JPH0524141B2 - - Google Patents
Info
- Publication number
- JPH0524141B2 JPH0524141B2 JP59125900A JP12590084A JPH0524141B2 JP H0524141 B2 JPH0524141 B2 JP H0524141B2 JP 59125900 A JP59125900 A JP 59125900A JP 12590084 A JP12590084 A JP 12590084A JP H0524141 B2 JPH0524141 B2 JP H0524141B2
- Authority
- JP
- Japan
- Prior art keywords
- daa
- reaction
- selectivity
- mibk
- act
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 15
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 239000003054 catalyst Substances 0.000 claims description 10
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 claims description 6
- 239000003377 acid catalyst Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims description 3
- 239000003456 ion exchange resin Substances 0.000 claims description 3
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 3
- 239000011973 solid acid Substances 0.000 claims description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 30
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- YZUPZGFPHUVJKC-UHFFFAOYSA-N 1-bromo-2-methoxyethane Chemical compound COCCBr YZUPZGFPHUVJKC-UHFFFAOYSA-N 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- OZXIZRZFGJZWBF-UHFFFAOYSA-N 1,3,5-trimethyl-2-(2,4,6-trimethylphenoxy)benzene Chemical compound CC1=CC(C)=CC(C)=C1OC1=C(C)C=C(C)C=C1C OZXIZRZFGJZWBF-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- SHOJXDKTYKFBRD-UHFFFAOYSA-N mesityl oxide Natural products CC(C)=CC(C)=O SHOJXDKTYKFBRD-UHFFFAOYSA-N 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 239000007868 Raney catalyst Substances 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- GXDVEXJTVGRLNW-UHFFFAOYSA-N [Cr].[Cu] Chemical compound [Cr].[Cu] GXDVEXJTVGRLNW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明はメチルイソブチルケトンの製造法に関
するものである。更に詳しくは、ジアセトンアル
コールをメチルイソブチルケトンに直接転化する
方法に関するものである。
従来、メチルイソブチルケトン(以下、MIBK
と略す)は、アセトン(以下、ACTと略す)か
ら水酸化バリウム等のアルカリを触媒としてジア
セトンアルコール(以下、DAAと略す)を作り
酸を触媒としてDAAを脱水してメシチルオキサ
イド(以下、MOと略す)となし、更にMOを水
素添加することによつて製造されている。而して
これらの方法は繁雑であつて反応工程が3段階に
なつており、工業的には決して満足される方法と
はいい難いものであつた。
本発明の目的とする所は、上記した繁雑な工程
を簡略化し、2段階でMIBKを製造する方法を提
供することにある。すなわち、ACTより製造し
たDAAをMIBKに直接転化する方法を提供する
ことにある。本発明者らはDAAをMIBKに直接
転化する方法につき鋭意検討した結果、DAAを
酸触媒と還元触媒の共存下、水素ガスと接触させ
ることによつてDAAは容易に、しかも収率よく
MIBKに転化させることが明らかとなり、本発明
に至つた。即ち、本発明は、液体ジアセトンアル
コールを酸触媒及び還元触媒共存下に水素ガスと
接触させることを特徴とするジアセトンアルコー
ルをメチルイソブチルケトンに直接転化する方法
である。而して上記した本発明の方法は、DAA
から直接MIBKを製造するものであり、従来の3
製法に比べて反応工程が1段階短縮でき、工業的
に極めて有利な方法である。
本発明の方法に於いて、DAAより直接MIBK
を92〜98%の高選択率で得ることが出来、副生物
としては、イソプロピルアルコール、メチルイソ
ブチルカルビノール、アセトンを若干生成するの
みである。DAAはACTの縮合反応によつて合成
されるが、縮合反応後のDAA濃度は、概ね12〜
15重量%である。本発明方法に於いては、縮合反
応後のDAA(12〜15重量%)をもちいてもよく、
又、一旦、DAA濃度を行なつた濃度DAA(約80
重量%)を用いてもよい。本発明に於いては、
DAAと共にACTも反応器に供給してもよいが、
