[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0525096B2 - - Google Patents

Info

Publication number
JPH0525096B2
JPH0525096B2 JP59209258A JP20925884A JPH0525096B2 JP H0525096 B2 JPH0525096 B2 JP H0525096B2 JP 59209258 A JP59209258 A JP 59209258A JP 20925884 A JP20925884 A JP 20925884A JP H0525096 B2 JPH0525096 B2 JP H0525096B2
Authority
JP
Japan
Prior art keywords
liquid crystal
refractive index
light
transparent
incident light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59209258A
Other languages
Japanese (ja)
Other versions
JPS6186730A (en
Inventor
Hajime Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59209258A priority Critical patent/JPS6186730A/en
Priority to US06/782,558 priority patent/US4729640A/en
Priority to DE19853535391 priority patent/DE3535391A1/en
Priority to GB8524445A priority patent/GB2166562B/en
Publication of JPS6186730A publication Critical patent/JPS6186730A/en
Publication of JPH0525096B2 publication Critical patent/JPH0525096B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【発明の詳細な説明】 (1) 技術分野 本発明は光記録用、光結合用、光表示用、光通
信用各種装置に好適な液晶素子に関する。
Detailed Description of the Invention (1) Technical Field The present invention relates to a liquid crystal element suitable for various devices for optical recording, optical coupling, optical display, and optical communication.

(2) 従来技術 従来、この種の液晶素子は、液晶配向させる手
段としてラビング処理やSiO,MgF2などの斜方
蒸着及びカツプリング材の使用等を行なつてき
た。前記配向処理法で液晶の配向を行なつた場
合、液晶の配向秩序度が不充分であり、温度変化
に対する安定性や光学装置に用いた場合の応答特
性等に問題があつた。又、比較的コントラスト比
は優れているものの光束利用効率が低く、実用的
な素子は得られなかつた。
(2) Prior Art Conventionally, in this type of liquid crystal element, rubbing treatment, oblique evaporation of SiO, MgF 2 , etc., and the use of a coupling material have been used as means for aligning the liquid crystal. When liquid crystals are aligned using the above-mentioned alignment treatment method, the degree of alignment order of the liquid crystals is insufficient, and there are problems with stability against temperature changes and response characteristics when used in optical devices. Furthermore, although the contrast ratio was relatively excellent, the luminous flux utilization efficiency was low, and a practical device could not be obtained.

(3) 発明の概要 本発明の目的は、従来の欠点を除去すると共
に、薄くて構成が簡便にもかかわらず高度な機能
を有する液晶素子を提供することにある。
(3) Summary of the Invention An object of the present invention is to eliminate the drawbacks of the conventional device and to provide a liquid crystal device that is thin and simple in structure yet has advanced functions.

本発明に係る液晶素子は、透明絶縁体と液晶を
交互に配列し、その配列方向に対してほぼ平行に
2枚1組の電極を設けた構造を有している。又、
該液晶は、透明絶縁体と該電極により形成された
狭い空間で、正の誘電性を有するネマチツク液晶
であれば溝方向に配向され、電界の印加により配
向方向が電極面に対して垂直に90°変化する。又、
強誘電性液晶を用いる場合、該液晶の配向方向は
電極面に平行にチルト角に応じて変化する。よつ
て該液晶の配向方向の変化を利用し、入射光束に
対する該液晶の屈折率を常屈折率npと異常屈折率
neの間で変化せしめることにより該液晶と該透明
絶縁体により形成される回析格子の屈折率変化を
制御できる。この変調可能な回析格子を用い入射
光の光制御が可能となる。
The liquid crystal element according to the present invention has a structure in which transparent insulators and liquid crystals are arranged alternately, and a set of two electrodes are provided substantially parallel to the arrangement direction. or,
In the narrow space formed by the transparent insulator and the electrode, the liquid crystal is oriented in the groove direction if it is a nematic liquid crystal with positive dielectricity, and the orientation direction is 90° perpendicular to the electrode surface by applying an electric field. °Change. or,
When a ferroelectric liquid crystal is used, the orientation direction of the liquid crystal changes in parallel to the electrode plane depending on the tilt angle. Therefore, by using the change in the alignment direction of the liquid crystal, the refractive index of the liquid crystal for the incident light beam can be determined as the ordinary refractive index n p and the extraordinary refractive index.
By changing the refractive index between ne and e , it is possible to control the change in the refractive index of the diffraction grating formed by the liquid crystal and the transparent insulator. Using this modifiable diffraction grating, it is possible to optically control incident light.

(4) 実施例 第1図は本発明に係る液晶素子の基本構成例を
示す。1は透明絶縁体、2は液晶、3は透明電極
を示す。第1図aに示した液晶素子は、透明電極
3を対向させて近接し、その間障部に矩形状の透
明絶縁体1と液晶2が交互に配列している。この
構成が本素子の最も基本的な構成であり、第1図
bは透明絶縁体1が鋸歯状、第1図cは透明絶縁
体1が正弦波状となつている。
(4) Embodiment FIG. 1 shows an example of the basic configuration of a liquid crystal element according to the present invention. 1 is a transparent insulator, 2 is a liquid crystal, and 3 is a transparent electrode. The liquid crystal element shown in FIG. 1a has transparent electrodes 3 facing each other and close to each other, and rectangular transparent insulators 1 and liquid crystals 2 are alternately arranged in the space between them. This configuration is the most basic configuration of the present device, and in FIG. 1b, the transparent insulator 1 has a sawtooth shape, and in FIG. 1c, the transparent insulator 1 has a sine wave shape.

次に第1図aの液晶素子を用いて該液晶素子の
機能を説明する。第2図は本発明に係る液晶素子
の機能を図示したものである。4は入射光、5は
0次透過光、5′は高次回折光、6は電源を示す。
又、透明絶縁体1の屈折率をng、液晶2の常光に
対する屈折率np、異常光に対する屈折率をne、透
明絶縁体1−液晶2の層の厚さをT、入射光の波
長をλとする。
Next, the function of the liquid crystal element shown in FIG. 1a will be explained using the liquid crystal element shown in FIG. FIG. 2 illustrates the functions of the liquid crystal element according to the present invention. Reference numeral 4 indicates incident light, 5 indicates zero-order transmitted light, 5' indicates higher-order diffracted light, and 6 indicates a power source.
Also, the refractive index of the transparent insulator 1 is n g , the refractive index of the liquid crystal 2 for ordinary light is n p , the refractive index for extraordinary light is ne , the thickness of the transparent insulator 1 - liquid crystal 2 layer is T, and the thickness of the incident light is Let the wavelength be λ.

液晶3の配向方向に偏光した波長λの入射光4
は、静的状態においては液晶3の異常屈折率ne
感じる。この時、次の(1)式を満足すれば第2図a
に示すように、入射光4は全て高次回折光5′と
なり0次透過光5は発生しない。又、(2)式を満足
すれば第2図bに示すように、高次回折光5′は
発生せず、入射光4は全て透過し0次透過光5と
なる。
Incident light 4 with wavelength λ polarized in the alignment direction of liquid crystal 3
feels the extraordinary refractive index n e of the liquid crystal 3 in a static state. At this time, if the following equation (1) is satisfied, Figure 2 a
As shown in FIG. 2, all of the incident light 4 becomes higher-order diffracted light 5', and zero-order transmitted light 5 is not generated. Furthermore, if the formula (2) is satisfied, as shown in FIG. 2b, no higher-order diffracted light 5' is generated, and all of the incident light 4 is transmitted to become zero-order transmitted light 5.

(ne−ng)・T=λ/2 ……(1) ne=ng ……(2) 次に、液晶2に電界を印加すると、該液晶2が
正誘電性ネマチツク液晶であれば電界方向に配向
される。この時入射光4の偏光方向と液晶2の配
向方向は直交し、該液晶2の入射光4に対する屈
折率は常屈折率npとなる。
(n e − n g )・T=λ/2 ...(1) n e =n g ...(2) Next, when an electric field is applied to the liquid crystal 2, even if the liquid crystal 2 is a positive dielectric nematic liquid crystal, If so, it is oriented in the direction of the electric field. At this time, the polarization direction of the incident light 4 and the alignment direction of the liquid crystal 2 are perpendicular to each other, and the refractive index of the liquid crystal 2 with respect to the incident light 4 becomes the ordinary refractive index n p .

ここで前記パラメータ間には以下の関係が成立
すれば入射光4の透過、遮断が可能である。
Here, if the following relationship is established between the parameters, the incident light 4 can be transmitted or blocked.

np=ng ……(3) (ng−np)・T=λ/2 ……(4) 上記条件において、(3)式を満足する時は第2図
bに示すように入射光4は全て透過し0次透過光
5となり高次回折光5′は発生しない。又、(4)式
を満足する時は第2図aに示すように入射光4は
全て高次回折光5′となり0次透過光5は発生し
ない。
n p = n g ……(3) (n g −n p )・T=λ/2 ……(4) Under the above conditions, when formula (3) is satisfied, the incidence is as shown in Figure 2 b. All of the light 4 is transmitted and becomes 0th-order transmitted light 5, with no higher-order diffracted light 5' generated. Furthermore, when formula (4) is satisfied, all of the incident light 4 becomes higher-order diffracted light 5', and no zero-order transmitted light 5 is generated, as shown in FIG. 2a.

