[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0526620B2 - - Google Patents

Info

Publication number
JPH0526620B2
JPH0526620B2 JP63178040A JP17804088A JPH0526620B2 JP H0526620 B2 JPH0526620 B2 JP H0526620B2 JP 63178040 A JP63178040 A JP 63178040A JP 17804088 A JP17804088 A JP 17804088A JP H0526620 B2 JPH0526620 B2 JP H0526620B2
Authority
JP
Japan
Prior art keywords
gears
shaft
hydraulic motor
machining
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63178040A
Other languages
Japanese (ja)
Other versions
JPH0230451A (en
Inventor
Takashi Yamatani
Shuzo Hashimoto
Yasuharu Kato
Yasuchika Hiramatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17804088A priority Critical patent/JPH0230451A/en
Publication of JPH0230451A publication Critical patent/JPH0230451A/en
Publication of JPH0526620B2 publication Critical patent/JPH0526620B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drilling And Boring (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、現地機械加工用万能切削装置に係わ
り、大型機械の被削体を現地切削する簡易装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a universal cutting device for on-site machining, and more particularly to a simple device for cutting a workpiece of a large machine on-site.

〔従来の技術〕[Conventional technology]

生産機械の修理における機械加工は、通常解体
→運搬→機械加工→運搬→組立の工程をたどり加
工工場で行なわれる。しかしながら例えば大型圧
延機や減速機等の本体部分の劣化修復への対応の
ために、機械加工を前述の工程で行うと多額の費
用と長期設備休止が必要となる。そこで加工部
位、形状に合つた専用加工機を生産設備の設置現
場に持込んで機械加工を行うことになる。
Machining for repairing production machinery is usually carried out at a processing factory following the process of dismantling, transporting, machining, transporting, and assembling. However, if machining is performed in the above-mentioned process in order to repair the deterioration of the main body parts of large rolling mills, speed reducers, etc., for example, a large amount of money and long-term equipment suspension will be required. Therefore, a special processing machine suitable for the part and shape to be processed is brought to the site where the production equipment is installed to perform machining.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで従来は、現場の段取り作業をやりやす
くするため、より現場に合せた可搬式の単機能加
工機を指向した面専用、穴専用、あるいはネジ専
用といつた専用機で行うために、 イ その都度、設計、製作を要するほか、加工機
保管スペースが必要 ロ 各種設備への汎用性が乏しい ハ 要素加工毎に加工機の段取替えに時間がかか
るなどの難点を有していた。
By the way, in the past, in order to make it easier to perform setup work on site, we used specialized machines such as surface-only, hole-only, or screw-only machines that were designed to be portable and single-function machines that were more suited to the site. In addition to requiring design and manufacturing each time, it also requires processing machine storage space; (2) it lacks versatility to various types of equipment; and (3) it takes time to change the processing machine setup for each element processing.

従来の現地機械加工用切削ユニツトとしては、
例えば第6図に示す如き市販されているシーリン
グユニツト20が一般的であり、切削駆動源には
電動機が基本であることから大きな減速機と組合
せる必要があり、重量も500Kg程度となり、軽量
かつコンパクト化は困難であり、これを現場へ運
搬し使用することは大変な労力を必要とした。
As a conventional cutting unit for on-site machining,
For example, a commercially available sealing unit 20 as shown in Fig. 6 is common, and since the cutting drive source is basically an electric motor, it must be combined with a large speed reducer, and the weight is about 500 kg, making it lightweight and It was difficult to make it compact, and transporting it to the site and using it required a lot of effort.

