[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05259066A - Positive photoresist removing liquid and manufacture of semiconductor device - Google Patents

Positive photoresist removing liquid and manufacture of semiconductor device

Info

Publication number
JPH05259066A
JPH05259066A JP4105186A JP10518692A JPH05259066A JP H05259066 A JPH05259066 A JP H05259066A JP 4105186 A JP4105186 A JP 4105186A JP 10518692 A JP10518692 A JP 10518692A JP H05259066 A JPH05259066 A JP H05259066A
Authority
JP
Japan
Prior art keywords
positive photoresist
stripping solution
conductive layer
film
organic amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4105186A
Other languages
Japanese (ja)
Inventor
Hideto Goto
日出人 後藤
Takeshi Matsui
剛 松井
Masao Miyazaki
正男 宮崎
Kiyoto Mori
清人 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Chemical Co Inc
Texas Instruments Japan Ltd
Original Assignee
Kanto Chemical Co Inc
Texas Instruments Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Chemical Co Inc, Texas Instruments Japan Ltd filed Critical Kanto Chemical Co Inc
Priority to JP4105186A priority Critical patent/JPH05259066A/en
Publication of JPH05259066A publication Critical patent/JPH05259066A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/425Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/426Stripping or agents therefor using liquids only containing organic halogen compounds; containing organic sulfonic acids or salts thereof; containing sulfoxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02071Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To easily remove a side wall protection deposit film and to protect a conductive layer against corrosion by a method wherein positive type photoresist is removed with a water solution which contains a compound selected from aromatic cyclic phenols and aromatic cyclic carboxylic acid and organic amine. CONSTITUTION:A CVD oxide film 2 is formed on an Si substrate 1, and a TiW layer 3, a CVD-NW layer 4, and an Al-Si-Cu layer 5 are formed thereon, a positive type photoresist 6 is applied thereon and exposed to light for the formation of a resist mask. A water solution which contains aromatic cyclic phenol or preferably 2, 3-pyridine diol, aromatic cyclic carboxylic acid or preferably p-toluic acid, organic amine, and preferably tetramethyl ammonium hydroxide is used as positive photoresist, removing solution. The removing solution is excellent to remove a positive type photoresist, side wall protecting deposit film and high in after-corrosion preventing properties, so that it hardly corrodes wiring material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【従来技術】本発明は、半導体装置製造中のエッチング
工程において使用しうるポジ型フォトレジスト用剥離液
に関し、さらに詳しくは、塩素系ガスによる配線材料の
ドライエッチングの際に形成せしめたポジ型フォトレジ
ストの側壁保護堆積膜を、配線材料を腐食することなく
剥離する目的で使用されるポジ型フォトレジスト用剥離
液ならびにそのポジ型フォトレジスト用剥離液により前
記ポジ型フォトレジストを導電層上から剥離する工程と
を含む半導体装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive photoresist stripping solution that can be used in an etching process during the manufacture of semiconductor devices, and more specifically, to a positive photoresist that is formed during dry etching of wiring materials with chlorine-based gas. A positive photoresist remover used for removing the resist sidewall protection deposited film without corroding the wiring material, and the positive photoresist removes the positive photoresist from the conductive layer by the positive photoresist remover. The present invention relates to a method for manufacturing a semiconductor device, including the steps of:

【0002】[0002]

【背景技術】半導体装置製造中過程におけるエッチング
工程においては、所要のフォトレジストのマスク形成を
行った後、非マスク領域の導電層のエッチングを行い配
線パターンを形成せしめ、次いで配線パターン上のフォ
トレジスト層を含めて不要のレジスト層を剥離液により
除去する処理が必要とされる。フォトレジストにはネガ
型フォトレジストとポジ型フォトレジストとがあるが、
近年、集積回路の高密度化により高精度の微細パターン
形成に有利なポジ型フォトレジストが主に使用されてい
る。
2. Description of the Related Art In an etching process in a semiconductor device manufacturing process, after forming a mask of a required photoresist, a conductive layer in a non-mask region is etched to form a wiring pattern, and then a photoresist on the wiring pattern is formed. A process of removing unnecessary resist layers including layers by a stripping solution is required. There are negative type photoresists and positive type photoresists,
2. Description of the Related Art In recent years, positive photoresists, which are advantageous for highly precise fine pattern formation due to high density of integrated circuits, have been mainly used.

【0003】エッチング技術としては、従来は、化学薬
品を用いたケミカルエッチング技術が繁用されていた
が、最近では、より高密度の微細エッチングが可能なド
ライエッチング技術が主流となるに至っている。また、
導電層のドライエッチングでは塩素系ガスを用いた異方
性のドライエッチングが広く利用されている。
Conventionally, as the etching technique, a chemical etching technique using a chemical agent has been widely used, but recently, a dry etching technique capable of finer etching with a higher density has become mainstream. Also,
Anisotropic dry etching using a chlorine-based gas is widely used for dry etching of the conductive layer.

【0004】こうしたポジ型フォトレジストをマスクと
した塩素系ガスによる導電層のドライエッチングではポ
ジ型フォトレジストの側壁保護堆積膜を利用し、異方性
エッチングを可能としているがこの側壁保護堆積膜は通
常のポジ型フォトレジストに比べ剥離されにくいという
問題があった。加えて、側壁保護堆積膜に取り込まれた
塩素ラジカルやイオンは、エッチング終了後空気中に放
置すると吸湿により酸を発生し配線材料を腐食する。こ
れは通常アフターコロージョンと呼ばれているが(Se
miconductor World 1991,1
1,p62−66)このアフターコロージョンは、近
年、配線材料として多用されているAl−Si、Al−
Si−Cu等の合金において多く観察される。
In the dry etching of the conductive layer with chlorine-based gas using such a positive photoresist as a mask, the sidewall protection deposited film of the positive photoresist is utilized to enable anisotropic etching. There is a problem that it is less likely to be peeled off as compared with a normal positive photoresist. In addition, the chlorine radicals and ions taken into the side wall protective deposition film, when left in the air after completion of etching, generate acid due to moisture absorption and corrode the wiring material. This is usually called after-corrosion (Se
miconductor World 1991,1
1, p62-66) This after-corrosion is an Al-Si or Al- that has been widely used as a wiring material in recent years.
It is often observed in alloys such as Si-Cu.

【0005】従来、こうしたアフターコロージョンの防
止方法の代表的なものとしては、ドライエッチング後直
ちに超純水洗浄を繰り返し、塩素ラジカルやイオンを洗
い流す方法が挙げられる。しかしこの方法では、側壁保
護堆積膜からの塩素イオンやラジカルの除去を完全に行
うことは困難である。その結果、残存した塩素ラジカル
やイオンによりアフターコロージョンの発生がしばしば
みられる。
Conventionally, as a typical method of preventing such after-corrosion, there is a method of repeating ultrapure water cleaning immediately after dry etching to wash away chlorine radicals and ions. However, with this method, it is difficult to completely remove chlorine ions and radicals from the sidewall protection deposited film. As a result, aftercorrosion often occurs due to residual chlorine radicals and ions.

【0006】従って、アフターコロージョンを完全に防
止するためにはこの側壁保護堆積膜を完全に剥離するこ
とが不可欠である。一般にこの側壁保護堆積膜の除去に
は、酸性剥離液やアルカリ性剥離液が用いられている。
アルキルベンゼンスルホン酸にフェノール化合物や塩素
系溶剤、芳香族炭化水素を配合した剥離液は代表的な酸
性剥離液として知られているが、この剥離液を用いて1
00℃以上に加熱しても側壁保護堆積膜の除去にはかな
り困難を要することが認められる。また、これらの酸性
剥離液は、水に対する溶解性が低いため、剥離操作の
後、水との相溶性が良い有機溶剤でリンスし、水洗しな
ければならず工程が煩雑になる等の問題もある。一方、
有機アミンと各種有機溶剤とから成る剥離液は代表的な
アルカリ性剥離液として知られているが、この剥離液
も、上記の酸性剥離液の場合と同様に100℃以上に加
熱しても側壁保護堆積膜の剥離にはかなりの困難を要
し、また、これらのアルカリ性剥離液は水溶性であるた
め剥離後直ちに水洗することができるとはいえ、そのア
ルカリ性成分により配線材料を腐食するという問題もあ
る。このように、いずれの剥離液を用いた場合にあって
も側壁保護堆積膜を完全に剥離できない状況にあるた
め、残存した塩素ラジカルやイオンによりアフターコロ
ージョンの発生がしばしば観察される。
Therefore, in order to completely prevent after-corrosion, it is indispensable to completely remove the side wall protective deposition film. Generally, an acidic stripping solution or an alkaline stripping solution is used for removing the side wall protective deposition film.
A stripping solution prepared by mixing a phenol compound, a chlorine-based solvent, and an aromatic hydrocarbon with alkylbenzene sulfonic acid is known as a typical acidic stripping solution.
It can be seen that removal of the sidewall protection deposited film requires considerable difficulty even if heated above 00 ° C. Further, since these acidic stripping solutions have low solubility in water, after the stripping operation, they must be rinsed with an organic solvent having good compatibility with water and rinsed with water, which also complicates the process. is there. on the other hand,
A stripping solution consisting of an organic amine and various organic solvents is known as a typical alkaline stripping solution, but this stripping solution also protects the side wall even when heated to 100 ° C. or higher as in the case of the above acidic stripping solution. Detachment of the deposited film requires considerable difficulty, and although these alkaline stripping solutions are water-soluble, they can be washed immediately after stripping, but the alkaline components corrode wiring materials. is there. As described above, the side wall protective deposition film cannot be completely stripped by any of the stripping solutions, so that after-corrosion is often observed due to residual chlorine radicals and ions.

【0007】これらとは別に、プラズマ灰化後のレジス
ト残りをテトラメチルアンモニウムハイドロオキサイド
を含んだアルカリ性水溶液で除去するという方法が知ら
れているが、この方法ではアルミニウムを含む基体から
成る導電層が激しく腐食されるという問題があった。
In addition to these methods, there is known a method of removing the resist residue after plasma ashing with an alkaline aqueous solution containing tetramethylammonium hydroxide. In this method, a conductive layer composed of a substrate containing aluminum is formed. There was a problem of being severely corroded.

【0008】以上の様にアフターコロージョンを防止す
るために側壁保護堆積膜の剥離が容易でしかもその際ア
ルミニウムを含む基体から成る導電層を腐食しないポジ
型フォトレジスト用剥離液が要望されている。
As described above, in order to prevent after-corrosion, there is a demand for a positive photoresist stripping solution that can easily strip the sidewall protective deposited film and does not corrode the conductive layer made of a substrate containing aluminum.

【0009】本発明者らは、上記の如き、従来のポジ型
フォトレジストの剥離液が有する問題を改善すべく鋭意
研究を重ねた結果、芳香環式フェノール化合物および芳
香環式カルボン酸化合物よりなる群より選ばれる少なく
とも1種の化合物と有機アミンを含有する水溶液からな
ることを特徴とするポジ型フォトレジスト用剥離液が塩
素系ガスによるドライエッチングの際に形成せしめたポ
ジ型フォトレジストの側壁保護堆積膜に対する剥離性と
アフターコロージョン防止性と配線材料に対する非腐食
性と作業の簡便性等を備えた極めて優れた特性を有する
ことを見い出した。本発明は、かかる知見に基づいて完
成するに至ったものである。
As a result of intensive studies conducted by the present inventors to improve the problems of the conventional stripping solutions for positive photoresist, the aromatic ring phenol compounds and aromatic ring carboxylic acid compounds are used. Side wall protection of a positive photoresist formed by dry etching with a chlorine-based gas, the stripper for a positive photoresist comprising an aqueous solution containing at least one compound selected from the group and an organic amine It has been found that they have extremely excellent properties, such as peeling property against deposited film, after-corrosion prevention property, non-corrosion property against wiring material, and workability. The present invention has been completed based on such findings.

【0010】[0010]

【発明の開示】本発明は、芳香環式フェノール化合物お
よび芳香環式カルボン酸化合物よりなる群より選ばれる
少なくとも1種の化合物と有機アミンとを含有する水溶
液からなるポジ型フォトレジスト用剥離液を提供するも
のである。さらに本発明は、上記の剥離液を用いて、前
述のポジ型フォトレジストを剥離する工程を含む半導体
装置の製造方法ならびに該製造方法により製造された半
導体装置を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a stripping solution for a positive photoresist comprising an aqueous solution containing an organic amine and at least one compound selected from the group consisting of an aromatic ring phenol compound and an aromatic ring carboxylic acid compound. It is provided. Further, the present invention provides a method for manufacturing a semiconductor device including a step of removing the positive photoresist described above using the above-mentioned stripping solution, and a semiconductor device manufactured by the method.

【0011】本発明に係るポジ型フォトレジスト用剥離
液は、有機アミン水溶液の側壁保護堆積膜の剥離能と芳
香環式フェノール化合物、芳香環式カルボン酸化合物の
配線材料に対する非腐食性の諸特性を備えるものであ
り、高精度の回路配線を製造することを可能にしたもの
である。
The stripping solution for positive photoresist according to the present invention is capable of stripping a sidewall protective deposited film of an organic amine aqueous solution and various non-corrosive properties of an aromatic ring phenol compound or an aromatic ring carboxylic acid compound for a wiring material. And is capable of manufacturing high-precision circuit wiring.

【0012】以下に本発明を詳細に説明する。本発明に
用いられる芳香環式フェノール化合物の例としてはフェ
ノール、o−クレゾール、m−クレゾール、p−クレゾ
ール、レゾルシノール、2,3−ピリジンジオール、
4,6−ジヒドロキシピリミジン、m−ニトロフェノー
ル等が挙げられる。これらは単独でまたは2種以上を組
み合わせて用いることができる。配線材料に対する腐食
防止の面では2,3−ピリジンジオールが良好な結果を
与える。
The present invention will be described in detail below. Examples of the aromatic cyclic phenol compound used in the present invention include phenol, o-cresol, m-cresol, p-cresol, resorcinol, 2,3-pyridinediol,
4,6-dihydroxypyrimidine, m-nitrophenol and the like can be mentioned. These may be used alone or in combination of two or more. In terms of preventing corrosion of the wiring material, 2,3-pyridinediol gives good results.

【0013】本発明に用いられる芳香環式カルボン酸化
合物の例としては安息香酸、o−トルイル酸、m−トル
イル酸、p−トルイル酸等が挙げられる。これらは単独
でまたは2種以上を組み合わせて用いることができる。
Examples of the aromatic cyclic carboxylic acid compound used in the present invention include benzoic acid, o-toluic acid, m-toluic acid and p-toluic acid. These may be used alone or in combination of two or more.

【0014】本発明に用いられる有機アミンの例として
はトリメチル−2−ヒドロキシエチル−アンモニウムハ
イドロオキサイド、テトラメチルアンモニウムハイドロ
オキサイド等が挙げられる。これらは単独でまたは2種
以上を組み合わせて用いることができる。本発明の剥離
液においては糖類を含有させることにより、さらに配線
材料に対する非腐食性を向上させることができる。その
糖類の例としてはソルビトール、ショ糖、でんぷん等が
挙げられる。この糖類は単独でまたは2種以上を組み合
わせて用いることができる。含有不純物の少ないソルビ
トールは、好ましいものの例である。
Examples of the organic amine used in the present invention include trimethyl-2-hydroxyethyl-ammonium hydroxide and tetramethylammonium hydroxide. These may be used alone or in combination of two or more. By containing a saccharide in the stripping solution of the present invention, the noncorrosiveness of the wiring material can be further improved. Examples of the saccharide include sorbitol, sucrose, starch and the like. This saccharide can be used alone or in combination of two or more kinds. Sorbitol, which contains less impurities, is an example of a preferred one.

【0015】本発明に係る剥離液の好ましい調製方法と
しては、0.5重量%以上60重量%未満、好ましくは
2〜50重量%の有機アミン水溶液に芳香環式フェノー
ル化合物および芳香環式カルボン酸化合物よりなる群よ
り選ばれる少なくとも1種の化合物を任意の割合で配合
し液のpHが8以上12未満、好ましくは9.5〜11
となる様にして剥離液を調製する。すなわち、選択した
有機アミン水溶液の濃度とそのアルカリ強度および選択
した芳香環式フェノール化合物、芳香環式カルボン酸化
合物の添加量とその酸強度のバランスを考慮することに
より適切な混合比が決定される。この液のpHが8未満
では側壁保護堆積膜の剥離能力が低下し、pHが12以
上ではAlを含む導電層が腐食されやすくなる。有機ア
ミンの含有量が0.5重量%未満では側壁保護堆積膜の
剥離能力が低下し、60重量%以上では高粘度化、着色
等の問題が発生する。
A preferred method for preparing the stripping solution according to the present invention is 0.5% by weight or more and less than 60% by weight, preferably 2 to 50% by weight of an organic amine aqueous solution, and an aromatic ring phenol compound and an aromatic ring carboxylic acid. At least one compound selected from the group consisting of compounds is blended at an arbitrary ratio so that the pH of the liquid is 8 or more and less than 12, preferably 9.5 to 11
A stripping solution is prepared so that That is, an appropriate mixing ratio is determined by considering the concentration of the selected organic amine aqueous solution and its alkali strength, and the balance between the added amount of the selected aromatic cyclic phenol compound and aromatic cyclic carboxylic acid compound and its acid strength. .. If the pH of this liquid is less than 8, the peeling ability of the sidewall protection deposited film is lowered, and if the pH is 12 or more, the conductive layer containing Al is easily corroded. If the content of the organic amine is less than 0.5% by weight, the peeling ability of the sidewall protective deposited film is lowered, and if it is 60% by weight or more, problems such as high viscosity and coloring occur.

【0016】加えて、配線材料に対する非腐食性を向上
させる目的で配合される糖類の配合量としては1重量%
以上7重量%未満とすることが好ましく、さらに好まし
くは4〜5重量%の割合で配合するのがよい。1重量%
未満ではAlを含む導電層の腐食防止効果が充分発揮さ
れず、7重量%以上では腐食防止効果は、それ以上変り
はなく、意味がない。
In addition, the amount of saccharides added for the purpose of improving the noncorrosiveness of the wiring material is 1% by weight.
It is preferably not less than 7% by weight, more preferably 4 to 5% by weight. 1% by weight
If the amount is less than the above, the effect of preventing corrosion of the conductive layer containing Al is not sufficiently exhibited, and if it is 7% by weight or more, the effect of preventing corrosion does not change any more and is meaningless.

【0017】本発明に係る剥離液に配合することができ
る他の成分としては表面張力を低下させるため、あるい
は基板へのレジストの再付着を防止するために公知の界
面活性剤、たとえばソフタノール(日本触媒化学工業
製)、ユニダイン(ダイキン工業製)、サーフロン(旭
硝子製)、Alを含む導電層の腐食をより小さくするた
めに腐食防止剤として、たとえばアテライト(旭電化工
業製)、ERI−300(三洋化成工業製)、サンヒビ
ター(三洋化成工業製)を配合することができる。以下
に、本発明の実施例を比較例とともに掲げ、本発明をさ
らに詳細に説明する。
Other components that can be incorporated into the stripping solution according to the present invention include known surfactants such as softanol (Japan) for reducing surface tension or preventing redeposition of resist on a substrate. Catalytic chemical industry), Unidyne (Daikin industry), Surflon (Asahi glass), as a corrosion inhibitor to further reduce the corrosion of the conductive layer containing Al, for example, aterite (Asahi Denka industry), ERI-300 ( Sanyo Kasei Kogyo) and sunhibitor (Sanyo Kasei Kogyo) can be added. Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention together with Comparative Examples.

【0018】[0018]

【実施例】【Example】

実施例1 2,3−ピリジンジオール3gを2.38重量%のテト
ラメチルアンモニウムハイドロオキサイド水溶液100
gに溶解しpH10.40の剥離液を調製した。 実施例2 2,3−ピリジンジオール1.5gとm−トルイル酸
1.75gとを2.38重量%のテトラメチルアンモニ
ウムハイドロオキサイド水溶液100gに溶解しpH1
0.50の剥離液を調製した。 実施例3 m−トルイル酸3.5gを2.38重量%のテトラメチ
ルアンモニウムハイドロオキサイド水溶液100gに溶
解しpH10.37の剥離液を調製した。 実施例4 m−トルイル酸3.4gを2.38重量%のテトラメチ
ルアンモニウムハイドロオキサイド水溶液100gに溶
解しpH9.47の剥離液を調製した。 実施例5 m−トルイル酸7.5gを5.09重量%のテトラメチ
ルアンモニウムハイドロオキサイド水溶液100gに溶
解しpH10.47の剥離液を調製した。
Example 1 100 g of 2.38 wt% tetramethylammonium hydroxide aqueous solution containing 3 g of 2,3-pyridinediol
It was dissolved in g to prepare a stripping solution having a pH of 10.40. Example 2 1.5 g of 2,3-pyridinediol and 1.75 g of m-toluic acid were dissolved in 100 g of a 2.38 wt% tetramethylammonium hydroxide aqueous solution to give a pH of 1.
A stripping solution of 0.50 was prepared. Example 3 3.5 g of m-toluic acid was dissolved in 100 g of a 2.38 wt% tetramethylammonium hydroxide aqueous solution to prepare a stripping solution having a pH of 10.37. Example 4 3.4 g of m-toluic acid was dissolved in 100 g of a 2.38 wt% tetramethylammonium hydroxide aqueous solution to prepare a stripping solution having a pH of 9.47. Example 5 7.5 g of m-toluic acid was dissolved in 100 g of a 5.09 wt% tetramethylammonium hydroxide aqueous solution to prepare a stripping solution having a pH of 10.47.

【0019】実施例6 o−トルイル酸3.5gとソルビトール7.1gとを
2.38重量%のテトラメチルアンモニウムハイドロオ
キサイド水溶液100gに溶解しpH10.50の剥離
液を調製した。 実施例7 o−トルイル酸3.5gとショ糖7.1gとを2.38
重量%のテトラメチルアンモニウムハイドロオキサイド
水溶液に溶解しpH10.4の剥離液を調製した。 実施例8 o−トルイル酸6.2gとソルビトール7.1gとを
4.87重量%のトリメチル−2−ヒドロキシエチルア
ンモニウムハイドロオキサイド水溶液100gに溶解し
pH10.49の剥離液を調製した。
Example 6 3.5 g of o-toluic acid and 7.1 g of sorbitol were dissolved in 100 g of a 2.38 wt% tetramethylammonium hydroxide aqueous solution to prepare a stripping solution having a pH of 10.50. Example 7 2.38 g of 3.5 g of o-toluic acid and 7.1 g of sucrose
A stripping solution having a pH of 10.4 was prepared by dissolving it in a wt% tetramethylammonium hydroxide aqueous solution. Example 8 6.2 g of o-toluic acid and 7.1 g of sorbitol were dissolved in 100 g of a 4.87 wt% trimethyl-2-hydroxyethylammonium hydroxide aqueous solution to prepare a stripping solution having a pH of 10.49.

【0020】これらの各実施例において調製された剥離
液を用いて、前述したとおりのポジ型フォトレジストの
側壁保護堆積膜の剥離を行い、その側壁保護堆積膜の剥
離状況、配線材料の腐食性およびアフターコロージョン
の発生状況の評価を行った。評価試験においては、次の
2種の基板を用い、膜厚計、光学顕微鏡および走査型電
子顕微鏡(SEM)が用いられた。
The stripping solution prepared in each of these examples was used to strip the side wall protective deposited film of the positive photoresist as described above, and the stripped state of the side wall protective deposited film and the corrosiveness of the wiring material. And the occurrence situation of after-corrosion was evaluated. In the evaluation test, the following two types of substrates were used, and a film thickness meter, an optical microscope and a scanning electron microscope (SEM) were used.

【0021】基板作成例1 Si基板上に絶縁膜であるCVD酸化膜(膜厚:450
0Å)を形成しその上に第1層金属膜であるTiW層
(膜厚:600Å)、第2層金属膜であるCVD−W層
(膜厚:5000Å)、第3層金属膜であるAl−Si
−Cu層(膜厚:8000Å・Si含有率:1重量%、
Cu含有率:0.5重量%)を順に形成した。次にAl
−Si−Cu層上にポジ型フォトレジストを塗布(コー
ティング)し露光、現像しレジストのマスクを形成し
た。このポジ型フォトレジストはノボラック系樹脂を主
成分としたものであり、膜厚は18000Åである。次
いで、140℃で30分間ポストベークを行った後、レ
ジストマスクに覆われていない導電層(非マスク領域)
を塩素系ガスを用いたドライエッチングにより取り除い
た。続いてアッシング工程を経て側壁保護堆積膜以外の
レジストを除去し超純水洗浄を行った。
Substrate Preparation Example 1 A CVD oxide film (film thickness: 450) which is an insulating film is formed on a Si substrate.
0 Å) is formed on the first layer metal film TiW layer (film thickness: 600 Å), second layer metal film CVD-W layer (film thickness: 5000 Å), third layer metal film Al. -Si
-Cu layer (film thickness: 8000Å-Si content: 1% by weight,
Cu content: 0.5% by weight) was formed in order. Then Al
A positive photoresist was applied (coated) on the —Si—Cu layer, exposed and developed to form a resist mask. This positive photoresist is mainly composed of a novolac resin and has a film thickness of 18000Å. Then, after post-baking at 140 ° C. for 30 minutes, the conductive layer not covered with the resist mask (non-mask area)
Was removed by dry etching using a chlorine-based gas. Subsequently, after passing through an ashing step, the resist other than the sidewall protective deposition film was removed and ultrapure water cleaning was performed.

【0022】図1に導電層を形成した直後の半導体の構
造を模式的に示す。この図において、Si基板(1)の
上に絶縁膜であるCVD酸化膜(2)が形成され、その
上に第1層金属膜であるTiW層(3)、第2層金属膜
であるCVD−W層(4)、第3層金属膜であるAl−
Si−Cu層(5)が順に形成されている。本例におい
て膜厚はCVD酸化膜(2)が4500Å、第1層金属
膜(3)が600Å、第2層金属膜(4)が5000
Å、第3層金属膜(5)が8000Åである。また、A
l−Si−Cu層(5)においては、Si含有量は、1
重量%、Cu含有率は0.5重量%のものが用いられ
た。
FIG. 1 schematically shows the structure of the semiconductor immediately after the conductive layer is formed. In this figure, a CVD oxide film (2) which is an insulating film is formed on a Si substrate (1), and a TiW layer (3) which is a first-layer metal film and a CVD film which is a second-layer metal film are formed thereon. -W layer (4), Al that is the third layer metal film-
The Si-Cu layer (5) is sequentially formed. In this example, the CVD oxide film (2) has a film thickness of 4500Å, the first layer metal film (3) has a film thickness of 600Å, and the second layer metal film (4) has a film thickness of 5000.
Å, the third layer metal film (5) is 8000 Å. Also, A
In the 1-Si-Cu layer (5), the Si content is 1
A material having a wt% and a Cu content of 0.5 wt% was used.

【0023】図2には第3層金属膜であるAlーSi−
Cu層(5)上にポジ型フォトレジスト(6)を塗布
(コーティング)し露光しレジストのマスクを形成した
ものが示されている。この例ではポジ型フォトレジスト
(6)はノボラック系樹脂を主成分としたものであり、
膜厚は18000Åのものである。レジストのマスクを
形成させた後、140℃で30分間ベークを行った。
In FIG. 2, a third layer metal film, Al-Si-, is used.
It is shown that a positive photoresist (6) is applied (coated) on the Cu layer (5) and exposed to form a resist mask. In this example, the positive photoresist (6) is mainly composed of novolac resin,
The film thickness is 18000Å. After forming a resist mask, baking was performed at 140 ° C. for 30 minutes.

【0024】図3には導電層をエッチングしマスクに覆
われていない領域(非マスク領域)を塩素系ガスを用い
たドライエッチングにより取り除いた直後の状態が示さ
れている。この図では、導電層表面に側壁保護堆積膜
(7)が形成されたものが示されている。
FIG. 3 shows a state immediately after the conductive layer is etched and the region not covered with the mask (non-masked region) is removed by dry etching using a chlorine-based gas. In this figure, the side wall protective deposition film (7) is formed on the surface of the conductive layer.

【0025】図4にはマスクになっていたレジストをア
ッシングによりその大部分を除去した後の構造が示され
ている。パターニングされた導電層表面には側壁保護堆
積膜(7)が存在している。
FIG. 4 shows the structure after removing most of the resist that has been the mask by ashing. A sidewall protective deposition film (7) is present on the surface of the patterned conductive layer.

【0026】図5にはアフターコロージョン防止のため
の超純水洗浄後の状態が示されている。この図では、側
壁保護堆積膜(7)は導電層表面に倒れ込み剥離が困難
な状態となっていることが示されている。
FIG. 5 shows a state after cleaning with ultrapure water for preventing after-corrosion. This figure shows that the side wall protective deposition film (7) falls on the surface of the conductive layer and is difficult to peel off.

【0027】基板作成例2 Si基板上に絶縁膜であるCVD酸化膜(膜厚:450
0Å)を形成しその上に第1層金属膜であるTiW層
(膜厚:4000Å)、第2層金属膜であるAl−Si
層(膜厚:7200Å・Si含有率:1重量%)を順に
形成した。次にAl−Si層上にポジ型フォトレジスト
を塗布(コーティング)し露光、現像しレジストのマス
クを形成した。このポジ型フォトレジストはノボラック
系樹脂を主成分としたものであり、膜厚は18000Å
である。次いで、140℃で30分間ポストベークを行
った後、レジストマスクに覆われていない導電層(非マ
スク領域)を塩素系ガスを用いたドライエッチングによ
り取り除いた。続いてアッシング工程を経て側壁保護堆
積膜以外のレジストを除去し超純水洗浄を行った。
Substrate preparation example 2 A CVD oxide film (film thickness: 450) which is an insulating film is formed on a Si substrate.
0 Å) on which a TiW layer (film thickness: 4000 Å) which is the first layer metal film and an Al-Si which is the second layer metal film are formed.
Layers (film thickness: 7200Å · Si content: 1% by weight) were sequentially formed. Next, a positive photoresist was applied (coated) on the Al-Si layer, exposed and developed to form a resist mask. This positive photoresist is mainly composed of novolac resin and has a film thickness of 18000Å
Is. Then, after post-baking was performed at 140 ° C. for 30 minutes, the conductive layer (non-mask region) not covered with the resist mask was removed by dry etching using a chlorine-based gas. Subsequently, after passing through an ashing process, the resist other than the sidewall protective deposition film was removed and ultrapure water cleaning was performed.

【0028】実験例1 実施例1により調製した剥離液100g中に基板作成例
1で作成した基板を23℃で1分間浸漬した後、水洗し
側壁保護堆積膜の剥離状況および配線材料の腐食性の評
価を行った。側壁保護堆積膜は剥離され、パターニング
された導電層表面の腐食は全く観察されなかった。図6
は基板作成例1で作成した基板の状態を模式的に示した
ものであり、図7は実施例1において調製した剥離液で
処理したあとの状態を示したものである。
Experimental Example 1 The substrate prepared in Example 1 of the substrate was immersed in 100 g of the stripping solution prepared in Example 1 at 23 ° C. for 1 minute and then washed with water to remove the side wall protective deposited film and corrosiveness of the wiring material. Was evaluated. The sidewall protective deposited film was peeled off, and no corrosion of the patterned conductive layer surface was observed. Figure 6
Shows schematically the state of the substrate prepared in Example 1 of substrate preparation, and FIG. 7 shows the state after treatment with the stripping solution prepared in Example 1.

【0029】実験例2 実施例3において調製した剥離液100g中に基板作成
例1で作成した基板を23℃で1分間浸漬した後、水洗
し、側壁保護堆積膜の剥離状況および配線材料の腐食性
の評価を行った。側壁保護堆積膜は剥離され、パターニ
ングされた導電層表面の腐食は全く観察されなかった。
Experimental Example 2 The substrate prepared in Example 1 of the substrate was immersed in 100 g of the stripping solution prepared in Example 3 at 23 ° C. for 1 minute and then washed with water to remove the side wall protective deposited film and corrode the wiring material. The sex was evaluated. The sidewall protective deposited film was peeled off, and no corrosion of the patterned conductive layer surface was observed.

【0030】実験例3 実施例3において調製した剥離液100g中に基板作成
例2で作成した基板を23℃で1分間浸漬した後、水洗
し、側壁保護堆積膜の剥離状況および配線材料の腐食性
の評価を行った。側壁保護堆積膜は剥離され、パターニ
ングされた導電層表面の腐食は全く観察されなかった。
Experimental Example 3 The substrate prepared in Example 2 of the substrate was immersed in 100 g of the stripping solution prepared in Example 3 at 23 ° C. for 1 minute and then washed with water to remove the side wall protective deposited film and corrode the wiring material. The sex was evaluated. The sidewall protective deposited film was peeled off, and no corrosion of the patterned conductive layer surface was observed.

【0031】実験例4 実施例5において調製した剥離液100g中に基板作成
例1で作成した基板を23℃で1分間浸漬した後水洗
し、側壁保護堆積膜の剥離状況および配線材料の腐食性
の評価を行った。側壁保護堆積膜は剥離され、パターニ
ングされた導電層表面の腐食は全く観察されなかった。
Experimental Example 4 The substrate prepared in Example 1 of the substrate was immersed in 100 g of the stripping solution prepared in Example 5 at 23 ° C. for 1 minute and then washed with water to remove the side wall protective deposited film and corrode the wiring material. Was evaluated. The sidewall protective deposited film was peeled off, and no corrosion of the patterned conductive layer surface was observed.

【0032】また、実験例1〜4において処理した各基
板について、それらを23℃の高湿な雰囲気に17時間
放置したところ、そのいずれについてもアフターコロー
ジョンの発生は全く観察されなかった。
When each of the substrates processed in Experimental Examples 1 to 4 was allowed to stand in a high humidity atmosphere at 23 ° C. for 17 hours, no occurrence of after-corrosion was observed in any of them.

【0033】比較例1 市販の酸性剥離液100g中に基板作成例1で作成した
基板を110℃で、10分間浸漬した後、イソプロピル
アルコール洗浄後水洗し側壁保護堆積膜の剥離状況およ
び配線材料の腐食性の評価を行った。側壁保護堆積膜は
剥離されなかった。
Comparative Example 1 The substrate prepared in Example 1 of substrate preparation was immersed in 100 g of a commercially available acidic stripping solution at 110 ° C. for 10 minutes, washed with isopropyl alcohol, and then washed with water to remove the side wall protective deposited film and the wiring material. The corrosiveness was evaluated. The sidewall protection deposited film was not peeled off.

【0034】比較例2 市販のアルカリ性剥離液100g中に基板作成例1で作
成した基板を100℃で、5分間浸漬した後、水洗し、
側壁保護堆積膜の剥離状況および配線材料の腐食性の評
価を行った。側壁保護堆積膜は剥離されなかった。
Comparative Example 2 The substrate prepared in Example 1 for preparing a substrate was immersed in 100 g of a commercially available alkaline stripping solution at 100 ° C. for 5 minutes and then washed with water.
The peeling state of the sidewall protection deposited film and the corrosiveness of the wiring material were evaluated. The sidewall protection deposited film was not peeled off.

【0035】比較例3 2.38重量%のテトラメチルアンモニウムハイドロオ
キサイド水溶液100g中に基板作成例1で作成した基
板を23℃で、1分間浸漬した後、水洗し、側壁保護堆
積膜の剥離状況および配線材料の腐食性の評価を行っ
た。側壁保護堆積膜は剥離されたが、導電層は約200
0Å腐食された。
Comparative Example 3 The substrate prepared in Example 1 of the substrate was immersed in 100 g of a 2.38% by weight aqueous solution of tetramethylammonium hydroxide at 23 ° C. for 1 minute and then washed with water to remove the sidewall protective deposited film. And the corrosiveness of the wiring material was evaluated. The sidewall protection deposited film was peeled off, but the conductive layer was about 200
0Å Corroded.

【0036】以上の結果に見られるように、本発明に係
るポジ型フォトレジスト用の剥離液は、塩素系ガスによ
るドライエッチングの際に形成せしめたポジ型フォトレ
ジストの側壁保護堆積膜に対する剥離性に優れ、アフタ
ーコロージョン防止性と配線材料に対する非腐食性とを
兼ね備えた極めて優れた特性を有する。しかも、本発明
の剥離液は、不燃性であり、また、人体や環境に対し、
悪影響を及ぼさないなどの優れた利点を有する。
As can be seen from the above results, the stripping solution for a positive photoresist according to the present invention has a releasability of the positive photoresist formed at the time of dry etching with a chlorine-based gas from the sidewall protection deposited film. It has excellent properties such as excellent anti-corrosion property and non-corrosion property for wiring material. Moreover, the stripping solution of the present invention is nonflammable, and to the human body and environment,
It has excellent advantages such as no adverse effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】膜形成後の半導体装置の断面を示す説明図。FIG. 1 is an explanatory view showing a cross section of a semiconductor device after film formation.

【図2】リソグラフィ後の半導体装置の断面を示す説明
図。
FIG. 2 is an explanatory view showing a cross section of a semiconductor device after lithography.

【図3】ドライエッチング後の半導体装置の断面を示す
説明図。
FIG. 3 is an explanatory diagram showing a cross section of a semiconductor device after dry etching.

【図4】アッシング後の半導体装置の断面を示す説明
図。
FIG. 4 is an explanatory view showing a cross section of the semiconductor device after ashing.

【図5】防錆の為の水洗処理後の半導体装置の断面を示
す説明図。
FIG. 5 is an explanatory view showing a cross section of a semiconductor device after a water washing treatment for rust prevention.

【図6】基板作成例1で作成した半導体装置の断面を示
す説明図。
FIG. 6 is an explanatory diagram showing a cross section of the semiconductor device created in substrate creation example 1;

【図7】本発明に係る薬品により処理した後の半導体装
置の断面を示す説明図。
FIG. 7 is an explanatory view showing a cross section of a semiconductor device after being treated with a chemical according to the present invention.

【符号の説明】[Explanation of symbols]

1 Si基板 2 CVD酸化膜 3 第1層金属膜 4 第2層金属膜 5 第3層金属膜 6 ポジ型フォトレジスト 7 側壁保護堆積膜 DESCRIPTION OF SYMBOLS 1 Si substrate 2 CVD oxide film 3 1st layer metal film 4 2nd layer metal film 5 3rd layer metal film 6 Positive photoresist 7 Side wall protection deposition film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 7735−4M H01L 21/88 D (72)発明者 松井 剛 茨城県稲敷郡美浦村木原2355 日本テキサ ス・インスツルメンツ株式会社内 (72)発明者 宮崎 正男 埼玉県草加市稲荷1−7−1 関東化学株 式会社中央研究所内 (72)発明者 森 清人 埼玉県草加市稲荷1−7−1 関東化学株 式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication 7735-4M H01L 21/88 D (72) Inventor Tsuyoshi Matsui 2355 Kihara, Miura-mura, Inashiki-gun, Ibaraki Japan Texa In Su Instruments Co., Ltd. (72) Inventor Masao Miyazaki 1-7-1 Inari, Soka-shi, Saitama Kanto Chemical Co., Ltd. Central Research Laboratory (72) Inventor Kiyoto Mori 1-7-1 Inari, Soka-shi, Saitama Kanto Central Research Institute of Chemical Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 芳香環式フェノール化合物および芳香環
式カルボン酸化合物よりなる群より選ばれる少なくとも
1種の化合物と有機アミンとを含有する水溶液からなる
ことを特徴とするポジ型フォトレジスト用剥離液。
1. A stripping solution for a positive photoresist, comprising an aqueous solution containing at least one compound selected from the group consisting of an aromatic ring phenol compound and an aromatic ring carboxylic acid compound and an organic amine. .
【請求項2】 前記芳香環式フェノール化合物がフェノ
ール、クレゾール、レゾルシノールおよび2,3−ピリ
ジンジオールよりなる群から選ばれた化合物である請求
項1記載のポジ型フォトレジスト用剥離液。
2. The stripping solution for a positive photoresist according to claim 1, wherein the aromatic cyclic phenol compound is a compound selected from the group consisting of phenol, cresol, resorcinol and 2,3-pyridinediol.
【請求項3】 前記芳香環式カルボン酸化合物が安息香
酸、o−トルイル酸、m−トルイル酸およびp−トルイ
ル酸よりなる群より選ばれる化合物である請求項1記載
のポジ型フォトレジスト用剥離液。
3. The positive photoresist stripper according to claim 1, wherein the aromatic cyclic carboxylic acid compound is a compound selected from the group consisting of benzoic acid, o-toluic acid, m-toluic acid and p-toluic acid. liquid.
【請求項4】 前記有機アミンがトリメチル−2−ヒド
ロキシエチルアンモニウムハイドロオキサイドおよびテ
トラメチルアンモニウムハイドロオキサイドよりなる群
より選ばれる化合物である請求項1記載のポジ型フォト
レジスト用剥離液。
4. The stripping solution for positive photoresist according to claim 1, wherein the organic amine is a compound selected from the group consisting of trimethyl-2-hydroxyethylammonium hydroxide and tetramethylammonium hydroxide.
【請求項5】 さらに、糖類を含有していることを特徴
とする請求項1記載のポジ型フォトレジスト用剥離液。
5. The stripping solution for positive photoresist according to claim 1, which further contains a saccharide.
【請求項6】 前記糖類がソルビトール、しょ糖および
でんぷんからなる群より選ばれることを特徴とする請求
項1記載のポジ型フォトレジスト用剥離液。
6. The stripping solution for a positive photoresist according to claim 1, wherein the sugar is selected from the group consisting of sorbitol, sucrose and starch.
【請求項7】 前記有機アミンの含有量が0.5重量%
以上60重量%未満であって、pHが8以上12未満で
あることを特徴とする請求項1記載のポジ型フォトレジ
スト用剥離液。
7. The content of the organic amine is 0.5% by weight.
The stripping liquid for positive photoresist according to claim 1, which has a pH of 8 to less than 12 and a pH of 8 to 12 inclusive.
【請求項8】 半導体基板上の所定の領域に少なくとも
アルミニウムを含む基体から成る導電層を形成する工程
と、 前記導電層上にポジ型フォトレジストを用いて所要のマ
スク形成を行い、非マスク領域の前記導電層をドライエ
ッチングする工程と、 アッシングにより前記マスク形成されたポジ型フォトレ
ジストを除去する工程と、 前記請求項1乃至7項のいずれかに記載されているポジ
型フォトレジスト用剥離液によりドライエッチングの際
に形成させたポジ型フォトレジストの側壁保護堆積膜を
前記導電層上から剥離する工程とを含む半導体装置の製
造方法。
8. A step of forming a conductive layer made of a substrate containing at least aluminum in a predetermined region on a semiconductor substrate, and forming a required mask on the conductive layer using a positive photoresist to form a non-mask region. A step of dry etching the conductive layer, a step of removing the positive photoresist on which the mask is formed by ashing, and a stripping solution for a positive photoresist according to any one of claims 1 to 7. And a step of peeling the side wall protective deposition film of the positive type photoresist formed at the time of dry etching from the conductive layer.
【請求項9】 請求項8記載の製造方法によって製造さ
れた半導体装置。
9. A semiconductor device manufactured by the manufacturing method according to claim 8.
JP4105186A 1992-03-13 1992-03-13 Positive photoresist removing liquid and manufacture of semiconductor device Withdrawn JPH05259066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4105186A JPH05259066A (en) 1992-03-13 1992-03-13 Positive photoresist removing liquid and manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4105186A JPH05259066A (en) 1992-03-13 1992-03-13 Positive photoresist removing liquid and manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05259066A true JPH05259066A (en) 1993-10-08

Family

ID=14400654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4105186A Withdrawn JPH05259066A (en) 1992-03-13 1992-03-13 Positive photoresist removing liquid and manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05259066A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06202345A (en) * 1992-11-06 1994-07-22 J T Baker Inc Alkali-contained photoresist-stripping composition containing cross-linked or hardened resist resin and causing reduced metal corrosion
JPH06266119A (en) * 1992-07-09 1994-09-22 Ekc Technol Inc Cleaning agent containing nucleophilic amine compound provided with reduction and oxidation potential
JPH07219241A (en) * 1993-10-07 1995-08-18 J T Baker Inc Photoresist stripper containing reducer for reduction of metal corrosion
US5466389A (en) * 1994-04-20 1995-11-14 J. T. Baker Inc. PH adjusted nonionic surfactant-containing alkaline cleaner composition for cleaning microelectronics substrates
US5498293A (en) * 1994-06-23 1996-03-12 Mallinckrodt Baker, Inc. Cleaning wafer substrates of metal contamination while maintaining wafer smoothness
EP0773480A1 (en) 1995-11-13 1997-05-14 Tokyo Ohka Kogyo Co., Ltd. Remover solution composition for resist and method for removing resist using the the same
US5672577A (en) * 1990-11-05 1997-09-30 Ekc Technology, Inc. Cleaning compositions for removing etching residue with hydroxylamine, alkanolamine, and chelating agent
US5911835A (en) * 1990-11-05 1999-06-15 Ekc Technology, Inc. Method of removing etching residue
US6000411A (en) * 1990-11-05 1999-12-14 Ekc Technology, Inc. Cleaning compositions for removing etching residue and method of using
US6092537A (en) * 1995-01-19 2000-07-25 Mitsubishi Denki Kabushiki Kaisha Post-treatment method for dry etching
US6218087B1 (en) 1999-06-07 2001-04-17 Tokyo Ohka Kogyo Co., Ltd. Photoresist stripping liquid composition and a method of stripping photoresists using the same
US6242400B1 (en) 1990-11-05 2001-06-05 Ekc Technology, Inc. Method of stripping resists from substrates using hydroxylamine and alkanolamine
JP2001350276A (en) * 2000-06-05 2001-12-21 Nagase Kasei Kogyo Kk Photoresist remover composition and method for using the same
US6399551B1 (en) 1993-06-21 2002-06-04 Ekc Technology, Inc. Alkanolamine semiconductor process residue removal process
KR100348434B1 (en) * 2000-01-14 2002-08-10 주식회사 동진쎄미켐 Resist remover composition comprising HBM
WO2002073319A1 (en) * 2001-03-13 2002-09-19 Nagase Chemtex Corporation Resist releasing composition
WO2006018940A1 (en) * 2004-08-20 2006-02-23 Tokyo Ohka Kogyo Co., Ltd. Solvent for cleaning
KR100742119B1 (en) * 2001-02-16 2007-07-24 주식회사 동진쎄미켐 Photoresist remover composition
JP2008033337A (en) * 2002-11-15 2008-02-14 Nec Lcd Technologies Ltd Method for manufacturing liquid crystal display
KR100842072B1 (en) * 2001-05-31 2008-06-30 에스케이케미칼주식회사 Photoresist stripper composition and method of stripping photoresist using the same
KR100862988B1 (en) * 2002-09-30 2008-10-13 주식회사 동진쎄미켐 Photoresist remover composition

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6564812B2 (en) 1990-11-05 2003-05-20 Ekc Technology, Inc. Alkanolamine semiconductor process residue removal composition and process
US5911835A (en) * 1990-11-05 1999-06-15 Ekc Technology, Inc. Method of removing etching residue
US6110881A (en) * 1990-11-05 2000-08-29 Ekc Technology, Inc. Cleaning solutions including nucleophilic amine compound having reduction and oxidation potentials
US6000411A (en) * 1990-11-05 1999-12-14 Ekc Technology, Inc. Cleaning compositions for removing etching residue and method of using
US6242400B1 (en) 1990-11-05 2001-06-05 Ekc Technology, Inc. Method of stripping resists from substrates using hydroxylamine and alkanolamine
US5902780A (en) * 1990-11-05 1999-05-11 Ekc Technology, Inc. Cleaning compositions for removing etching residue and method of using
US5672577A (en) * 1990-11-05 1997-09-30 Ekc Technology, Inc. Cleaning compositions for removing etching residue with hydroxylamine, alkanolamine, and chelating agent
US6140287A (en) * 1990-11-05 2000-10-31 Ekc Technology, Inc. Cleaning compositions for removing etching residue and method of using
JPH06266119A (en) * 1992-07-09 1994-09-22 Ekc Technol Inc Cleaning agent containing nucleophilic amine compound provided with reduction and oxidation potential
JPH06202345A (en) * 1992-11-06 1994-07-22 J T Baker Inc Alkali-contained photoresist-stripping composition containing cross-linked or hardened resist resin and causing reduced metal corrosion
US6399551B1 (en) 1993-06-21 2002-06-04 Ekc Technology, Inc. Alkanolamine semiconductor process residue removal process
JPH07219241A (en) * 1993-10-07 1995-08-18 J T Baker Inc Photoresist stripper containing reducer for reduction of metal corrosion
US5466389A (en) * 1994-04-20 1995-11-14 J. T. Baker Inc. PH adjusted nonionic surfactant-containing alkaline cleaner composition for cleaning microelectronics substrates
US5498293A (en) * 1994-06-23 1996-03-12 Mallinckrodt Baker, Inc. Cleaning wafer substrates of metal contamination while maintaining wafer smoothness
US6092537A (en) * 1995-01-19 2000-07-25 Mitsubishi Denki Kabushiki Kaisha Post-treatment method for dry etching
EP0773480A1 (en) 1995-11-13 1997-05-14 Tokyo Ohka Kogyo Co., Ltd. Remover solution composition for resist and method for removing resist using the the same
US5905063A (en) * 1995-11-13 1999-05-18 Tokyo Ohka Kogyo Co., Ltd. Remover solution composition for resist and method for removing resist using the same
US5792274A (en) * 1995-11-13 1998-08-11 Tokyo Ohka Kogyo Co., Ltd. Remover solution composition for resist and method for removing resist using the same
US6218087B1 (en) 1999-06-07 2001-04-17 Tokyo Ohka Kogyo Co., Ltd. Photoresist stripping liquid composition and a method of stripping photoresists using the same
KR100348434B1 (en) * 2000-01-14 2002-08-10 주식회사 동진쎄미켐 Resist remover composition comprising HBM
JP2001350276A (en) * 2000-06-05 2001-12-21 Nagase Kasei Kogyo Kk Photoresist remover composition and method for using the same
KR100742119B1 (en) * 2001-02-16 2007-07-24 주식회사 동진쎄미켐 Photoresist remover composition
WO2002073319A1 (en) * 2001-03-13 2002-09-19 Nagase Chemtex Corporation Resist releasing composition
KR100842072B1 (en) * 2001-05-31 2008-06-30 에스케이케미칼주식회사 Photoresist stripper composition and method of stripping photoresist using the same
KR100862988B1 (en) * 2002-09-30 2008-10-13 주식회사 동진쎄미켐 Photoresist remover composition
JP2008033337A (en) * 2002-11-15 2008-02-14 Nec Lcd Technologies Ltd Method for manufacturing liquid crystal display
WO2006018940A1 (en) * 2004-08-20 2006-02-23 Tokyo Ohka Kogyo Co., Ltd. Solvent for cleaning
US7932221B2 (en) 2004-08-20 2011-04-26 Tokyo Ohka Kogyo Co., Ltd. Solvent for cleaning

Similar Documents

Publication Publication Date Title
JPH05259066A (en) Positive photoresist removing liquid and manufacture of semiconductor device
JP3302120B2 (en) Stripper for resist
JP3264405B2 (en) Semiconductor device cleaning agent and method of manufacturing semiconductor device
US5780363A (en) Etching composition and use thereof
EP1318432A1 (en) Photoresist residue removing liquid composition
JP3255551B2 (en) Stripper composition for resist
EP1451642A1 (en) Chemical rinse composition
KR20040022422A (en) Cleaning compositions
KR100360394B1 (en) Method for cleaning semiconductor substrate and cleaning solution used for the same
JPH04350660A (en) Peeling solution for positive type photoresist for producing semiconductor device and production of this device
JP2631849B2 (en) Release agent composition
WO2000040347A1 (en) Non-corrosive cleaning composition and method for removing plasma etching residues
JPH10289891A (en) Semiconductor circuit cleaning agent and manufacture of semiconductor circuit by use thereof
JPH09319098A (en) Peeling liquid for resist film
JP3773227B2 (en) Resist stripping composition and resist stripping method using the same
JP3929518B2 (en) Stripping composition for resist
JP2679618B2 (en) Stripping liquid composition and stripping and cleaning method
JPH08334905A (en) Removing solution composition for resist
JP2002156765A (en) Composition of rinsing and peeling liquid
JP4296320B2 (en) Resist stripper composition and method of using the same
JP3476367B2 (en) Resist stripping composition and resist stripping method using the same
JP2009182218A (en) Etchant, and etching method
KR19990007139A (en) Photoresist Peeling Composition
JPH0737846A (en) Rinsing liquid used after resist removal, semiconductor device and manufacture thereof
JP4310624B2 (en) Surface treatment liquid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518