以上のように、液晶2及び透明絶縁体1の材料
を適当に選択することにより、0次透過光5及び
高次回折光5′の光束制御が可能となる。
As described above, by appropriately selecting the materials of the liquid crystal 2 and the transparent insulator 1, it becomes possible to control the luminous flux of the zero-order transmitted light 5 and the higher-order diffracted light 5'.

前記条件式(1)と(4)は、第1図b,cに示す構成
の素子では異なつたものになるが、0次透過光が
発生しない条件は、透明絶縁体の形状にかかわら
ず存在する。該透明絶縁体と液晶によつて形成さ
れる格子のピツチ及び該格子の厚さは、それぞれ
通常10μm以下、0.5μm以上であることが必要で
ある。なお透明絶縁体としてはガラス、SiO2
TiO2,Al2O3等の透明材料、透明電極にはITO,
SnO2,In2O3等の材料で良い。
Although the above conditional expressions (1) and (4) are different for the elements with the configurations shown in Figure 1 b and c, the condition under which zero-order transmitted light does not occur exists regardless of the shape of the transparent insulator. do. The pitch of the lattice formed by the transparent insulator and the liquid crystal and the thickness of the lattice usually need to be 10 μm or less and 0.5 μm or more, respectively. Note that glass, SiO 2 ,
Transparent materials such as TiO 2 and Al 2 O 3 , ITO for transparent electrodes,
Materials such as SnO 2 and In 2 O 3 may be used.

以下本液晶素子の作成過程及び性能評価の結果
を示す。
The manufacturing process and performance evaluation results of this liquid crystal device are shown below.

第3図は本液晶素子の作成過程を示し、7は透
明基板、その他の図中の番号は第1図,第2図に
おける番号と同様の意味を有する。
FIG. 3 shows the manufacturing process of this liquid crystal element, 7 is a transparent substrate, and the other numbers in the figure have the same meanings as the numbers in FIGS. 1 and 2.

コーニング7059ガラス(コーニング製、λ=
6328Åに対して屈折率1.544)を25×25mm2、厚さ
1mmの形状とし、両面をニユートンリング数本以
内に平面研磨し、メタノール、トリクレン、アセ
トン、純水による超音波洗浄を行ない、窒素ガス
を用いて乾燥させ、さらに窒素中120℃20分間の
ベーキングを行なつた。該ガラス基板上に5mm幅
のストライプとなるように真ちゆうマスクを密着
させて、イオン・プレーテイング法によりITO膜
を1000Åの厚さに成膜した。さらにその裏面に電
子ビーム蒸着用によりMgF2膜を1146Åの厚さに
成膜した。この時、該ITO膜のHe−Neレーザ光
(λ=6328Å)に対する屈折率は1.80、面抵抗は
18Ω/sqであつた。又該MgF2膜面にHe−Neレ
ーザ光を垂直入射したところ、反射は殆んど生じ
なかつた。続いて該ITO膜面にRFスパツタ法に
より膜厚1.7μmの蒸着用ガラス(シヨツト製
#8329)を成膜した後、RD2000N(日立製作所製
ネガ型レジスト)をスピナー塗布し、プリベーキ
ングの後膜厚1.5μmのRD2000N膜を形成した。
続いて4μmピツチの格子が形成された露光用マ
スクを該RD2000N膜面に密着させ、遠紫外光露
光を行なつた後、現像、リンス工程を経て
RD2000Nからなる格子を該ガラス蒸着膜面上に
形成した。上記ガラス蒸着膜をArイオン・エツ
チング法により格子状に食刻した後、リムーバー
中にてRD2000Nマスクを溶解し、ガラス格子状
溝を該ITO膜上に形成した。
Corning 7059 glass (made by Corning, λ=
A refractive index of 1.544 for 6328 Å) was made into a shape of 25 x 25 mm 2 and 1 mm thick. Both sides were polished to within a few Newton rings, ultrasonically cleaned with methanol, trichlene, acetone, and pure water, and then cleaned with nitrogen. It was dried using gas and further baked at 120°C for 20 minutes in nitrogen. An ITO film was formed to a thickness of 1000 Å by ion plating with a brass mask closely attached to the glass substrate so as to form stripes with a width of 5 mm. Furthermore, a MgF 2 film with a thickness of 1146 Å was formed on the back surface by electron beam evaporation. At this time, the refractive index of the ITO film for He-Ne laser light (λ = 6328 Å) is 1.80, and the sheet resistance is
It was 18Ω/sq. Furthermore, when a He--Ne laser beam was vertically incident on the surface of the MgF 2 film, almost no reflection occurred. Next, a 1.7 μm thick vapor deposition glass (#8329 made by Schott) was formed on the ITO film surface using the RF sputtering method, and then RD2000N (negative resist made by Hitachi, Ltd.) was applied with a spinner, and after prebaking, the film was coated. An RD2000N film with a thickness of 1.5 μm was formed.
Next, an exposure mask with a grid of 4 μm pitch was brought into close contact with the surface of the RD2000N film, and after exposure to far ultraviolet light, a development and rinsing process was performed.
A grid made of RD2000N was formed on the surface of the glass vapor deposited film. After etching the glass vapor deposited film into a lattice shape by Ar ion etching, the RD2000N mask was dissolved in a remover to form glass lattice grooves on the ITO film.

以上の工程で得られたガラス格子状溝を持つガ
ラス基板上に、別のITO膜付ガラス基板を、電極
面を相対させて密着し該ガラス格子状溝内に正誘
電性液晶RO−TN601(ロシユ製np=1.503、ne
1.699)を充填した。その後リード線をボンデイ
ングして電源と接続した。
On the glass substrate with the glass lattice groove obtained in the above process, another glass substrate with an ITO film is closely attached with the electrode surfaces facing each other, and the positive dielectric liquid crystal RO-TN601 ( Made by Rossille n p = 1.503, n e =
1.699) was filled. After that, the lead wires were bonded and connected to the power supply.

作成した液晶素子に、ガラス格子状溝の溝方向
に偏光したHe−Neレーザ光を垂直入射したとこ
ろ、該レーザ光4に対する液晶3の屈折率は異常
屈折率neとなり、前記(1)式の条件を満足して入射
光4は殆んど高次回折光5′となつた。次に、
10Vp-p,1KHzのAC電界を印加したところ、液晶
2は電界方向に配向し、該レーザ光4に対する液
晶2の屈折率2は常屈折率npとなり、前記(3)式を
満足して入射光4は殆んど0次透過光5となり素
通りした。この時、静的状態での入射光4に対す
る0次透過光5の割合は1%以下となり、電界印
加時は90%となつた。よつて光束の利用効率は90
%、コントラスト比は90:1以上であつた。
When a He-Ne laser beam polarized in the groove direction of the glass lattice grooves was perpendicularly incident on the prepared liquid crystal element, the refractive index of the liquid crystal 3 with respect to the laser beam 4 became an extraordinary refractive index n e , and the above formula (1) is obtained. Satisfying the following conditions, most of the incident light 4 becomes higher-order diffracted light 5'. next,
When an AC electric field of 10 V pp and 1 KHz is applied, the liquid crystal 2 is oriented in the direction of the electric field, and the refractive index 2 of the liquid crystal 2 with respect to the laser beam 4 becomes the ordinary refractive index n p , satisfying the above equation (3). Most of the light 4 turned into zero-order transmitted light 5 and passed through. At this time, the ratio of the zero-order transmitted light 5 to the incident light 4 in a static state was less than 1%, and when an electric field was applied, it was 90%. Therefore, the luminous flux utilization efficiency is 90
%, and the contrast ratio was 90:1 or more.

(5) 発明の効果 以上説明したように本発明に係る液晶素子は、
光束利用効率が高く、コントラスト比に優れてお
り、液晶セルの厚さが薄いために応答時間が速
く、極めて低電圧での駆動が可能である。又、構
成が簡便であり、光スイツチ、光偏光器、光分配
器等多くの光学装置に応用が可能な素子である。
(5) Effects of the invention As explained above, the liquid crystal element according to the present invention has
It has high luminous flux utilization efficiency and excellent contrast ratio, and because the liquid crystal cell is thin, response time is fast and it can be driven at extremely low voltage. Furthermore, the element has a simple configuration and can be applied to many optical devices such as optical switches, optical polarizers, and optical distributors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る液晶素子の基本構成を示
す図。第2図は本液晶素子の機能を示した図。第
3図は実施例で作成した本液晶素子の概略図。 1……透明絶縁体、2……液晶、3……透明電
極、4……入射光、5……0次透過光、5′……
高次回折光、6……電源、7……透明基板。
FIG. 1 is a diagram showing the basic configuration of a liquid crystal element according to the present invention. FIG. 2 is a diagram showing the functions of this liquid crystal element. FIG. 3 is a schematic diagram of the present liquid crystal device prepared in the example. 1... Transparent insulator, 2... Liquid crystal, 3... Transparent electrode, 4... Incident light, 5... Zero-order transmitted light, 5'...
Higher-order diffraction light, 6...power supply, 7...transparent substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 入射光に対して常屈折率と異常屈折率とを生
じさせる異なつた配向状態が誘起される液晶と、
該液晶の常屈折率又は異常屈折率の何れか一方の
屈折率と実質的に等しい屈折率の透明絶縁体とを
交互に配置するとともに、該液晶と透明絶縁体と
の膜厚を実質的に等しく設定してなり、且つ前記
液晶が選択的に常屈折率又は異常屈折率を生じる
様に、該液晶の配向状態を選択することによつ
て、0次回折光の発生及び高次回折光の発生を変
調させる手段を有することを特徴とする液晶素
子。
1. A liquid crystal in which different orientation states are induced that produce an ordinary refractive index and an extraordinary refractive index in response to incident light;
Transparent insulators having a refractive index substantially equal to either the ordinary refractive index or the extraordinary refractive index of the liquid crystal are arranged alternately, and the film thickness of the liquid crystal and the transparent insulator is substantially reduced. The generation of zero-order diffracted light and the generation of higher-order diffracted light can be achieved by selecting the alignment state of the liquid crystal so that the liquid crystals are set equally and the liquid crystal selectively produces an ordinary refractive index or an extraordinary refractive index. A liquid crystal element characterized by having means for modulating.
JP59209258A 1984-10-03 1984-10-04 Liquid crystal element Granted JPS6186730A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59209258A JPS6186730A (en) 1984-10-04 1984-10-04 Liquid crystal element
US06/782,558 US4729640A (en) 1984-10-03 1985-10-01 Liquid crystal light modulation device
DE19853535391 DE3535391A1 (en) 1984-10-03 1985-10-03 LIQUID CRYSTAL LIGHT MODULATION DEVICE
GB8524445A GB2166562B (en) 1984-10-03 1985-10-03 Liquid crystal light modulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209258A JPS6186730A (en) 1984-10-04 1984-10-04 Liquid crystal element

Publications (2)

Publication Number Publication Date
JPS6186730A JPS6186730A (en) 1986-05-02
JPH0525096B2 true JPH0525096B2 (en) 1993-04-09

Family

ID=16569971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209258A Granted JPS6186730A (en) 1984-10-03 1984-10-04 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPS6186730A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237424A (en) * 1986-04-08 1987-10-17 Canon Inc Light modulating element
JP5591783B2 (en) 2011-11-25 2014-09-17 パナソニック株式会社 Image display device
JP6136520B2 (en) * 2013-04-19 2017-05-31 国立大学法人宇都宮大学 Optical information recording device

Also Published As

Publication number Publication date
JPS6186730A (en) 1986-05-02

Similar Documents

Publication Publication Date Title
JP2703930B2 (en) Birefringent diffraction grating polarizer
US6172792B1 (en) Method and apparatus for forming optical gratings
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
JPS6212894B2 (en)
JPS6066203A (en) Polarizing element
JP3700239B2 (en) Liquid crystal diffraction grating, manufacturing method thereof, and optical head device using the same
JPH0525096B2 (en)
JPS6186727A (en) Optical controlling element
JP2005003758A (en) Reflective optical modulator and variable optical attenuator
JPS5987B2 (en) Electro-optical switches and modulators
JP2803181B2 (en) Birefringent diffraction grating polarizer
JPH05323261A (en) Liquid crystal light refracting element
JPS6186724A (en) Grating type optical controlling element
JP5150992B2 (en) Liquid crystal device and optical attenuator
JP4984389B2 (en) Horizontal electric field drive liquid crystal cell and wavelength tunable filter using the same
KR940006340B1 (en) Linear polarizer
JPS6111725A (en) Liquid crystal display device and its manufacture
JPS61137126A (en) Optical switch
JP3885251B2 (en) Optical anisotropic diffraction grating, driving method thereof, and optical head device using the same
JPH06208142A (en) Liquid crystal light deflecting element
JPH1031435A (en) Liquid crystal display panel
JP2839990B2 (en) Liquid crystal spatial light modulator
JP2718112B2 (en) Birefringent diffraction grating polarizer and method of manufacturing the same
JPH06110024A (en) Light reflector
JPH0228852B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term