本発明は、前述のように電動機を使つては軽
量、コンバクト化は困難である実情に鑑み、1台
で複数の加工機能を持たせ、各種現場環境や設備
に広く適応させ、かつ容易にハンドリングできる
程度まで軽量、コンパクト化した切削装置を提供
することを目的とする。
In view of the fact that it is difficult to make the machine lightweight and compact using an electric motor as mentioned above, the present invention has been developed to provide a single machine with multiple processing functions, to be widely adaptable to various worksite environments and equipment, and to be easily handled. The purpose is to provide a cutting device that is as light and compact as possible.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、本体ケース内に収容された伝動機構
と、該伝動機構に動力を供給する油圧モーターと
からなり、前記伝動機構は、油圧モーター軸に設
けた歯車Aと、該歯車Aに噛合する歯車Bを固定
配置しかつスプライン機構によつて一定距離摺動
自在な大小2つの歯車C,Dを備えた可変軸と、
前記可変軸の歯車C,Dに夫々噛合する大小2つ
の歯車E,Fを固定配置するとともに一端側に工
具脱着部を備えた主軸とからなり、さらに前記油
圧モーター軸、可変軸、主軸はその軸線が3角形
配置になされ、かつ前記歯車C,Dと歯車E,F
の減速比が1:1および1:1/3に設定されて
おり、前記本体ケースには可変軸の歯車C,Dと
主軸の歯車E,Fとの組合せを切り換える切換レ
バーを配置したことを特徴とする万能切削装置で
ある。
The present invention includes a transmission mechanism housed in a main body case and a hydraulic motor that supplies power to the transmission mechanism, and the transmission mechanism meshes with a gear A provided on a hydraulic motor shaft. a variable shaft having two large and small gears C and D on which gear B is fixedly arranged and which is slidable a certain distance by a spline mechanism;
The hydraulic motor shaft, the variable shaft, and the main shaft are fixedly arranged with two large and small gears E and F meshing with the gears C and D of the variable shaft, respectively, and a main shaft equipped with a tool attachment/detachment part at one end. The axes are in a triangular arrangement, and the gears C, D and the gears E, F
The reduction ratio is set to 1:1 and 1:1/3, and a switching lever is arranged in the main body case to switch the combination of gears C and D on the variable shaft and gears E and F on the main shaft. This is a versatile cutting device with special features.

〔作用〕[Effect]

本発明者等は小型、軽量化のため電動機に代わ
る駆動源として、幅広い回転調整が可能でかつ高
トルクが得られ、更に小型軽量である、油圧モー
ターの採用を考えた。しかし、油圧モーターを利
用するには作動油の温度変化や油圧特有の脈動に
よる振動が、加工精度に悪影響を及ぼすため、そ
の対策について検討した。
In order to reduce size and weight, the present inventors considered adopting a hydraulic motor as a drive source in place of an electric motor, which can be adjusted over a wide range of rotations, can provide high torque, and is also smaller and lighter. However, when using a hydraulic motor, changes in the temperature of the hydraulic oil and vibrations caused by the pulsation unique to hydraulic pressure have a negative impact on machining accuracy, so we investigated countermeasures.

a 作動油の温度変化への対策について 油圧モーター軸と主軸を分離し、主軸への熱伝
導を遮断することによつて問題は解消できる。
a. Countermeasures against changes in hydraulic oil temperature The problem can be resolved by separating the hydraulic motor shaft and main shaft and cutting off heat conduction to the main shaft.

b 振動対策について 油圧の脈動が油圧モーターへの回転ムラ、振動
と言つた機能面での影響により安定切削できるか
どうかの問題であるが、これを実験で確かめてみ
たところ、一般に現地機械加工に要求される切削
能力の範囲は、 面、溝および穴加工に対して回転数90〜
240rpmのときトルク20Kg・m タツプ加工に対して回転数32〜50rpmのときト
ルク47Kg・m が必要である。
b Regarding vibration countermeasures The issue is whether or not stable cutting can be achieved due to the functional effects of hydraulic pulsation on the hydraulic motor, such as rotational unevenness and vibration, but when we verified this through experiments, we found that it is generally not suitable for on-site machining. The required cutting power range is from 90 rpm for surface, groove and hole machining.
At 240 rpm, a torque of 20 kg/m is required. For tap machining, a torque of 47 kg/m is required at a rotation speed of 32 to 50 rpm.

これを減速機を使用しないで満足する油圧モー
ターを選定し行つてみた。結果は次の如くであ
る。
I selected a hydraulic motor that satisfies this without using a reduction gear. The results are as follows.

面、溝および穴加工における悪影響は認めら
れない。
No adverse effects on surface, groove and hole machining are observed.

ところが適正条件でタツプ加工を行うと、第
4図に示すごとく断続切削状態になり、切削困
難となつた。
However, when tap machining was performed under proper conditions, an interrupted cutting state occurred as shown in FIG. 4, and cutting became difficult.

これは高トルク低回転で発生していることか
ら、その原因は油圧ポンプから油圧モーターまで
のホース内の流量が脈動し、圧力損失を生じさ
せ、切削抵抗に打ち勝つに至るまでに一定時間を
要するためである。即ち油圧ポンプの吐出量が少
ないと脈動の現象が表われ、切削困難となること
が分つた。
Since this occurs at high torque and low rotation, the cause is that the flow rate in the hose from the hydraulic pump to the hydraulic motor pulsates, causing pressure loss, and it takes a certain amount of time to overcome the cutting resistance. It's for a reason. That is, it has been found that if the discharge amount of the hydraulic pump is small, a pulsation phenomenon appears, making cutting difficult.

そこで切削状態が良好であつた面加工の条件に
近付けるため、適正回転数より回転数を上げてお
こなつてみた。回転数を上げると言うことは、油
圧モーターへの流量を増やすことである。タツプ
工具の切削条件を無視して徐々に回転数を上げて
いくと、第4図に示すように適正回転の流量のほ
ぼ2倍を越えた頃から連続切削が可能なことが判
明した。しかしこの高回転では速度が過度となつ
てタツプ工具の刃物が折損し、また精度も確保で
きないため、この状態では使用することができな
い。このため対策として、タツプ加工の時は適正
回転の2倍の流量を維持させる必要があることか
ら、ここで減速機を用いて減速比を選定してタツ
プ加工の条件に戻せば、油圧モーターの採用がで
き従来機にない広範囲の要素加工が可能であるこ
とを見い出した。
Therefore, in order to approximate the surface machining conditions where the cutting condition was good, I tried increasing the rotation speed above the appropriate rotation speed. Increasing the rotation speed means increasing the flow to the hydraulic motor. By gradually increasing the rotation speed while ignoring the cutting conditions of the tap tool, it was found that continuous cutting was possible from the time when the flow rate exceeded approximately twice the optimum rotation speed, as shown in Figure 4. However, at this high rotation speed, the speed becomes excessive and the blade of the tap tool breaks, and accuracy cannot be ensured, so it cannot be used in this state. As a countermeasure for this, it is necessary to maintain a flow rate twice the proper rotation during tap machining, so if you select the reduction ratio using a reducer and return to the conditions for tap machining, the hydraulic motor will We discovered that it is possible to process a wide range of elements that were not possible with conventional machines.

次に減速比について述べる。 Next, we will discuss the reduction ratio.

本発明者等が多数の実験と詳細な検討を重ねた
結果、 脈動がタツプ加工に影響しないためには、減
速比が1:1/2以上であること。
As a result of numerous experiments and detailed studies by the present inventors, we found that in order for pulsation to not affect tap processing, the reduction ratio should be 1:1/2 or more.

油圧モーターと減速機の大きさ(重量)は、
減速比の大小によつて第5図の様な関係があ
り、市販の油圧モーターを利用し減速機を設計
する場合、最も軽量化を図れる減速比は、第5
図から約1/2.8となる。
The size (weight) of the hydraulic motor and reducer is
There is a relationship as shown in Figure 5 depending on the size of the reduction ratio, and when designing a reduction gear using a commercially available hydraulic motor, the reduction ratio that can achieve the greatest weight reduction is the 5th reduction ratio.
From the figure, it is approximately 1/2.8.

タツプ加工は、その下穴となるドリル加工後
に行なわれるのが常であり、その最良の回転比
は(ドリル):(タツプ)=1:1/3ある。
Tapping is usually performed after drilling the pilot hole, and the best rotation ratio is (drill):(tap)=1:1/3.

従つて減速比を1:1/3に設定すれば、変速
レバーを切変える一動作のみでタツプ加工を開始
できることになり、油圧ポンプ吐出量の調整と所
定回転数を確認する作業が不用となる。
Therefore, if the reduction ratio is set to 1:1/3, tap machining can be started with just one action of switching the gear lever, eliminating the need to adjust the hydraulic pump discharge amount and confirm the specified rotation speed. .

以上のことを勘案し、本発明においては操作性
を重点に減速比は1:1/3を採用することとし
た。
In consideration of the above, in the present invention, we decided to adopt a reduction ratio of 1:1/3 with emphasis on operability.

次に伝動機構の配置について述べる。 Next, the arrangement of the transmission mechanism will be described.

一般的な設計思想を基に各伝動軸を一列に配置
した場合には、油圧モーターの採用による軽量化
は可能となつたが、90Kg程度であり容易にハンド
リングできるまでには到らなかつた。そこで油圧
モーター軸と主軸を分離することを前提とし、ス
プライン機構によつて歯車の噛合が切り換え可能
な可変軸を含めた3軸の配置を近接し、しかも
各々の軸の軸線を平面内で結んだ形が、第3図に
示すように三角形になるように配置することによ
つてその重量は30Kg程度となり、容易にハンドリ
ングができるまでに軽量化、コンパクト化が可能
となつた。
If the transmission shafts were arranged in a line based on the general design concept, it would have been possible to reduce the weight by using a hydraulic motor, but the weight was around 90 kg, which was not enough to make it easy to handle. Therefore, we decided to separate the hydraulic motor shaft and main shaft, and arranged three shafts close together, including a variable shaft whose gear engagement can be switched using a spline mechanism, and connected the axes of each shaft within a plane. By arranging the oval shape into a triangle as shown in Figure 3, the weight was reduced to approximately 30 kg, making it possible to make it lightweight and compact enough to be easily handled.

〔実施例〕〔Example〕

以下図面に基づき本発明の実施例を説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明装置の油圧モーターと伝動機構
の配置を示す図面である。図において、本体ケー
ス1には軸受2を介してそれぞれ主軸3、可変軸
4が組付けられ、更に可変軸4に隣接して油圧モ
ーター5とその軸6が配置されている。そしてこ
れらの軸3,4,6は、第3図に示す全体組立斜
視図の如く、その軸線が三角形配置されている。
油圧モーター軸6には歯車Aが配置され、歯車A
は可変軸4に固定された歯車Bと噛合している。
可変軸4にはスプライン機構7が形成されており
このスプライン機構7を介して大小二つの歯車
C,Dが後述する変速レバーの操作によつて一定
距離摺動自在に嵌合配置されている。主軸3には
可変軸4の大小二つの歯車C,Dに夫々噛合する
大小二つの歯車E,Fが固定配置されているとと
もに、軸の一端には工具着脱部9が配置されてい
る。
FIG. 1 is a drawing showing the arrangement of a hydraulic motor and a transmission mechanism of the device of the present invention. In the figure, a main shaft 3 and a variable shaft 4 are respectively assembled to a main body case 1 via bearings 2, and furthermore, a hydraulic motor 5 and its shaft 6 are arranged adjacent to the variable shaft 4. The axes of these shafts 3, 4, and 6 are arranged in a triangle, as shown in the overall assembled perspective view of FIG.
A gear A is arranged on the hydraulic motor shaft 6.
meshes with a gear B fixed to the variable shaft 4.
A spline mechanism 7 is formed on the variable shaft 4, and two large and small gears C and D are fitted through the spline mechanism 7 so as to be slidable a fixed distance by operating a speed change lever, which will be described later. Two large and small gears E and F are fixedly disposed on the main shaft 3 and mesh with two large and small gears C and D of the variable shaft 4, respectively, and a tool attachment/detachment part 9 is disposed at one end of the shaft.

ここに可変軸4の大小二つの摺動自在な歯車
C,Dと、主軸3の大小二つの歯車E,Fとは、
減速比が1:1および1:1/3になるように設
計されており、これによつて下穴加工とタツプ加
工の回転比が1(ドリル):1/3(タツプ)にな
されている。この減速比の切換えは、第3図に示
すように本体ケース1の外側に設けた変速レバー
8を介して可変軸4の歯車C,Dを移動させるこ
とによつて容易に可能である。
Here, the two large and small slidable gears C and D on the variable shaft 4 and the two large and small gears E and F on the main shaft 3 are as follows.
It is designed to have a reduction ratio of 1:1 and 1:1/3, which results in a rotation ratio of 1 (drill): 1/3 (tap) for pilot hole drilling and tapping. . The reduction ratio can be easily changed by moving gears C and D of the variable shaft 4 via a speed change lever 8 provided on the outside of the main body case 1, as shown in FIG.

また主軸3の工具着脱部9には、第2図に示す
ように平面、溝、穴(リーマ)、穴(ドリル)、タ
ツプの5種類の加工工具を着装し、必要な加工を
行うことが可能である。
Furthermore, as shown in Fig. 2, five types of machining tools, including flat surfaces, grooves, holes (reamers), holes (drills), and taps, can be attached to the tool attachment/detachment section 9 of the main spindle 3 to perform necessary machining. It is possible.

例えば、面加工や穴加工の高速回転における動
力伝達は歯車A−B−C−Fが噛合い、タツプ加
工の低速回転高トルク時では歯車A−B−D−E
を噛合すことにより、面、穴、溝、タツプ加工ま
での広範囲にわたる切削を本発明装置1台で行う
ことが出来、しかも軽量かつコンパクトであるこ
とから、現地におけるハンドリングならびに段取
替えや、切削加工を極めて短時間かつ正確に行う
ことを可能にしたものである。
For example, gears A-B-C-F mesh to transmit power during high-speed rotation during surface machining and hole machining, while gears A-B-D-E mesh during low-speed rotation and high torque during tap machining.
By meshing the two, a wide range of cutting including surface, hole, groove, and tap machining can be performed with one device of the present invention. Moreover, since it is lightweight and compact, it is easy to handle, change setups, and cut on-site. This makes it possible to perform this process accurately and in an extremely short period of time.

〔発明の効果〕〔Effect of the invention〕

本発明装置は、重量で従来機の1/17、大きさで
1/18と非常にコンパクトであり、更に油圧を採用
しかつ適切に選定されたギヤ比を持つ歯車を備え
た可変軸と主軸および歯車の切替えを行う切替レ
バーを設けた伝動機構を組合せたことにより出力
が自由に設定でき、かつ回転数を無段で変速する
ことが可能である。従つて従来の専用機5台分の
能力を1台で処理することができ、現地加工にお
けるハンドリングおよび段取替え作業を大幅に短
縮でき、設備費の低減、作業効率の向上など大き
な効果がある。
The device of the present invention is very compact, 1/17th the weight and 1/18th the size of conventional machines, and also uses hydraulic pressure and a variable shaft and main shaft equipped with gears with appropriately selected gear ratios. By combining a transmission mechanism with a switching lever for switching gears, the output can be freely set and the rotational speed can be varied steplessly. Therefore, a single machine can handle the processing capacity of five conventional dedicated machines, greatly reducing handling and setup change work in on-site processing, and has great effects such as reducing equipment costs and improving work efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明装置の実施例を示し、
第1図は油圧モーターと伝動機構の構成を示す平
面図、第2図は装置外観と適用工具を説明する斜
視図、第3図は主軸、可変軸、油圧モーター軸の
配置を示す装置斜視図、第4図は、油圧モーター
を採用するとき、脈動が影響しないで安定した切
削を可能とする流量(回転数)の適正範囲を示す
グラフ、第5図は、油圧モーターと減速機の設定
と装置の大きさとの関係を示す説明図、第6図は
従来の一般的な切削装置を示す外形図である。 1…本体ケース、2…軸受、3…主軸、4…可
変軸、5…油圧モーター、6…油圧モーター軸、
7…スプライン機構、8…変速レバー、9…工具
着脱部、A,B,C,D,E,F…歯車。
1 to 3 show embodiments of the device of the present invention,
Fig. 1 is a plan view showing the configuration of the hydraulic motor and transmission mechanism, Fig. 2 is a perspective view illustrating the appearance of the device and applicable tools, and Fig. 3 is a perspective view of the device showing the arrangement of the main shaft, variable shaft, and hydraulic motor shaft. , Figure 4 is a graph showing the appropriate range of flow rate (rotation speed) that enables stable cutting without the influence of pulsation when using a hydraulic motor, and Figure 5 is a graph showing the settings of the hydraulic motor and reducer. An explanatory diagram showing the relationship with the size of the device, FIG. 6 is an outline diagram showing a conventional general cutting device. 1...Main body case, 2...Bearing, 3...Main shaft, 4...Variable axis, 5...Hydraulic motor, 6...Hydraulic motor shaft,
7... Spline mechanism, 8... Gear shift lever, 9... Tool attachment/detachment section, A, B, C, D, E, F... Gear.

Claims (1)

【特許請求の範囲】[Claims] 1 本体ケース内に収容された伝動機構と、該伝
動機構に動力を供給する油圧モーターとからな
り、前記伝動機構は、油圧モーター軸に設けた歯
車Aと、該歯車Aに噛合する歯車Bを固定配置し
かつスプライン機構によつて一定距離摺動自在な
大小2つの歯車C,Dを備えた可変軸と、前記可
変軸の歯車C,Dに夫々噛合する大小2つの歯車
E,Fを固定配置するとともに一端側に工具脱着
部を備えた主軸とからなり、さらに前記油圧モー
ター軸、可変軸、主軸はその軸線が3角形配置に
なされ、かつ前記歯車C,Dと歯車E,Fの減速
比が1:1および1:1/3に設定されており、
前記本体ケースには可変軸の歯車C,Dと主軸の
歯車E,Fとの組合せを切り換える切換レバーを
配置したことを特徴とする万能切削装置。
1 Consists of a transmission mechanism housed in a main body case and a hydraulic motor that supplies power to the transmission mechanism, and the transmission mechanism includes a gear A provided on the hydraulic motor shaft and a gear B meshing with the gear A. A variable shaft equipped with two large and small gears C and D that are fixedly arranged and slidable a certain distance by a spline mechanism, and two large and small gears E and F that mesh with the gears C and D of the variable shaft, respectively, are fixed. The axes of the hydraulic motor shaft, variable shaft, and main shaft are arranged in a triangular shape, and the gears C and D and the gears E and F are configured to reduce the speed. The ratio is set to 1:1 and 1:1/3,
A universal cutting device characterized in that the main body case is provided with a switching lever for switching the combination of gears C and D of the variable shaft and gears E and F of the main shaft.
JP17804088A 1988-07-19 1988-07-19 Universal cutting device Granted JPH0230451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17804088A JPH0230451A (en) 1988-07-19 1988-07-19 Universal cutting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17804088A JPH0230451A (en) 1988-07-19 1988-07-19 Universal cutting device

Publications (2)

Publication Number Publication Date
JPH0230451A JPH0230451A (en) 1990-01-31
JPH0526620B2 true JPH0526620B2 (en) 1993-04-16

Family

ID=16041540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17804088A Granted JPH0230451A (en) 1988-07-19 1988-07-19 Universal cutting device

Country Status (1)

Country Link
JP (1) JPH0230451A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102501121A (en) * 2011-09-29 2012-06-20 宁波明和力盛液压科技有限公司 Hydraulic power milling head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713672U (en) * 1971-03-15 1972-10-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713672U (en) * 1971-03-15 1972-10-18

Also Published As

Publication number Publication date
JPH0230451A (en) 1990-01-31

Similar Documents

Publication Publication Date Title
US8789521B2 (en) Saw for construction cutting work
US20040000043A1 (en) Portable boring and welding machine
JP2002147580A (en) Lubricating structure for differential case and its machining method
JP5375070B2 (en) Tooling equipment for drilling equipment
JPH0526620B2 (en)
US2941420A (en) Reversible torque transmission for power tools
CN2621874Y (en) Double-headed, multi-shaft drilling, milling, tapping, and grinding machine
CN216951491U (en) Rotary table transmission mechanism
JP2010014225A (en) Gear head and gear change method
JPH05337701A (en) Main spindle head of metal cutting machine tool
CN2587565Y (en) Mainshaft box for threading/drilling two-purpose machine
KR100671021B1 (en) Portable boring machine
CN219327763U (en) Quick gear shifting transmission structure
US765785A (en) Speed-reducing gear.
CN212329655U (en) Pipeline groove preparation equipment
CN110410465A (en) A kind of double speed epicyclic gearbox
CN206153620U (en) Pneumatic machine for drilling rails of hand -held type with pneumatic motor driven aluminum alloy casing
CN219025997U (en) Steel pipe deep hole boring machine with cooling structure
CN220378177U (en) High-torque drilling machine power head with buffer main shaft
US2075240A (en) Speed change mechanism for screw machines
JPH01264733A (en) Tool holder unit for oblique machining
CN221462918U (en) Transmission device
CN214197119U (en) Drill rod box for heavy machine tool
KR200206720Y1 (en) hand drill
KR100273041B1 (en) Electric tool of hydraulic drive type

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees