[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05267654A - Mos transistor - Google Patents

Mos transistor

Info

Publication number
JPH05267654A
JPH05267654A JP6431992A JP6431992A JPH05267654A JP H05267654 A JPH05267654 A JP H05267654A JP 6431992 A JP6431992 A JP 6431992A JP 6431992 A JP6431992 A JP 6431992A JP H05267654 A JPH05267654 A JP H05267654A
Authority
JP
Japan
Prior art keywords
gate
mos transistor
gate electrode
silicon substrate
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6431992A
Other languages
Japanese (ja)
Inventor
Kazuo Terada
和夫 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6431992A priority Critical patent/JPH05267654A/en
Publication of JPH05267654A publication Critical patent/JPH05267654A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce the drop in signal voltage when an operating voltage is lowered, by constituting the vicinity of the interface of a gate insulating film in a gate electrode by using semiconductor in which the concentration by conducting impurities is low. CONSTITUTION:P-type poly silicon 105 of low impurity concentration, and a gate electrode of N-type poly silicon of high impurity concentration are formed. P-type low concentration regions 102, 103 are a drain and a source, respectively. When the band of a silicon substrate 101 is flat, positive fixed charges in a gate oxide film 104 are neutralized, so that electrons are stored on the surface of a silicon substrate 101, the gate electrode surface is turned into a depletion layer, and negative accepter ions are formed. When negative charges are applied to the gate and the silicon substrate 101 surface is inverted, electrons are concentrated on the sate electrode surface. As the result, the effective thickness of the gate oxide film at the time of cut-off differs from the thickness at the time of conduction, and this difference exerts influence on a threshold voltage. That is, a high threshold voltage is obtained at the time of cut-off, and a low threshold voltage is obtained at the time of conduction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体メモリセルのス
イッチング素子に適したMOSトランジスタ関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOS transistor suitable for a switching element of a semiconductor memory cell.

【0002】[0002]

【従来の技術】1つのMOSトランジスタと1つのキャ
パシタとから構成される半導体メモリセル(以下、1T
セルと略す)は、構成要素が少なく、小形化が容易であ
るため、高集積半導体メモリに広く使われている。この
1Tセルでは、それから出力される信号電圧がキャパシ
タの充放電電圧差に比例する。ここで充放電電圧差と
は、2進情報に対応したキャパシタへの書き込み電圧を
それぞれV0 、V1 とした場合のV1 −V0 のことであ
る。例えばnチャンネルMOSトランジスタの場合を考
えてみよう。この場合通常V0 は0Vである。V1 は、
MOSトランジスタのゲート電圧に高電位VH を加えた
場合のしきい値電圧(VTH)1段落ちの電位VH −VTH
である。そのため1Tセルを高集積化し、且つその信号
電圧を十分大きい値に保つためには、VH −VTHを大き
く保ったままメモリセルを小形化する必要がある。
2. Description of the Related Art A semiconductor memory cell (hereinafter referred to as 1T) composed of one MOS transistor and one capacitor
The cell (abbreviated as cell) has a small number of constituent elements and is easily miniaturized, and is therefore widely used in highly integrated semiconductor memories. In this 1T cell, the signal voltage output from the 1T cell is proportional to the charge / discharge voltage difference of the capacitor. Here, the charge / discharge voltage difference is V 1 −V 0 when the write voltages to the capacitors corresponding to binary information are V 0 and V 1 , respectively. For example, consider the case of an n-channel MOS transistor. In this case, normally V 0 is 0V. V 1 is
Threshold voltage (V TH ) when a high potential V H is applied to the gate voltage of the MOS transistor V H -V TH
Is. Therefore, in order to highly integrate the 1T cell and keep its signal voltage at a sufficiently large value, it is necessary to downsize the memory cell while keeping VH - VTH large.

【0003】[0003]

【発明が解決しようとする課題】ところが1Tセルを小
形化するためには、その構成要素であるMOSトランジ
スタを小形化する必要があり、そのためにはある程度比
例縮小則に従ってMOSトランジスタの平面寸法,ゲー
ト絶縁体膜厚を小さくし、動作電圧を低くする必要があ
る。そのため従来の1Tセルでは、その小形化とともに
ある程度高電位VH を小さくしなければならなかった。
一方、MOSトランジスタのしきい値電圧VTHは、ゲー
ト電圧を0V設定した状態でキャパシタに蓄積した電荷
を一定期間保持する必要から、約0.7V以上の値に保
つ必要がある。そのため、1Tセルの小形化はVH −V
THを低下させることになり、結局信号電圧の低下を招い
ていた。
However, in order to reduce the size of the 1T cell, it is necessary to reduce the size of the MOS transistor which is a constituent element of the 1T cell. For that purpose, the planar size and gate of the MOS transistor are to some extent according to the proportional reduction rule. It is necessary to reduce the insulator film thickness and the operating voltage. Therefore, in the conventional 1T cell, it has been necessary to reduce the high potential V H to some extent as the size is reduced.
On the other hand, the threshold voltage V TH of the MOS transistor needs to be maintained at a value of about 0.7 V or higher because it is necessary to hold the charge accumulated in the capacitor for a certain period with the gate voltage set to 0 V. Therefore, miniaturization of 1T cell is VH- V
TH was lowered, and eventually the signal voltage was lowered.

【0004】本発明の目的は、ある程度比例縮小則に従
ってMOSトランジスタの平面寸法、ゲート絶縁体膜厚
を小さくし、動作電圧を低くしても、信号電圧の低下の
少ないMOSトランジスタを与えることである。
An object of the present invention is to provide a MOS transistor in which the plane size of the MOS transistor and the film thickness of the gate insulator are reduced to some extent according to the proportional reduction rule, and the signal voltage is not significantly lowered even when the operating voltage is lowered. ..

【0005】[0005]

【課題を解決するための手段】本発明は、ゲート絶縁膜
およびゲート絶縁膜と半導体基板との界面近傍に第1導
電型の固定電荷があり、ゲート絶縁膜とゲート電極界面
近傍のゲート電極が高濃度の導電性不純物を含まない半
導体で、それ以外のゲート電極が高濃度の第2導電型の
不純物を含む半導体で構成されることを特徴とする第1
導電型のMOSトランジスタである。
According to the present invention, there is a fixed charge of the first conductivity type near the gate insulating film and the interface between the gate insulating film and the semiconductor substrate, and the gate electrode near the interface between the gate insulating film and the gate electrode is A semiconductor which does not contain a high concentration of conductive impurities, and the other gate electrodes are composed of a semiconductor which contains a high concentration of a second conductivity type impurity.
It is a conductive type MOS transistor.

【0006】[0006]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0007】図1は、本発明の一実施例のMOSトラン
ジスタを説明するための構造断面図である。図の101
はn型シリコン結晶基板,102,103はp型低抵抗
領域,104はゲート酸化シリコン膜,105はp型低
不純物濃度ポリシリコン,106はn型高不純物濃度ポ
リシリコンをそれぞれ示す。本実施例では、105,1
06をゲート電極、102,103をそれぞれドレイ
ン,ソースとするp型チャンネルMOSトランジスタが
構成される。
FIG. 1 is a structural sectional view for explaining a MOS transistor according to an embodiment of the present invention. 101 of the figure
Is an n-type silicon crystal substrate, 102 and 103 are p-type low resistance regions, 104 is a gate silicon oxide film, 105 is p-type low impurity concentration polysilicon, and 106 is n-type high impurity concentration polysilicon. In this embodiment, 105,1
A p-type channel MOS transistor having 06 as a gate electrode and 102 and 103 as a drain and a source is formed.

【0008】図2は、図1のMOSトランジスタのゲー
ト電極部分を、シリコン基板101に垂直な方向に切出
した場合のバンド構造を示す。同図(a)はシリコン基
板101のバンドがほぼフラットな遮断状態を、同図
(b)はシリコン基板101表面が反転した導通状態
を、それぞれ示す。同図の107はゲート酸化膜中の正
の固定電荷,108はフェルミ準位をそれぞれ表わす。
FIG. 2 shows a band structure when the gate electrode portion of the MOS transistor of FIG. 1 is cut out in a direction perpendicular to the silicon substrate 101. The figure (a) shows the interruption | blocking state which the band of the silicon substrate 101 is substantially flat, and the figure (b) shows the conduction | electrical_connection state which the surface of the silicon substrate 101 inverted. In the figure, 107 is a positive fixed charge in the gate oxide film, and 108 is a Fermi level.

【0009】図2(a)のようにシリコン基板101の
バンドがほぼフラットな場合、ゲート酸化膜104中の
正の固定電荷107を中和するため、シリコン基板10
1表面に電子が蓄積し、ゲート電極表面は空乏化して負
のアクセプタイオンが形成される。この場合、ゲート電
極中の負電荷はゲート電極表面に集中することはなく、
空乏層中に分布する。そのため、シリコン基板表面に電
界効果を及ぼすゲート電極はゲート酸化膜104より離
れることになり、実効的なゲート酸化膜104が厚いの
と等価になる。一方、図2(b)のように、ゲートに負
電圧が加えられシリコン基板101表面が反転した場
合、ゲート電極表面のp型低抵抗ポリシリコン105も
反転し、電子がゲート電極表面に集中する。この場合、
実効的なゲート酸化膜厚は実際のゲート酸化膜104の
それと一致する。
When the band of the silicon substrate 101 is almost flat as shown in FIG. 2A, the silicon substrate 10 is neutralized to neutralize the positive fixed charges 107 in the gate oxide film 104.
Electrons are accumulated on the surface 1 and the surface of the gate electrode is depleted to form negative acceptor ions. In this case, the negative charges in the gate electrode do not concentrate on the surface of the gate electrode,
It is distributed in the depletion layer. Therefore, the gate electrode exerting a field effect on the surface of the silicon substrate is separated from the gate oxide film 104, which is equivalent to the effective gate oxide film 104 being thick. On the other hand, as shown in FIG. 2B, when a negative voltage is applied to the gate and the surface of the silicon substrate 101 is inverted, the p-type low resistance polysilicon 105 on the surface of the gate electrode is also inverted and electrons are concentrated on the surface of the gate electrode. .. in this case,
The effective gate oxide film thickness matches that of the actual gate oxide film 104.

【0010】pチャンネルMOSトランジスタのしきい
値電圧はVTH=ΦMS−2・φf −(QSS+QB )/COX
で表わされる。ここで、ΦMSはゲート電極とシリコン基
板との仕事関数差、φf はシリコン基板のフェルミ準位
とバンド中央との電位差、QSSは単位面積当たりの酸化
膜固定電荷密度、COXは単位面積当たりのゲート酸化膜
容量、QB はシリコン基板表面空乏層の単位面積当たり
の空間電荷をそれぞれ表わす。本実施例のMOSトラン
ジスタでは、上記のように、それが遮断の時と導通の時
では実効的なゲート酸化膜厚が違う。その違いは上記の
右辺第3項のCOXを通してしきい値電圧に影響し、この
MOSトランジスタのしきい値電圧を、それが導通の時
の値よりも遮断の時の値をより負にする。その結果、こ
のMOSトランジスタは、遮断時に蓄積電荷を保持する
のに都合の良い(負の方向に)高いしき値電圧を持ち、
導通時に|VH −VTH|を大きくするのに都合の良い低
いしきい値電圧を持つ。なお本実施例はpチャンネルM
OSトランジスタであるため、VH ,VTHとも負の値で
ある。
The threshold voltage of the p-channel MOS transistor is V TH = Φ MS −2 · Φ f − (Q SS + Q B ) / C OX
It is represented by. Here, φ MS is the work function difference between the gate electrode and the silicon substrate, φ f is the potential difference between the Fermi level of the silicon substrate and the band center, Q SS is the fixed charge density of the oxide film per unit area, and C OX is the unit The gate oxide film capacitance per area, Q B , represents the space charge per unit area of the silicon substrate surface depletion layer. In the MOS transistor of this embodiment, as described above, the effective gate oxide film thickness is different when it is cut off and when it is conductive. The difference affects the threshold voltage through C OX in the third term on the right side, and makes the threshold voltage of this MOS transistor more negative when it is conducting than when it is conducting. .. As a result, this MOS transistor has a high threshold voltage which is convenient (in the negative direction) to hold the accumulated charge when cut off,
It has a low threshold voltage which is convenient for increasing | V H −V TH | during conduction. In this embodiment, p channel M
Since it is an OS transistor, both V H and V TH are negative values.

【0011】本実施例のMOSトランジスタが1Tセル
に適用できるためには、ゲート電圧が0Vの時それが遮
断し、そのゲート電極表面が空乏化すること、ゲート電
圧がVH の時ゲート電極表面が反転することが必要であ
る。しかしこれらのことは、ゲート電極下のシリコン基
板表面とp型低濃度ポリシリコン105の不純物濃度を
制御することにより、可能であるから、容易に本実施例
のMOSトランジスタを1Tセルに適用できる。さら
に、本実施例のMOSトランジスタが実現できるために
は、ゲート酸化膜中に適当な量の正の固定電荷が存在す
る必要がある。しかしこのことも、通常の熱酸化シリコ
ン酸化膜には単位面積当たり1011cm-2程度の正の固
定電荷が存在していることから、問題にはならない。
In order that the MOS transistor of this embodiment can be applied to a 1T cell, it is cut off when the gate voltage is 0 V and the gate electrode surface is depleted, and when the gate voltage is V H , the gate electrode surface is Need to be reversed. However, these things are possible by controlling the impurity concentration of the silicon substrate surface under the gate electrode and the p-type low-concentration polysilicon 105, so that the MOS transistor of this embodiment can be easily applied to the 1T cell. Further, in order to realize the MOS transistor of this embodiment, it is necessary that an appropriate amount of positive fixed charges exist in the gate oxide film. However, this also does not pose a problem because the normal thermal silicon oxide film has a positive fixed charge of about 10 11 cm −2 per unit area.

【0012】[0012]

【発明の効果】以上説明してきた性質はMOSトランジ
スタの寸法に依存しないから、本発明のMOSトランジ
スタは、ある程度比例縮小則に従って小形化をし、動作
電圧を低くしても、信号電圧の低下が少ない。
Since the properties described above do not depend on the size of the MOS transistor, the MOS transistor of the present invention is downsized to some extent according to the proportional reduction rule, and even if the operating voltage is lowered, the signal voltage is not lowered. Few.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のMOSトランジスタを説明
するための構造断面図である。
FIG. 1 is a structural cross-sectional view for explaining a MOS transistor according to an embodiment of the present invention.

【図2】図1のMOSトランジスタのゲート電極部分
を、シリコン基板に垂直な方向に切出した場合のエネル
ギーバンド構造を示す模式図である。
FIG. 2 is a schematic diagram showing an energy band structure when a gate electrode portion of the MOS transistor of FIG. 1 is cut out in a direction perpendicular to a silicon substrate.

【符号の説明】[Explanation of symbols]

101 n型シリコン基板 102 p型低抵抗領域(ドレイン) 103 p型低抵抗領域(ソース) 104 ゲート酸化シリコン膜 105 p型低濃度ポリシリコン 106 n型高濃度ポリシリコン 107 固定電荷 108 フェルミ準位 101 n-type silicon substrate 102 p-type low resistance region (drain) 103 p-type low resistance region (source) 104 gate silicon oxide film 105 p-type low concentration polysilicon 106 n-type high concentration polysilicon 107 fixed charge 108 Fermi level

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ゲート絶縁膜および前記ゲート絶縁膜と
半導体基板との界面近傍に第1導電型の固定電荷があ
り、ゲート電極におけるゲート絶縁膜との界面近傍の部
分が高濃度の導電性不純物を含まない半導体で、それ以
外の前記ゲート電極の部分が高濃度の第2導電型の不純
物を含む半導体で構成されることを特徴とする第1導電
型のMOSトランジスタ。
1. A fixed impurity of the first conductivity type is present in the vicinity of the gate insulating film and the interface between the gate insulating film and the semiconductor substrate, and a portion of the gate electrode near the interface with the gate insulating film has a high concentration of conductive impurities. 1. A first-conductivity-type MOS transistor, wherein the first-conductivity-type MOS transistor is a semiconductor that does not contain, and the other part of the gate electrode is composed of a semiconductor containing a high-concentration second-conductivity-type impurity.
JP6431992A 1992-03-23 1992-03-23 Mos transistor Withdrawn JPH05267654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6431992A JPH05267654A (en) 1992-03-23 1992-03-23 Mos transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6431992A JPH05267654A (en) 1992-03-23 1992-03-23 Mos transistor

Publications (1)

Publication Number Publication Date
JPH05267654A true JPH05267654A (en) 1993-10-15

Family

ID=13254801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6431992A Withdrawn JPH05267654A (en) 1992-03-23 1992-03-23 Mos transistor

Country Status (1)

Country Link
JP (1) JPH05267654A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008755A1 (en) * 1995-08-25 1997-03-06 Siemens Aktiengesellschaft Off-state gate-oxide field reduction in cmos
US6054357A (en) * 1996-12-20 2000-04-25 Hyundai Electronics Industries Co., Ltd. Semiconductor device and method for fabricating the same
JP2012191089A (en) * 2011-03-13 2012-10-04 Seiko Instruments Inc Semiconductor device and reference voltage generating circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008755A1 (en) * 1995-08-25 1997-03-06 Siemens Aktiengesellschaft Off-state gate-oxide field reduction in cmos
US6054357A (en) * 1996-12-20 2000-04-25 Hyundai Electronics Industries Co., Ltd. Semiconductor device and method for fabricating the same
JP2012191089A (en) * 2011-03-13 2012-10-04 Seiko Instruments Inc Semiconductor device and reference voltage generating circuit

Similar Documents

Publication Publication Date Title
CN100557491C (en) Semiconductor devices
US8362528B2 (en) Logic switch and circuits utilizing the switch
TWI392059B (en) High performance capacitors in planar back gates cmos
US5710451A (en) High-voltage lateral MOSFET SOI device having a semiconductor linkup region
JPS6237545B2 (en)
JPH1168105A (en) Semiconductor device
JPH01205470A (en) Semiconductor device and its manufacture
KR19990088443A (en) Soi semiconductor device and method for manufacturing the same
US6995025B2 (en) Asymmetrical programming ferroelectric memory transistor
US4622570A (en) Semiconductor memory
US20070262377A1 (en) Transistor Structure and Method of Manufacturing Thereof
JPH09116036A (en) Non-volatile storage cell transistor
KR100326832B1 (en) High-voltage thin-film transistor and manufacture method thereof
JPH05267654A (en) Mos transistor
EP0870332B1 (en) Method for manufacturing a MOSFET semiconductor device with reduced off-state gate oxide field
JP3211291B2 (en) Thin film transistor
JPH056653A (en) Memory element
KR20040073250A (en) Semiconductor device
JPH07142568A (en) Semiconductor device
JPH10189918A (en) Nonvolatile semiconductor storage device and its manufacture and charge accumulating method
JPH07106581A (en) Semiconductor device
JPH02129960A (en) Semiconductor memory
JPH0629549A (en) Field-effect transistor
JPH02137372A (en) Mos field-effect transistor
JPS6233469A (en) Mis field defect transistor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608