできる純
水製造装置を提供する。
【構成】 蒸留器1の前流に、第1段逆浸透モジュール
2、脱気器9および第2段逆浸透モジュール3が、この
順序で前流がわから設けられている。第1段逆浸透モジ
ュール2において、硬度成分等のイオン類の大半および
炭酸イオンが除去される。脱気器9において、炭酸ガ
ス、酸素等が除去される。第2段逆浸透モジュール3に
おいて、中和用に注入されるアルカリに含まれる炭酸成
分も除去され、蒸留器1へは炭酸成分がほとんど存在し
ない水が供給される。
(57) [Abstract] [Purpose] Pure water with a resistivity close to that of theoretical pure water, for example, a resistivity of 18 MΩ · cm or more, can be produced even by a single-stage distillation operation, and a distiller can be made compact. Provide a water production device. [Structure] A first-stage reverse osmosis module 2, a deaerator 9, and a second-stage reverse osmosis module 3 are provided in the upstream of the distiller 1 in this order from the upstream. In the first-stage reverse osmosis module 2, most of ions such as hardness components and carbonate ions are removed. In the deaerator 9, carbon dioxide gas, oxygen, etc. are removed. In the second-stage reverse osmosis module 3, the carbonic acid component contained in the alkali injected for neutralization is also removed, and the distiller 1 is supplied with water having almost no carbonic acid component.
Description
【0001】[0001]
【産業上の利用分野】この発明は、半導体など電子部品
製造工程で使用される高温超純水や精密工業・自動車工
業などにおいてフロンや有機溶剤の代替洗浄液として広
く用いられる高温純水等の製造装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of high-temperature ultrapure water used in the manufacturing process of electronic parts such as semiconductors and high-temperature pure water widely used as an alternative cleaning solution for CFCs and organic solvents in the precision and automobile industries. Regarding the device.
【0002】[0002]
【従来の技術】従来、蒸留操作によって純水を製造する
純水製造装置としては、蒸留器の前流に脱気器が設けら
れているものが知られている。2. Description of the Related Art Conventionally, as a pure water producing apparatus for producing pure water by a distillation operation, there is known a pure water producing apparatus provided with a deaerator in a front stream of a distiller.
【0003】この装置においては、工業用水、上水道
水、地下水等の原水は、真空装置によって排気されるベ
ントガスの余熱を利用して加温された後、例えば硫酸等
の酸が注入され、pH値が例えば4以下に低下される。
その結果、原水に溶存しているHCO3 −およびCO3
2−は、(H2O+CO2)の状態となり、これが脱気
器に供給されると、炭酸ガスは原水に溶存している酸素
等のガスと共に脱気され、脱気器出口において処理水中
の炭酸成分は微量となる。こうして脱炭酸/脱気処理さ
れた原水は、ポンプによって抜き出され、蒸留器へ供給
される。In this apparatus, raw water such as industrial water, tap water, and ground water is heated by utilizing the residual heat of vent gas exhausted by a vacuum apparatus, and then acid such as sulfuric acid is injected to obtain a pH value. Is reduced to, for example, 4 or less.
As a result, HCO 3 − and CO 3 dissolved in raw water
2- becomes a state of (H 2 O + CO 2 ), and when this is supplied to the deaerator, carbon dioxide gas is deaerated together with gases such as oxygen dissolved in raw water, and at the outlet of the deaerator, The amount of carbonic acid is very small. The raw water thus decarbonated / deaerated is extracted by a pump and supplied to a distiller.
【0004】[0004]
【発明が解決しようとする課題】上記従来の純水製造装
置では、単段の蒸留操作によっては、理論純水の抵抗率
に近い、例えば抵抗率18MΩ・cm以上の純水を製造
することができないため、抵抗率18MΩ・cm以上の
純水を製造する用途に対しては、上記装置によって製造
した純水を原水とし、再度蒸留するための蒸留器を付加
設置し、2段の蒸留操作によって純水を製造する装置を
採用しており、装置の規模および所要エネルギーが増大
する欠点があった。In the above-mentioned conventional pure water production apparatus, pure water having a resistivity close to that of theoretical pure water, for example, a resistivity of 18 MΩ · cm or more can be produced by a single-stage distillation operation. Therefore, for the purpose of producing pure water with a resistivity of 18 MΩ · cm or more, the pure water produced by the above equipment is used as raw water, and a distiller for distilling is additionally installed, and a two-stage distillation operation is performed. Since a device for producing pure water is used, there is a drawback that the scale of the device and the required energy increase.
【0005】また、原水中に溶存する硬度成分(Mg
2+、Ca2+、SO4 2−)が、脱気器によっては除
去することができず、CaSO4のスケール化を防止す
るために、供給水の最高加熱温度を一般に125℃以下
に抑えて蒸留器を運転する必要があった。したがって、
蒸留器の各効用缶の伝熱温度差を大きくすることによっ
て伝熱効率を上げることができないために、蒸発管の伝
熱面積を大きくすることによって伝熱効率を上げる必要
があり、蒸留器がコンパクトにできないという問題があ
った。In addition, the hardness component (Mg
2+ , Ca 2+ , SO 4 2− ) cannot be removed by a deaerator, and in order to prevent CaSO 4 from scaling, the maximum heating temperature of the feed water is generally kept at 125 ° C. or lower for distillation. I needed to drive a vessel. Therefore,
Since it is not possible to increase the heat transfer efficiency by increasing the heat transfer temperature difference of each effect can of the distiller, it is necessary to increase the heat transfer efficiency by increasing the heat transfer area of the evaporation tube, and the distiller can be made compact. There was a problem that I could not.
【0006】この発明の目的は、単段の蒸留操作によっ
ても理論純水の抵抗率に近い、例えば抵抗率18MΩ・
cm以上の純水を製造することができ、しかも蒸留器を
コンパクトにできる純水製造装置を提供することにあ
る。An object of the present invention is to obtain a resistivity close to that of theoretical pure water even by a single-stage distillation operation, for example, a resistivity of 18 MΩ.
It is an object of the present invention to provide a pure water production apparatus capable of producing pure water having a size of cm or more and further making a distiller compact.
【0007】[0007]
【課題を解決するための手段】この発明による純水製造
装置は、蒸留操作によって純水を製造する純水製造装置
において、蒸留器(1) の前流に、第1段逆浸透モジュー
ル(2) 、脱気器(9) および第2段逆浸透モジュール(3)
が、この順序で前流がわから設けられていることを特徴
とするものである。A pure water producing apparatus according to the present invention is a pure water producing apparatus for producing pure water by a distillation operation, wherein a first stage reverse osmosis module (2 ), Deaerator (9) and second stage reverse osmosis module (3)
However, it is characterized in that the front stream is provided in this order.
【0008】[0008]
【作用】この発明の純水製造装置によると、工業用水、
上水道水、地下水等の原水は、まず、第1段逆浸透モジ
ュールに圧送される。According to the pure water producing apparatus of the present invention, industrial water,
Raw water such as tap water and groundwater is first pumped to the first-stage reverse osmosis module.
【0009】第1段逆浸透モジュールにおいては、原水
が逆浸透膜を透過する過程で、原水中に溶存する硬度成
分(Mg2+、Ca2+、SO4 2−)等のイオン類の
大半が排除される。この場合、逆浸透膜は、原水中の炭
酸成分(H2CO3、HCO3 −、CO3 2−)のうち
イオンとして存在するもの(HCO3 −、CO3 2−)
に対して分離・排除能力を持つので、透過水に残存する
炭酸成分濃度は、原水の炭酸濃度成分より低い値とな
る。In the first-stage reverse osmosis module, most of the ions such as hardness components (Mg 2+ , Ca 2+ , SO 4 2− ) dissolved in the raw water are eliminated during the process of the raw water permeating the reverse osmosis membrane. To be done. In this case, the reverse osmosis membrane exists as an ion (HCO 3 − , CO 3 2− ) among carbonic acid components (H 2 CO 3 , HCO 3 − , CO 3 2− ) in raw water.
Since it has a separation / exclusion ability, the concentration of carbonic acid component remaining in the permeate is lower than that of raw water.
【0010】第1段逆浸透モジュールの透過水は、pH
値が例えば4以下になるように酸が注入された後、脱気
器に供給される。The permeated water of the first stage reverse osmosis module has a pH of
After the acid is injected so that the value becomes 4 or less, it is supplied to the deaerator.
【0011】透過水中に溶存していたHCO3 −および
CO3 2−は、pH値が下げられた結果、(H2O+C
O2)の状態となり、脱気器供給水中の炭酸ガスは溶存
している酸素等のガスと共に脱気されて、脱気器出口に
おいては、処理水中の炭酸成分が微量となる。The HCO 3 − and CO 3 2− dissolved in the permeated water had a reduced pH value, resulting in (H 2 O + C).
O 2 ), the carbon dioxide gas in the deaerator feed water is degassed together with the dissolved gas such as oxygen, and the carbon dioxide component in the treated water becomes a trace amount at the deaerator outlet.
【0012】脱気処理水は、蒸留器を構成する金属材料
の腐食防止のために、例えば苛性ソーダ溶液等、微量の
アルカリを注入してpH値が例えば7〜8に上げられた
後、第2段逆浸透モジュールへ供給される。The degassed water is injected with a slight amount of alkali such as caustic soda solution to raise the pH value to, for example, 7 to 8 in order to prevent corrosion of the metal material constituting the distiller. It is supplied to the stage reverse osmosis module.
【0013】第2段逆浸透モジュール供給水中には、上
記処理で除去できなかった微量の残留炭酸成分と、微量
注入したアルカリに不純分として含まれる炭酸成分およ
びアルカリに吸収された炭酸成分とが含まれているが、
pH7〜8においては、これらの炭酸成分は、その80
%以上がイオンとして存在しているので、第2段逆浸透
モジュールによって、残留炭酸成分の大半が他のイオン
と共に排除される。In the water supplied to the second-stage reverse osmosis module, a small amount of residual carbonic acid component which could not be removed by the above treatment, a carbonic acid component contained as an impurity in the slightly injected alkali and a carbonic acid component absorbed by the alkali were contained. Included,
At pH 7-8, these carbonate components are
Since more than% is present as ions, the second stage reverse osmosis module eliminates most of the residual carbonic acid components along with other ions.
【0014】第2段逆浸透モジュールの透過水は蒸留器
供給水として蒸留器へ供給される。The permeated water of the second stage reverse osmosis module is supplied to the still as the still supply water.
【0015】したがって、蒸留器へは、原水中に溶存す
るMg2+、Ca2+、SO4 2−等のスケール成分お
よび炭酸成分のほとんどが除去された水が供給される。Therefore, the distiller is supplied with water from which most of scale components such as Mg 2+ , Ca 2+ , SO 4 2− and carbonic acid components dissolved in raw water have been removed.
【0016】なお、逆浸透用モジュールを2段とせずに
1段のみとし、蒸留器の前流において、逆浸透モジュー
ルを脱気器の前流に配設するか、または逆浸透用モジュ
ールを脱気器の後流に配設した場合では、下記のような
欠点がある。It should be noted that the reverse osmosis module is not provided in two stages but only in one stage, and the reverse osmosis module is arranged in the upstream of the deaerator in the upstream of the distiller or the reverse osmosis module is removed. When it is arranged in the wake of the aerator, it has the following drawbacks.
【0017】逆浸透モジュールを脱気器の前流に配設し
た場合では、pH値を7〜8に上げるために蒸留器へ供
給されるアルカリは不純分として無視できない量の炭酸
成分を含んでいるほか、大気に接すると大気中の炭酸ガ
スを吸収するので、これらの炭酸成分が蒸留器に供給さ
れて純水の抵抗率を低下させてしまう。したがって単段
の蒸留操作によっては、理論純水の抵抗率に近い、例え
ば抵抗率18MΩ・cm以上の純水を製造することがで
きない。When the reverse osmosis module is arranged in the upstream side of the deaerator, the alkali supplied to the still in order to raise the pH value to 7 to 8 contains a considerable amount of carbonic acid component as impurities. In addition, since carbon dioxide in the atmosphere is absorbed when it comes into contact with the atmosphere, these carbonic acid components are supplied to the distiller and reduce the resistivity of pure water. Therefore, pure water having a resistivity close to that of theoretical pure water, for example, a resistivity of 18 MΩ · cm or more cannot be produced by a single-stage distillation operation.
【0018】逆浸透モジュールを脱気器の後流に配設し
た場合では、脱気器への供給水のpH値を4以下にする
ための酸の注入率が、緩衝作用を生ずる塩類が除去され
ていないので、逆浸透モジュールを脱気器の前流に配設
した場合に比べて大幅に高くなり、原水のイオン組成に
よって異なるが、pH調整に必要な酸の注入率は逆浸透
モジュールを脱気器の前流に配設した場合の10〜20
倍程度となる。また酸の注入率の増加に伴い蒸留器への
供給水のpH値を7〜8に上げるのに必要なアルカリの
量も多くする必要がある。さらに、アルカリに不純分と
して含まれる炭酸成分が、逆浸透モジュールによって
は、極めて微量にまでは除去できないので、これらが蒸
留器に供給されて純水の抵抗率を低下させてしまう。し
たがって、この場合でも単段の蒸留操作によっては、理
論純水の抵抗率に近い、例えば抵抗率18MΩ・cm以
上の純水を製造することができない。When the reverse osmosis module is arranged downstream of the deaerator, the injection rate of acid for adjusting the pH value of the feed water to the deaerator to 4 or less is such that salts that cause buffering action are removed. Since the reverse osmosis module is not installed at the upstream side of the deaerator, it is significantly higher than that of the reverse osmosis module.The injection rate of acid required for pH adjustment depends on the ionic composition of the raw water. 10 to 20 when arranged in the upstream of the deaerator
It will be about double. In addition, it is necessary to increase the amount of alkali necessary to raise the pH value of the water supplied to the distiller to 7 to 8 as the injection rate of acid increases. Furthermore, the carbonic acid component contained as an impurity in the alkali cannot be removed to an extremely small amount by the reverse osmosis module, so that they are supplied to the distiller and the resistivity of pure water is reduced. Therefore, even in this case, pure water having a resistivity close to that of theoretical pure water, for example, a resistivity of 18 MΩ · cm or more cannot be produced by a single-stage distillation operation.
【0019】この発明の純水製造装置では、第1段逆浸
透モジュールによって、緩衝作用を生ずる塩類が除去さ
れるので、脱気器への供給水のpH値を4以下にするた
めの酸の注入量が少なくて済み、それに伴い蒸留器への
供給水のpH値を7〜8に上げるのに必要なアルカリの
量も少なくて済む。また、第2段逆浸透モジュールによ
って、微量注入したアルカリに含まれる炭酸成分も除去
されるので、蒸留器への供給水には炭酸成分がほとんど
存在しない。In the pure water producing apparatus of the present invention, the salt that causes a buffering action is removed by the first-stage reverse osmosis module, so that the pH value of the water supplied to the deaerator is adjusted to 4 or less. The amount of injection is small, and accordingly, the amount of alkali required to raise the pH value of the water supplied to the distiller to 7 to 8 is also small. Further, the second-stage reverse osmosis module also removes the carbonic acid component contained in the slightly injected alkali, so that the water supplied to the distiller contains almost no carbonic acid component.
【0020】[0020]
【実施例】この発明の実施例を、以下図面を参照して説
明する。Embodiments of the present invention will be described below with reference to the drawings.
【0021】図1に示す純水製造装置は、多重効用蒸留
器(1) 、複数の循環ポンプ(6) および純水ポンプ(10)か
ら主として構成された多重効用蒸留部を有しており、多
重効用蒸留器(1) の前流に、第1段逆浸透モジュール
(2) 、脱炭酸/脱気用の脱気器(9) 、および第2段逆浸
透モジュール(3) が、前流がわからこの順序で配設され
ている。The pure water producing apparatus shown in FIG. 1 has a multiple effect distillation section (1), a multiple effect distillation unit (1), a plurality of circulation pumps (6) and a pure water pump (10). 1st stage reverse osmosis module in the upstream of the multi-effect distiller (1)
(2), a deaerator (9) for decarbonation / deaeration, and a second stage reverse osmosis module (3) are arranged in this order from the front stream.
【0022】工業用水、上水道水、地下水等の原水は、
第1段逆浸透モジュール(2) に圧送され、逆浸透膜を透
過する過程で、原水中に溶存する硬度成分(Mg2+、
Ca2+、SO4 2−)等のイオン類の大半が排除され
る。また、逆浸透膜が原水中の炭酸成分(H2CO3、
HCO3 −、CO3 2−)のうちイオンとして存在する
もの(HCO3 −、CO3 2−)に対して分離・排除能
力を持つので、透過水第1段逆浸透モジュールによって
原水の炭酸濃に残存する炭酸成分濃度は、原水のそれに
比べて低い値にできる(例えば、原水のpH値が7の場
合、原水中の炭酸成分のうちH2CO3がおよそ20%
で、残り80%はイオン化している)。さらにまた、逆
浸透膜は有機物の排除能力も有するため、最終的に製造
される純水のTOC値が小さくなる効果も得られる。Raw water such as industrial water, tap water, and ground water is
The hardness component (Mg 2+ , dissolved in raw water during the process of being pumped to the first-stage reverse osmosis module (2) and passing through the reverse osmosis membrane,
Most of ions such as Ca 2+ and SO 4 2− ) are excluded. In addition, the reverse osmosis membrane uses carbon dioxide (H 2 CO 3 ,
Since HCO 3 − , CO 3 2− ) has a separation / exclusion ability with respect to those existing as ions (HCO 3 − , CO 3 2− ), the permeated water 1st stage reverse osmosis module can be used for carbonation concentration of raw water. The concentration of the carbonic acid component remaining in the raw water can be made lower than that of the raw water (for example, when the pH value of the raw water is 7, H 2 CO 3 of the carbon dioxide component in the raw water is about 20%.
And the remaining 80% is ionized). Furthermore, since the reverse osmosis membrane also has the ability to remove organic substances, the TOC value of the finally produced pure water can be reduced.
【0023】このようにして、第1段逆浸透モジュール
(2) において、蒸留器内でスケール生成の原因となる硬
度成分(Mg2+、Ca2+、SO4 2−)などのイオ
ン、蒸留水の抵抗率を低下させる炭酸成分および他の溶
存ガスのほとんどが原水から除去され、したがって後流
の脱気器(9) に供給される炭酸の負荷が低減される。In this way, the first stage reverse osmosis module
In (2), most of the ions such as hardness components (Mg 2+ , Ca 2+ , SO 4 2− ) that cause scale formation in the still , carbonic acid components and other dissolved gases that reduce the resistivity of distilled water. Are removed from the raw water, thus reducing the carbon dioxide load supplied to the downstream deaerator (9).
【0024】第1段逆浸透モジュール(2) の透過水は、
真空装置(4) によって排気されるベントガスの予熱を利
用して加温される。同時に透過水にはpH値を例えば4
以下に下げ、炭酸成分をH2CO3の状態とするため
に、例えば硫酸が注入されるが、緩衝作用を生ずる塩類
の大半が第1段逆浸透モジュール(2) で除去されている
ので、必要な注入率は透過水に対して2mg/l程度と
なる。The permeated water of the first stage reverse osmosis module (2) is
It is heated by utilizing the preheating of the vent gas exhausted by the vacuum device (4). At the same time, the permeate has a pH value of, for example, 4
For example, sulfuric acid is injected in order to bring the carbonic acid component into the state of H 2 CO 3 , but most of the salts that cause buffering action are removed by the first-stage reverse osmosis module (2). The required injection rate is about 2 mg / l with respect to the permeated water.
【0025】酸注入された透過水は脱気器(9) に供給さ
れるが、脱気器供給水中に残存する炭酸成分は、pHが
下げられているので、ほとんどがH2CO3の状態にあ
る。この透過水が脱気器(9) に供給されると、炭酸ガス
は溶存している酸素等のガスと共に脱気され、脱気器
(9) 出口において処理水中の炭酸成分は微量となる。The acid-injected permeate is supplied to the deaerator (9), but most of the carbonic acid component remaining in the deaerator supply water is in the H 2 CO 3 state because the pH is lowered. It is in. When this permeated water is supplied to the deaerator (9), carbon dioxide gas is deaerated together with dissolved oxygen and other gases, and the deaerator is removed.
(9) The amount of carbonic acid in the treated water is very small at the outlet.
【0026】脱気処理水中のpH値は、前述の通り、脱
気器(9) 入口での酸注入によって低下された状態にあ
り、蒸留器(1) を構成する金属材料を腐食する恐れがあ
るので、そのまま蒸留器(1) へ供給することは好ましく
ない。そこで、脱気処理水は、例えば苛性ソーダ溶液
等、不揮発性のアルカリを微量注入してpH値を7〜8
に上げられた後、脱気器(9) からポンプ(17)によって抜
き出されて、第2段逆浸透モジュール(3) へ供給され
る。As described above, the pH value in the degassed water is in a state of being lowered by the acid injection at the inlet of the deaerator (9), which may corrode the metal material constituting the distiller (1). Therefore, it is not preferable to feed the distiller (1) as it is. Therefore, the degassed water has a pH value of 7-8 by injecting a small amount of non-volatile alkali such as caustic soda solution.
Then, it is taken out from the deaerator (9) by the pump (17) and supplied to the second-stage reverse osmosis module (3).
【0027】第2段逆浸透モジュール(3) 供給水中に
は、上記処理で除去できなかった微量の残留炭酸成分
に、微量注入したアルカリに不純分として含まれていた
炭酸成分およびアルカリに吸収された炭酸成分が加わっ
て含まれている。pH7〜8において、これらの残留炭
酸成分は、その80%以上がイオン(HCO3 −、CO
3 2−)として存在するので、第2段逆浸透モジュール
(3) で、炭酸成分の大半が他のイオンと共に排除され、
透過水中に残存する炭酸成分は極めて微量となる。Second-stage reverse osmosis module (3) In the feed water, a small amount of residual carbonic acid component that could not be removed by the above-mentioned treatment, and a carbonic acid component and alkali contained as impurities in the minutely injected alkali were absorbed. It also contains a carbonated component. At pH 7 to 8, 80% or more of these residual carbonic acid components are ions (HCO 3 − , CO
3 2− ), the second stage reverse osmosis module
In (3), most of the carbonic acid components are eliminated together with other ions,
The amount of carbonic acid remaining in the permeated water is extremely small.
【0028】第2段逆浸透モジュール(3) の透過水は蒸
留器供給水として多重効用蒸留器(1) へ供給される。The permeate of the second-stage reverse osmosis module (3) is supplied to the multi-effect distiller (1) as distiller feed water.
【0029】蒸留器供給水は蒸留器(1) 内の各効用缶を
縦貫する予熱管(5) に供給され、各効用缶の垂直の蒸発
管(7) 内で発生した水蒸気の一部の凝縮潜熱を受けて加
熱され、さらに、第1効用缶内で加熱蒸気の一部の凝縮
潜熱を受けて125℃以上の所定温度に加熱され、第1
効用缶底部の水溜部(13)に入る。水溜部(13)に入った供
給水は、蒸発管(7) 内で水蒸気を発生した残りの濃縮液
と混合し、この混合液の大部分は循環ポンプ(6) によっ
て抜き出され、循環管(8) を介して第1効用缶上部に配
置された上部水室(15)に供給される。この混合液は、蒸
発管(7) 内を薄膜状に流下し、管外面から加熱蒸気の大
部分の凝縮潜熱を受けて125℃以上の温度で蒸発し水
蒸気を発生する。水蒸気を発生した濃縮液は水溜部(13)
に流下し、前記のごとく供給水と混合し、その大部分は
循環ポンプ(6) によって抜き出され、循環管(8) を介し
て上部水室(15)に送られる。The distiller supply water is supplied to a preheating pipe (5) that vertically extends through each effect can in the distiller (1), and a part of the steam generated in the vertical evaporation pipe (7) of each effect can is It receives the latent heat of condensation to heat it, and further receives the latent heat of condensation of a part of the heating steam in the first effect can to heat it to a predetermined temperature of 125 ° C. or higher.
Enter the water reservoir (13) at the bottom of the effect can. The feed water that entered the water reservoir (13) mixes with the remaining concentrated liquid that generated steam in the evaporation pipe (7), and most of this mixed liquid is extracted by the circulation pump (6) and It is supplied via (8) to the upper water chamber (15) arranged above the first effect can. This mixed liquid flows down in the evaporation pipe (7) in the form of a thin film, receives most of the latent heat of condensation of the heating steam from the outer surface of the pipe, evaporates at a temperature of 125 ° C. or higher, and generates water vapor. The concentrated liquid that generated water vapor is the water reservoir (13).
And is mixed with the feed water as described above, and most of it is extracted by the circulation pump (6) and sent to the upper water chamber (15) through the circulation pipe (8).
【0030】残りの混合液は連通口(14)を通って第2効
用缶水溜部(13)に入り、ここで上記と同じく蒸発管(7)
内を流下する濃縮液と混合し、その大部分は第2効用缶
の循環ポンプ(6) によって第2効用缶上部水室(15)に送
られる。The remaining mixed liquid passes through the communication port (14) and enters the second effect water reservoir (13), where the evaporation pipe (7) is the same as above.
It is mixed with the concentrated liquid flowing down, and most of it is sent to the upper water chamber (15) of the second effect can by the circulation pump (6) of the second effect can.
【0031】第1効用缶の蒸発管(7) で発生した水蒸気
はミストセパレータ(16)を経て第2効用缶に入る。水蒸
気に同伴するミストが極めて微量になるように、ミスト
セパレータ(16)でミストが除去される。こうして純粋化
された水蒸気の大部分は第2効用缶の蒸発管(7) 外面で
凝縮し、凝縮液は第2効用缶内の凝縮液収集部(図示せ
ず)に収容される。残余の水蒸気は第2効用缶予熱管
(5) 外面で凝縮し、凝縮液は凝縮液収集部で蒸発管(7)
からの凝縮液と混合し、その全部が第3効用缶内の凝縮
液収集部に入る。第n効用缶で発生した蒸気は、ミスト
セパレータ(16)でミスト除去された後、予熱管(5) の外
表面および復水管(12)の外表面で凝縮し、復水管(12)の
下の純水溜部(11)に収容される。The steam generated in the evaporation pipe (7) of the first effect can enters the second effect can through the mist separator (16). The mist is removed by the mist separator (16) so that the amount of mist entrained in the water vapor is extremely small. Most of the thus purified water vapor is condensed on the outer surface of the evaporation pipe (7) of the second effect can, and the condensate is stored in a condensate collecting section (not shown) in the second effect can. The remaining water vapor is the second effect can preheating tube
(5) Condensates on the outside, and the condensate is evaporated in the condensate collector (7)
Mixed with the condensate from the above, all of which enter the condensate collection section in the third effect can. The steam generated in the nth effect can is mist-removed by the mist separator (16), then condensed on the outer surface of the preheating pipe (5) and the outer surface of the condensate pipe (12), and under the condensate pipe (12). It is housed in the pure water reservoir (11).
【0032】こうして前記のプロセスを各効用缶毎に繰
り返し、最終的に凝縮液は蒸留器(1) の最低温部である
蒸留器第n効用缶に近接した復水管(12)の下の純水溜部
(11)に集められる。In this way, the above process is repeated for each effect can, and finally the condensate is the pure water under the condensate pipe (12) adjacent to the distiller n-th effect can which is the lowest temperature part of the distiller (1). Water reservoir
Collected in (11).
【0033】前記の通り、蒸留器供給水中のイオン成分
のほとんどが第1段逆浸透モジュール(2) および第2段
逆浸透モジュール(3) で除去され、さらに、発生上記に
同伴する不純分を含むミストセパレータ(16)で除去され
ているので、各効用缶での発生蒸気は極めて純粋な水蒸
気となっている。As described above, most of the ionic components in the distiller feed water are removed by the first-stage reverse osmosis module (2) and the second-stage reverse osmosis module (3), and further, the impurities that accompany the above generation are removed. Since it is removed by the mist separator (16) containing it, the steam generated in each effect can is extremely pure steam.
【0034】また、前記の通り、蒸留器供給水中の炭酸
成分が微量になるように処理されているため、蒸留器
(1) 内で発生する水蒸気に同伴する炭酸ガスは極めて微
量となる。したがって、蒸発管(7) および予熱管(5) 外
面で水蒸気が凝縮する過程での炭酸ガスの再溶解は最小
レベルに抑えられ、最終的に純水溜部(11)に集められた
凝縮液は理論純水の抵抗率に極めて近い抵抗率を有し、
TOC値、シリカ濃度および溶存酸素濃度の極めて低い
純水となっている。Further, as described above, since the carbonic acid component in the distiller feed water is treated to be a trace amount, the distiller is
(1) The amount of carbon dioxide gas that accompanies the water vapor generated inside is extremely small. Therefore, the re-dissolution of carbon dioxide in the process of condensation of water vapor on the outer surfaces of the evaporation pipe (7) and the preheating pipe (5) is suppressed to a minimum level, and the condensate finally collected in the pure water reservoir (11) is It has a resistivity very close to that of theoretical pure water,
The pure water has a very low TOC value, silica concentration and dissolved oxygen concentration.
【0035】純水溜部(11)の純水は純水ポンプ(10)を介
して導出される。Pure water in the pure water reservoir (11) is drawn out via a pure water pump (10).
【0036】上記実施例において、多重効用部では、循
環液を蒸発管(7) 内面に流下させて蒸発させる方式とし
ているが、本発明はこれに限定されず、同液を蒸発管内
で上昇させて蒸発させる方式であってもよいし、蒸留器
供給水を水平伝熱管の外面に流して蒸発させる方式な
ど、上記実施例と異なる構造を持った多重効用蒸留部を
用いてもよい。また、多重効用式の蒸留器にかえて蒸気
圧縮式蒸留器を採用してもよい。In the above-described embodiment, the multi-effect section is of a type in which the circulating liquid is made to flow down to the inner surface of the evaporation pipe (7) to evaporate, but the present invention is not limited to this, and the liquid is raised in the evaporation pipe (7). It is also possible to use a multi-effect distillation section having a structure different from that of the above-mentioned embodiment, such as a method of evaporating by evaporating the water, or a method of evaporating the water supplied to the distiller to the outer surface of the horizontal heat transfer tube. Further, a vapor compression type distiller may be adopted instead of the multi-effect type distiller.
【0037】[0037]
【発明の効果】この発明の純水製造装置によると、炭酸
成分のほとんどを除去した供給水を蒸留器へ供給するこ
とができるので、蒸留器内で炭酸ガスが蒸留水に再溶解
する現象を最小限に抑制でき、単段の蒸留操作によって
も極めて純度の高い純水を得ることができる。According to the pure water producing apparatus of the present invention, since the feed water from which most of the carbonic acid components have been removed can be fed to the distiller, the phenomenon that carbon dioxide gas is redissolved in the distiller in the distiller is prevented. It can be suppressed to the minimum, and pure water with extremely high purity can be obtained even by a single-stage distillation operation.
【0038】しかも原水中に溶存するMg2+、Ca
2+、SO4 2−等のスケール成分のほとんどが除去さ
れることにより、供給水を蒸留器内で125℃以上に加
熱しても硫酸カルシウム等のスケールが析出することが
なく、蒸留器の各効用缶の伝熱温度差を大きくすること
ができる。したがって蒸発管の伝熱面積を小さくできる
ので、蒸留器をコンパクトにできる。Moreover, Mg 2+ and Ca dissolved in the raw water
Most of the scale components such as 2+ and SO 4 2− are removed, so that even if the feed water is heated to 125 ° C. or higher in the distiller, scales such as calcium sulfate do not precipitate, and each distiller does not The heat transfer temperature difference of the effect can can be increased. Therefore, the heat transfer area of the evaporation tube can be reduced, and the distiller can be made compact.
【図1】この発明による純水製造装置の実施例を示すフ
ローシートである。FIG. 1 is a flow sheet showing an embodiment of a pure water producing apparatus according to the present invention.
(1) 蒸留器 (2) 第1段逆浸透モジュール (3) 第2段逆浸透モジュール (9) 脱気器 (1) Distiller (2) First stage reverse osmosis module (3) Second stage reverse osmosis module (9) Deaerator
───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 司朗 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 末松 日出雄 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)発明者 木場 和則 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shiro Inoue 5-3-28 Nishikujo, Konohana-ku, Osaka City Hitachi Shipbuilding Co., Ltd. Inside Hitachi Shipbuilding Co., Ltd. (72) Inventor Kazunori Kiba 5-3-8 Nishi-Kujo, Konohana-ku, Osaka City Inside Hitachi Shipbuilding Co., Ltd.
Claims (1)
造装置において、蒸留器(1) の前流に、第1段逆浸透モ
ジュール(2) 、脱気器(9) および第2段逆浸透モジュー
ル(3) が、この順序で前流がわから設けられていること
を特徴とする純水製造装置。1. A pure water production apparatus for producing pure water by a distillation operation, wherein a first-stage reverse osmosis module (2), a deaerator (9) and a second-stage reverse are provided in the upstream of the distiller (1). An apparatus for producing pure water, characterized in that the permeation module (3) is provided in this order from the upstream side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4060278A JPH05261397A (en) | 1992-03-17 | 1992-03-17 | Pure water production equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4060278A JPH05261397A (en) | 1992-03-17 | 1992-03-17 | Pure water production equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05261397A true JPH05261397A (en) | 1993-10-12 |
Family
ID=13137521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4060278A Pending JPH05261397A (en) | 1992-03-17 | 1992-03-17 | Pure water production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05261397A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114604980A (en) * | 2020-12-08 | 2022-06-10 | 淄博环能海臣环保技术服务有限公司 | Raw water heating and hard water removing treatment device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5273555A (en) * | 1975-12-17 | 1977-06-20 | Ebara Infilco Co Ltd | Separating method |
JPS6336890A (en) * | 1986-07-28 | 1988-02-17 | Kurita Water Ind Ltd | Apparatus for producing high-purity water |
JPH01171689A (en) * | 1987-12-28 | 1989-07-06 | Japan Organo Co Ltd | Two stage type reverse osmotic membrane device |
-
1992
- 1992-03-17 JP JP4060278A patent/JPH05261397A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5273555A (en) * | 1975-12-17 | 1977-06-20 | Ebara Infilco Co Ltd | Separating method |
JPS6336890A (en) * | 1986-07-28 | 1988-02-17 | Kurita Water Ind Ltd | Apparatus for producing high-purity water |
JPH01171689A (en) * | 1987-12-28 | 1989-07-06 | Japan Organo Co Ltd | Two stage type reverse osmotic membrane device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114604980A (en) * | 2020-12-08 | 2022-06-10 | 淄博环能海臣环保技术服务有限公司 | Raw water heating and hard water removing treatment device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10322952B1 (en) | Methods to de-salt source water | |
US8753514B2 (en) | Osmotic desalination process | |
JP6216716B2 (en) | Industrial water purification and desalination | |
US4036749A (en) | Purification of saline water | |
CN102583862B (en) | Method and system for treating saline wastewater to zero discharge and recycling | |
KR101196344B1 (en) | Desalination apparatus and method of desalination | |
US20150232348A1 (en) | Water desalination and brine volume reduction process | |
CN109231632A (en) | The processing method and system of a kind of highly mineralized mine water reuse and resource utilization | |
JP2520317B2 (en) | Ultrapure water production apparatus and method | |
CN101327407A (en) | A kind of liquid evaporation concentration equipment and method | |
KR20020039333A (en) | A salt water desalination process using ion selective membranes | |
CN104402156B (en) | Special-purpose equipment for coal chemical high brine purification, evaporative crystallization and recovery technology | |
WO2010135561A2 (en) | Method for treatment and purification of seawater to recover high purity sodium chloride for industrial usage | |
JPH10323664A (en) | Wastewater recovery processing equipment | |
EA022491B1 (en) | Thermal distillation system and process | |
CN105948352A (en) | Zero emission recycling process for treating power plant desulfurization high-salinity high-hardness wastewater | |
JPH10272494A (en) | Treatment of organic waste water containing salts of high concentration | |
CN1552638A (en) | Zero-discharge treatment process for ammonium chloride wastewater | |
CN212954702U (en) | Zero discharging equipment of power plant's high salt waste water | |
CN209411998U (en) | A kind of processing system of highly mineralized mine water reuse and resource utilization | |
JPH05261397A (en) | Pure water production equipment | |
CN216513294U (en) | Multi-stage nanofiltration salt separation system for separating sodium sulfate and sodium chloride in coking wastewater | |
CN207108721U (en) | Mercury-containing waste water advanced treating zero-emission system | |
JPS6193897A (en) | Ultrapure water production equipment | |
CN206089336U (en) | Zero discharging equipment of sewage recycling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19971111 |