ACTの水添は極く微量におさえることが可能で
ある。
本発明方法に於ける酸触媒としては一般的なも
のでよいが、固体酸及び/又は強酸性イオン交換
樹脂が望ましい。固体酸としてはHY型ゼオライ
ト、シリカ−アルミナ等が例示され、又、強酸性
イオン交換樹脂としては、アンバ−リスト−15、
デユオライト−C−26H等が例示される。又、還
元触媒として一般的なものでよく、ラネ−ニツケ
ル、銅−クロム、Pd/Al2O3、Pd/C、Pt/
Al2O3、Pt/C等が例示されるが、生成MAIBK
及びACTの水添をなるべく避けるという意味に
於いて、低温活性を有するPd及び/又はPt等の
貴金属元素触媒が特に好ましい。尚、酸触媒と還
元触媒の混合割合は、任意である。反応温度は40
〜200℃の範囲で行なうことが出来るが、通常は
60〜150℃が好ましい温度範囲として選ばれる。
反応温度が40℃未満では十分な反応速度がかせげ
なくなり、又、反応温度が20℃を越えるとACT
及びMIBKの水添がかなり起こり収率の低下をま
ねく原因となる。反応圧力は、1〜50/cm2Gの範
囲で行なうことが出来るが、通常は20Kg/cm2Gが
好ましい反応圧力範囲として選ばれる。反応方式
としては、バツチ式でも、固定床流通型式でも可
である。固定床流通型式に於いては、DAAと水
素ガスとの混合比は、(DAA/水素ガス)のモル
比で1〜0.1の範囲が用いられ、DAAの液空間速
度(LHSV)は通常0.05〜10の範囲が用いられ
る。
次に、本発明を実施例にて具体的に説明する
が、本発明は、これらに何ら限定されるものでは
ない。
実施例 1
200mlSUS製オートクレーブに試薬DAA100g、
5%Pd/Cg1、アンバーリストー15、1gを
仕込み、反応温度120℃、水素圧力10/cm2Gで反
応を行なつた所、約80分で所定量の水素吸収が認
められた。反応液をガスクロマトグラフイーによ
り分析した所、DAAの転化率は94.9%であつた。
又、MIBKへの選択率は92.8%、イソプロピルア
ルコールへの選択率0.40%、メチルイソブチルカ
ルビノールへの選択率2.6%、ACTへの選択率4.5
%であつた。
実施例 2
アンバーリストー15に代えて、デユオライトC
−26Hを用い、他は実施例1と同様に反応を行な
つた所、約75分で所定量の水素吸収が認められ
た。反応液をガスクロマトグラフイーで分析した
所、DAAの転化率は97.9%であつた。又、
MIBKへの選択率は92.3%、イソプロピルアルコ
ールへの選択率0.85%、メチルイソプチルカルビ
ノールへの選択率3.33%、ACTへの選択率3.51%
であつた。
実施例 3
アンバーリストー15に代えて、HY−型ゼオラ
イト触媒0.5gを用い、他は実施例1と同様に反
応を行なつた。反応結果は、DAAの転化率87.7
%、MIBKへの選択率92.8%、イソプロピルアル
コールへの選択率0.59%、メチルイソブチルカル
ビノールへの選択率3.76%、ACTへの選択率2.81
%であつた。
実施例 4
ACT20重量%含有DAAを用い、他は実施例2
と同様に反応を行なつた。反応液をガスクロマト
グラフイーで分析した所、DAA転化率96.8%で
あつた。又、MIBKへの選択率96.2%、ACT選
択率2.57%であつた。
実施例 5
実施例4で用いた触媒をリサイクル使用し、実
施例4と同様の反応を4回繰り返した。DAA転
化率及びMIBK選択率の結果を表−1に示した。
The present invention relates to a method for producing methyl isobutyl ketone. More specifically, it relates to a method for directly converting diacetone alcohol to methyl isobutyl ketone. Conventionally, methyl isobutyl ketone (hereinafter referred to as MIBK)
) is acetone (hereinafter abbreviated as ACT), diacetone alcohol (hereinafter abbreviated as DAA) is made using an alkali such as barium hydroxide as a catalyst, and DAA is dehydrated using an acid as a catalyst to produce mesityl oxide (hereinafter abbreviated as mesityl oxide). It is produced by hydrogenating MO. However, these methods are complicated and involve a three-step reaction process, and cannot be said to be industrially satisfactory. An object of the present invention is to simplify the above-described complicated steps and provide a method for producing MIBK in two steps. That is, the objective is to provide a method for directly converting DAA produced from ACT into MIBK. The present inventors have conducted intensive studies on a method for directly converting DAA to MIBK, and found that DAA can be easily converted into MIBK by contacting it with hydrogen gas in the coexistence of an acid catalyst and a reduction catalyst.
It became clear that it can be converted to MIBK, leading to the present invention. That is, the present invention is a method for directly converting diacetone alcohol into methyl isobutyl ketone, which is characterized by contacting liquid diacetone alcohol with hydrogen gas in the coexistence of an acid catalyst and a reduction catalyst. Therefore, the method of the present invention described above is applicable to DAA
MIBK is manufactured directly from
Compared to the production method, the reaction process can be shortened by one step, making it an extremely advantageous method industrially. In the method of the present invention, MIBK directly from DAA
can be obtained with a high selectivity of 92 to 98%, and only a small amount of isopropyl alcohol, methyl isobutyl carbinol, and acetone are produced as by-products. DAA is synthesized by the condensation reaction of ACT, and the DAA concentration after the condensation reaction is approximately 12 to
It is 15% by weight. In the method of the present invention, DAA (12 to 15% by weight) after the condensation reaction may be used,
In addition, once the DAA concentration was measured, the concentration DAA (approximately 80
weight%) may be used. In the present invention,
ACT may also be fed to the reactor along with DAA;
Hydrogenation of ACT can be kept to an extremely small amount. The acid catalyst used in the method of the present invention may be any conventional one, but solid acids and/or strongly acidic ion exchange resins are preferred. Examples of solid acids include HY type zeolite, silica-alumina, etc., and examples of strong acidic ion exchange resins include Amberlyst-15,
Duolite-C-26H etc. are exemplified. Also, common reduction catalysts may be used, such as Raney-nickel, copper-chromium, Pd/Al 2 O 3 , Pd/C, Pt/
Examples include Al 2 O 3 , Pt/C, etc., but the production MAIBK
In the sense of avoiding hydrogenation of ACT and ACT as much as possible, noble metal element catalysts such as Pd and/or Pt having low temperature activity are particularly preferred. Note that the mixing ratio of the acid catalyst and the reduction catalyst is arbitrary. The reaction temperature is 40
It can be carried out in the range of ~200℃, but usually
60-150°C is chosen as the preferred temperature range.
If the reaction temperature is less than 40℃, sufficient reaction rate cannot be achieved, and if the reaction temperature exceeds 20℃, ACT
and MIBK hydrogenation occurs considerably, leading to a decrease in yield. The reaction pressure can be in the range of 1 to 50/cm 2 G, but 20 kg/cm 2 G is usually selected as the preferred reaction pressure range. The reaction method may be a batch method or a fixed bed flow method. In the fixed bed flow type, the mixing ratio of DAA and hydrogen gas is in the range of 1 to 0.1 (DAA/hydrogen gas) molar ratio, and the liquid hourly space velocity (LHSV) of DAA is usually 0.05 to 0.1. A range of 10 is used. Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these in any way. Example 1 100g of reagent DAA in a 200ml SUS autoclave,
When 5% Pd/Cg1 and 1 g of Amberlysto 15 were charged and the reaction was carried out at a reaction temperature of 120° C. and a hydrogen pressure of 10/cm 2 G, a predetermined amount of hydrogen absorption was observed in about 80 minutes. When the reaction solution was analyzed by gas chromatography, the conversion rate of DAA was 94.9%.
Also, the selectivity to MIBK is 92.8%, the selectivity to isopropyl alcohol is 0.40%, the selectivity to methyl isobutyl carbinol is 2.6%, and the selectivity to ACT is 4.5.
It was %. Example 2 Duolite C instead of Amberlyst 15
When the reaction was carried out in the same manner as in Example 1 except for using -26H, a predetermined amount of hydrogen absorption was observed in about 75 minutes. When the reaction solution was analyzed by gas chromatography, the conversion rate of DAA was 97.9%. or,
Selectivity to MIBK is 92.3%, selectivity to isopropyl alcohol 0.85%, selectivity to methyl isobutyl carbinol 3.33%, selectivity to ACT 3.51%.
It was hot. Example 3 A reaction was carried out in the same manner as in Example 1 except that 0.5 g of HY-type zeolite catalyst was used in place of Amberlyst 15. The reaction result was a conversion rate of DAA of 87.7.
%, selectivity to MIBK 92.8%, selectivity to isopropyl alcohol 0.59%, selectivity to methyl isobutyl carbinol 3.76%, selectivity to ACT 2.81
It was %. Example 4 Using DAA containing 20% by weight of ACT, the rest is Example 2
The reaction was carried out in the same manner. When the reaction solution was analyzed by gas chromatography, the DAA conversion rate was 96.8%. Also, the selection rate for MIBK was 96.2%, and the selection rate for ACT was 2.57%. Example 5 The catalyst used in Example 4 was recycled and the same reaction as in Example 4 was repeated four times. The results of DAA conversion rate and MIBK selectivity are shown in Table 1.
【表】
実施例 6
内径20mm、長さ300mmのSUS製反応管に、5%
Pd/CとデユオライトC−26Hを重量比約1:
1の混合物として30ml充填し、反応温度120℃、
反応圧力10Kg/cm2G、DAAと水素ガスとの混合
モル比0.2とし、液空間速度を0.4Hr-1として実験
を行なつた。尚、DAA及び水素ガスは上向きに
流した。反応開始10時間の反応液をガスクロマト
グラフイーにて分析した所、DAAの転化率は
96.4%であつた。
又、MIBKへの選択率93.1%、イソプロピルア
ルコールへの選択率0.79%、メチルイソブチルカ
ルビノールへの選択率3.21%、ACTへの選択率
2.5%であつた。[Table] Example 6 5% in a SUS reaction tube with an inner diameter of 20 mm and a length of 300 mm.
Weight ratio of Pd/C and Duolite C-26H is approximately 1:
Fill 30ml of the mixture of 1 and set the reaction temperature to 120°C.
The experiment was conducted at a reaction pressure of 10 Kg/cm 2 G, a mixing molar ratio of DAA and hydrogen gas of 0.2, and a liquid hourly space velocity of 0.4 Hr -1 . Note that DAA and hydrogen gas were flowed upward. Analysis of the reaction solution 10 hours after the start of the reaction using gas chromatography revealed that the conversion rate of DAA was
It was 96.4%. In addition, the selectivity to MIBK is 93.1%, the selectivity to isopropyl alcohol is 0.79%, the selectivity is to methyl isobutyl carbinol is 3.21%, and the selectivity is to ACT.
It was 2.5%.
Claims (1)
触媒共存下に水素ガスと接触させることを特徴と
するジアセトンアルコールをメチルイソブチルケ
トンに直接転化する方法。 2 酸触媒が固体酸又は強酸性イオン交換樹脂で
あることを特徴とする特許請求範囲第1項記載の
ジアセトンアルコールをメチルイソブチルケトン
に直接転化する方法。[Claims] 1. A method for directly converting diacetone alcohol to methyl isobutyl ketone, which comprises contacting liquid diacetone alcohol with hydrogen gas in the coexistence of an acid catalyst and a reduction catalyst. 2. The method for directly converting diacetone alcohol to methyl isobutyl ketone according to claim 1, wherein the acid catalyst is a solid acid or a strongly acidic ion exchange resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59125900A JPS615038A (en) | 1984-06-18 | 1984-06-18 | Direct conversion of diacetone alcohol to methyl isobutyl ketone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59125900A JPS615038A (en) | 1984-06-18 | 1984-06-18 | Direct conversion of diacetone alcohol to methyl isobutyl ketone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS615038A JPS615038A (en) | 1986-01-10 |
JPH0524141B2 true JPH0524141B2 (en) | 1993-04-06 |
Family
ID=14921685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59125900A Granted JPS615038A (en) | 1984-06-18 | 1984-06-18 | Direct conversion of diacetone alcohol to methyl isobutyl ketone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS615038A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3632530A1 (en) * | 1986-09-25 | 1988-04-07 | Basf Ag | METHOD FOR PRODUCING ALPHA BETA UNSATURATED KETONES |
CN1101269C (en) * | 1999-09-17 | 2003-02-12 | 中国石油化工集团公司 | Catalyst for synthesizing methyl isobutyl ketone with acetone and its preparation |
ES2618867T3 (en) | 2009-10-09 | 2017-06-22 | Kao Corporation | Procedure for the production of a lactone |
FR2968002B1 (en) * | 2010-11-30 | 2012-11-23 | Rhodia Poliamida E Especialidades Ltda | PROCESS FOR THE PRODUCTION OF DIBK |
CN108097263B (en) * | 2017-12-25 | 2020-09-08 | 万华化学集团股份有限公司 | Method for preparing MIBK from industrial byproduct waste liquid acetone |
-
1984
- 1984-06-18 JP JP59125900A patent/JPS615038A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS615038A (en) | 1986-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5364987A (en) | Process for the preparation of 1,3-propanediol | |
US5276181A (en) | Catalytic method of hydrogenating glycerol | |
US5583263A (en) | Process of making ketones | |
Fiandanese et al. | One-step synthesis of ketones from car☐ ylic acids and grignard reagents in the presence of a nickel (II)-phosphine catalyst. | |
US6706928B2 (en) | Aldol condensation reaction and catalyst therefor | |
US3260759A (en) | Increased catalyst life in the hybroge- nation of hydroxyaldehydes to poly- gls | |
US5371299A (en) | Process for the preparation of diethers | |
JPS62246529A (en) | Production of 1,3-butylene glycol | |
EP0227868B1 (en) | Process for production of methyl isobutyl ketone | |
JPH0524141B2 (en) | ||
CA1274546A (en) | Process for production of methyl isobutyl ketone | |
US6399812B1 (en) | Production of aliphatic esters | |
US5945571A (en) | Preparation of 1,4-butanediol | |
US5185478A (en) | Manufacture of neopentyl glycol (IIA) | |
JP2007507545A (en) | Process for the production of 1,3-propanediol by catalytic hydrogenation of 3-hydroxypropanal in the presence of a hydration cocatalyst | |
US20040087819A1 (en) | Solid acid catalyzed reactive stripping of impurities formed during the production of 1, 3-propanediol | |
US4727196A (en) | Production of higher carbonyl compounds from lower alcohols | |
EP0024770B1 (en) | Hydrolysis of allyl ethers and ketones thus prepared | |
JP3342973B2 (en) | Method for producing hydroxyalkanal | |
US3992452A (en) | Method for the production of alkoxycyclohexanones | |
US3914291A (en) | Process for splitting cycloaliphatic hydroperoxides | |
SU666167A1 (en) | Method of producing n-alkylanilines | |
DE69318738T2 (en) | Catalytic synthesis of alkylmorpholinones | |
USRE29201E (en) | Production of alkoxy phenolic compounds | |
US3960970A (en) | Manufacture of d,l-methol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |