[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05238844A - Porous ceramic material and its production - Google Patents

Porous ceramic material and its production

Info

Publication number
JPH05238844A
JPH05238844A JP4162492A JP4162492A JPH05238844A JP H05238844 A JPH05238844 A JP H05238844A JP 4162492 A JP4162492 A JP 4162492A JP 4162492 A JP4162492 A JP 4162492A JP H05238844 A JPH05238844 A JP H05238844A
Authority
JP
Japan
Prior art keywords
porous ceramic
dense
porous
ceramic body
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4162492A
Other languages
Japanese (ja)
Other versions
JP3228546B2 (en
Inventor
Hiroyuki Morioka
裕之 森岡
Toshiichi Watake
敏一 輪竹
Kazuhiko Mishima
和彦 三嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4162492A priority Critical patent/JP3228546B2/en
Publication of JPH05238844A publication Critical patent/JPH05238844A/en
Application granted granted Critical
Publication of JP3228546B2 publication Critical patent/JP3228546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0058Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00344Materials with friction-reduced moving parts, e.g. ceramics lubricated by impregnation with carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To obtain a porous ceramic material having smooth surface and high in strength and hardness by packing plural globular and unburned formed materials of a ceramic raw material in a mold to form these materials and burning these formed materials. CONSTITUTION:A ceramic raw material is formed into globular formed materials having 0.5-10mm average diameter. Then a number of these unburned globular formed materials are packed in a mold to form these materials in a prescribed shape and then burned to provide the objective ceramic material. The porous ceramic material is assembly of dense parts having 0.5-10mm average diameter and provided with spaces among these dense parts as open cells. Since the porous ceramic material is mostly dense and its porosity is <=10%, the surface can be formed into smooth surface and simultaneously the strength and hardness of the material can be enhanced. Further, the ceramics can preferably be used for vacuum absorption device, etc., because each pore is open.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空吸着装置等に利用
する多孔質セラミック体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous ceramic body used in a vacuum adsorption device or the like and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より、真空吸着装置の吸着面、エア
ースライドやエアーベアリングの軸受面、ハニカム構造
体、各種フィルタなどのさまざまな分野において、多孔
質セラミック体が用いられている。
2. Description of the Related Art Conventionally, porous ceramic bodies have been used in various fields such as suction surfaces of vacuum suction devices, bearing surfaces of air slides and air bearings, honeycomb structures, and various filters.

【0003】例えば、真空吸着装置としては、図6に示
すように多孔質セラミックスの板状体21を緻密質セラ
ミックスの枠体22にガラスなどで接合し、真空吸引す
ることによって上記多孔質セラミックスの板状体21上
にシリコンウェハ等の被吸着物23を固定するようにな
っている(特開昭63−169243号、実公昭59−
34143号公報等参照)。
For example, as a vacuum adsorption device, as shown in FIG. 6, a porous ceramic plate 21 is joined to a dense ceramic frame 22 with glass or the like, and vacuum suction is performed to form the porous ceramic. An object to be adsorbed 23 such as a silicon wafer is fixed on the plate-like body 21 (Japanese Patent Laid-Open No. 63-169243, Japanese Utility Model Publication 59-59).
34143 gazette etc.).

【0004】このような用途に用いる多孔質セラミック
スは、所定の気孔率、気孔径を有し、しかも各気孔が互
いに連通している必要がある。例えばボーキサイトを電
気炉で溶融し結晶化させ粉砕、精製、整粒した電融アル
ミナをガラス融着することによって、各電融アルミナ粒
子の隙間を連通気孔としたものが用いられており、この
多孔質セラミックスは、電融アルミナの粒径を調整する
ことによって隙間の気孔の大きさを変化させられるもの
であった。
The porous ceramics used for such an application must have a predetermined porosity and pore diameter, and the respective pores must be in communication with each other. For example, bauxite is melted in an electric furnace to be crystallized, pulverized, refined, and fused to obtain fused glass, and fused glass particles are used to form interstitial pores between the fused alumina particles. The fine ceramics can change the size of pores in the gaps by adjusting the particle size of the fused alumina.

【0005】その他の多孔質セラミックスとしては、セ
ラミック原料中に繊維状の樹脂などを混合した状態で成
形し、焼成することによって上記繊維状の樹脂などを焼
失させて気孔を形成したもの、あるいはセラミックスの
成形や焼成の条件を調整して不完全焼結状態にし、多孔
質体としたものなども用いられている。
As other porous ceramics, a ceramic raw material mixed with fibrous resin and the like is molded and fired to burn out the fibrous resin to form pores, or ceramics. A porous material is also used by adjusting the molding and firing conditions to obtain an incompletely sintered state.

【0006】[0006]

【従来技術の課題】ところが、上記の如き従来の電融ア
ルミナをガラス融着した多孔質セラミックスでは、電融
アルミナの粒子が脱落しやすく、表面を滑らかな面とす
ることができないという問題点があった。また、この多
孔質セラミックスは、気孔率を低くすることができず、
強度が低いという問題点もあった。
However, in the conventional porous ceramics obtained by glass-fusing fused alumina as described above, there is a problem that the fused alumina particles easily fall off and the surface cannot be made smooth. there were. In addition, this porous ceramics cannot reduce the porosity,
There was also the problem of low strength.

【0007】そのため、この電融アルミナからなる多孔
質セラミックスを真空吸着装置に用いると、被吸着物で
あるシリコンウェハに傷を付けやすいという不都合があ
った。また、図6に示すように真空吸着装置として用い
る場合は、多孔質セラミックスの板状体21を緻密質セ
ラミックスの枠体22に接合し、両者の表面を同時に研
摩することが行われるが、その際に多孔質セラミックス
部分が大きく研摩されてしまい段差が生じるという問題
点もあった。
Therefore, when the porous ceramics made of this fused alumina is used in a vacuum adsorption device, there is a disadvantage that a silicon wafer, which is an object to be adsorbed, is easily scratched. Further, as shown in FIG. 6, when it is used as a vacuum suction device, the plate-like body 21 made of porous ceramics is bonded to the frame body 22 made of dense ceramics, and both surfaces are polished at the same time. At this time, there is also a problem that the porous ceramics portion is largely polished to cause a step.

【0008】さらに、他の多孔質セラミックスとして、
セラミック原料中に繊維状の樹脂などの焼失物を混合し
ておいて焼成したものでは、各気孔を連通させるために
は相当量の焼失物を混合しなければならず、その結果得
られた多孔質セラミックスは気孔率の高いものとなり、
強度が低く、表面を滑らかにできないなどの不都合があ
った。また、成形、焼成条件で多孔質としたものでも、
各気孔を連通させるためには気孔率を高くしなければな
らず、強度が低く、表面を滑らかにできないなどの不都
合があった。
Further, as other porous ceramics,
When the ceramic raw material is mixed with burned material such as fibrous resin and fired, a considerable amount of burned material must be mixed in order to connect each pore, and the resulting porosity Quality ceramics have high porosity,
There were inconveniences such as low strength and inability to smooth the surface. In addition, even if it is made porous by molding and firing conditions,
The porosity must be increased in order to make the pores communicate with each other, and there are inconveniences such as low strength and smooth surface.

【0009】このように、従来の多孔質セラミックスで
は、気孔を連通させるためには気孔率を20〜30%程
度にしなければならず、その結果、強度や表面平滑性な
どの点で問題のあるものであった。これに対し、気孔率
10%以下で、かつ各気孔が連通しているような多孔質
セラミックスを得ることはできなかった。
As described above, in the conventional porous ceramics, the porosity must be about 20 to 30% in order to make the pores communicate with each other, and as a result, there are problems in strength and surface smoothness. It was a thing. On the other hand, it was not possible to obtain a porous ceramic having a porosity of 10% or less and in which the respective pores communicate with each other.

【0010】[0010]

【課題を解決するための手段】上記に鑑みて本発明は、
平均径0.5〜10mmの緻密質部の集合体であって、
これら緻密質部同士の間隙を連続気孔として多孔質セラ
ミック体を形成したものである。
In view of the above, the present invention provides:
An aggregate of dense parts having an average diameter of 0.5 to 10 mm,
A porous ceramic body is formed with the gaps between the dense parts as continuous pores.

【0011】また、このような多孔質セラミック体の製
造方法は、まずセラミック原料を平均径0.5〜10m
mの球状成形体とし、次にこの球状成形体を所定形状の
型に充填して加圧成形し、最後に得られた成形体を焼成
すればよい。なお、上記球状成形体とは、鋭いエッジが
なく全体的に滑らかな球状をした成形体のことであり、
これらの球状成形体部分は緻密質部となり、かつ球状成
形体の間隙は連続する気孔となって、上記のような多孔
質セラミック体とすることができる。
Further, in the method for producing such a porous ceramic body, first, the ceramic raw material is made to have an average diameter of 0.5 to 10 m.
The spherical molded body of m may be formed, then the spherical molded body may be filled in a mold having a predetermined shape, pressure-molded, and finally the molded body may be fired. The spherical molded body is a molded body having a smooth spherical shape without sharp edges,
These spherical molded parts become dense parts, and the voids of the spherical molded parts become continuous pores, so that the porous ceramic body as described above can be obtained.

【0012】[0012]

【作用】本発明の多孔質セラミックスは、大部分が緻密
質部であり、気孔率10%以下とできるため、表面を滑
らかな面とできるとともに、強度、硬度を高くできる。
しかも、本発明の多孔質セラミック体は各気孔が連続し
ていることから、真空吸着装置などに好適に用いること
ができる。
The porous ceramics of the present invention are mostly dense parts and can have a porosity of 10% or less, so that the surface can be made smooth and the strength and hardness can be increased.
Moreover, since the porous ceramic body of the present invention has continuous pores, it can be suitably used in a vacuum adsorption device or the like.

【0013】[0013]

【実施例】以下本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0014】図1(A)(B)に示すように、本発明の
多孔質セラミック体1は、複数の緻密質部2の集合体で
あって、これらの緻密質部2の間隙を互いに連続する気
孔3としたものである。また、各緻密質部2は互いに完
全に焼結しているが、その境界を確認することができ、
各緻密質部2の平均径は0.5〜10mmの範囲内とな
っている。このように、本発明の多孔質セラミック体1
は、大部分が緻密質部2から成り、各緻密質部2が完全
に焼結しているため、強度、硬度が高く、しかも表面1
aを研摩することによって、中心線平均粗さ(Ra)
0.1μm以下の極めて滑らかな面とすることが可能で
ある。また、この多孔質セラミックス1の気孔率は10
%以下と低いが、気孔3は各緻密質部2の間隙に存在
し、互いに連通していることから、フィルターや真空吸
着装置などに好適に用いることができる。
As shown in FIGS. 1 (A) and 1 (B), the porous ceramic body 1 of the present invention is an assembly of a plurality of dense portions 2, and the gaps between these dense portions 2 are continuous with each other. The porosity 3 is defined as In addition, although the dense parts 2 are completely sintered to each other, the boundaries can be confirmed,
The average diameter of each dense part 2 is within the range of 0.5 to 10 mm. Thus, the porous ceramic body 1 of the present invention
Has a high strength and hardness since most of the dense parts 2 are completely sintered, and the surface 1
By polishing a, the center line average roughness (Ra)
It is possible to form an extremely smooth surface of 0.1 μm or less. The porosity of this porous ceramics 1 is 10
Although it is as low as 0.1% or less, since the pores 3 are present in the gaps between the dense parts 2 and communicate with each other, they can be suitably used for a filter, a vacuum adsorption device, or the like.

【0015】さらに、この多孔質セラミック体1を形成
するセラミック材としては、アルミナ、ジルコニア、ム
ライト、コージライトなどの酸化物セラミックスや、炭
化珪素、窒化珪素、窒化アルミニウムなどの非酸化物セ
ラミックスなどさまざまなものを用いることができる。
Further, various ceramic materials for forming the porous ceramic body 1 include oxide ceramics such as alumina, zirconia, mullite and cordierite, and non-oxide ceramics such as silicon carbide, silicon nitride and aluminum nitride. Anything can be used.

【0016】次に、本発明の多孔質セラミック体1の製
造方法を説明する。
Next, a method of manufacturing the porous ceramic body 1 of the present invention will be described.

【0017】まず、所定のセラミック原料にPVA、P
EGなどのバインダーを添加混合したものを直径0.5
〜10mmの球状成形体11とする。ここで、球状成形
体11とは、鋭いエッジのない滑らかな曲面状の表面を
持った成形体のことであり、この球状成形体11を得る
ためには、例えばセラミック原料を球状にプレス成形し
たり、あるいはセラミック原料を連続的に造粒し続け
て、直径0.5〜10mmの大きさとなるようにすれば
良い。
First, PVA and P are added to predetermined ceramic raw materials.
A diameter of 0.5 is obtained by adding and mixing a binder such as EG.
The spherical molded body 11 having a size of 10 mm is used. Here, the spherical molded body 11 is a molded body having a smooth curved surface without sharp edges. In order to obtain the spherical molded body 11, for example, a ceramic raw material is pressed into a spherical shape. Alternatively, the ceramic raw material may be continuously granulated to have a diameter of 0.5 to 10 mm.

【0018】次に、図2に示すように、この球状成形体
11をさらにPVA、PEGなどの水溶性バインダーと
混合して、例えばラバープレス用のゴム型12に充填し
た後、各球状成形体11が互いに密着し、かつその間に
隙間が存在する程度に加圧して押し固め、所定形状に成
形する。最後に、得られた成形体を所定条件で焼成すれ
ば、球状成形体11部分は緻密質部2となり、各球状成
形体11の間隙に気孔3が生じることとなり、図1に示
すような本発明の多孔質セラミック体1を得ることがで
きる。なお、上記ラバープレス成形に代えて、金型を用
いた乾式プレス成形法やその他の加圧成形を行っても良
い。
Next, as shown in FIG. 2, this spherical molded body 11 is further mixed with a water-soluble binder such as PVA or PEG and filled in a rubber mold 12 for rubber pressing, for example, and then each spherical molded body. 11 are pressed against each other and pressed to such an extent that a gap exists between them, and molded into a predetermined shape. Finally, when the obtained molded body is fired under predetermined conditions, the spherical molded body 11 part becomes the dense portion 2, and the pores 3 are generated in the gaps between the spherical molded bodies 11, and as shown in FIG. The porous ceramic body 1 of the invention can be obtained. Instead of the above rubber press molding, a dry press molding method using a mold or other pressure molding may be performed.

【0019】上記本発明の製造方法において、球状成形
体11を型中で再度加圧成形する際に、さらにバインダ
ーを添加する点、および各球状成形体11同士を密着さ
せるとともに、その間に隙間を残す程度の加圧力とする
点が重要であり、このときの加圧力を変化させることに
よって多孔質セラミック体1の気孔率等を調整すること
ができる。実際には、この時の加圧力は500〜150
0kg/cm2 程度としたものが好適である。
In the above-mentioned manufacturing method of the present invention, when the spherical molded body 11 is pressure-molded again in the mold, a point at which a binder is further added and the spherical molded bodies 11 are brought into close contact with each other and a gap is formed therebetween. It is important to set the pressing force to such an extent that it can be left, and the porosity of the porous ceramic body 1 can be adjusted by changing the pressing force at this time. Actually, the pressing force at this time is 500 to 150
It is preferably about 0 kg / cm 2 .

【0020】また、本発明の製造方法では、鋭いエッジ
のない球状成形体11を押し固めて成形するため、各球
状成形体11の隙間を連続気孔とすることができる。そ
のため、気孔率10%以下と気孔率が低くても、連続し
た気孔を持った多孔質セラミック体とできるのである。
Further, in the manufacturing method of the present invention, since the spherical molded body 11 having no sharp edge is pressed and molded, the gap between the spherical molded bodies 11 can be made into continuous pores. Therefore, even if the porosity is as low as 10% or less, a porous ceramic body having continuous porosity can be obtained.

【0021】なお、上記球状成形体11の平均径は0.
5〜10mmの範囲内が良い。これは球状成形体11の
平均径が0.5mm以下であると加圧成形時に間隙がつ
ぶれて多孔質体となりにくく、一方平均径が10mm以
上であると焼結しにくくなるためである。また、球状成
形体11の平均径は好ましくは0.5〜5mm程度、さ
らに好ましくは2〜3mm程度が良い。
The average diameter of the spherical molded body 11 is 0.
The range of 5 to 10 mm is preferable. This is because if the average diameter of the spherical molded body 11 is 0.5 mm or less, the gap is crushed during pressure molding and it becomes difficult to form a porous body, while if the average diameter is 10 mm or more, it becomes difficult to sinter. The average diameter of the spherical molded body 11 is preferably about 0.5 to 5 mm, more preferably about 2 to 3 mm.

【0022】また、上記球状成形体11は、混合時や、
加圧成形時につぶれるため、図1に示す最終的な多孔質
セラミック体1中の緻密質部2は完全な球状とはならな
い。ただし、各緻密質部2は明確に区別することがで
き、その平均径を測定すると0.5〜10mmの範囲内
であった。
Further, the spherical molded body 11 is mixed at the time of mixing,
The dense portion 2 in the final porous ceramic body 1 shown in FIG. 1 does not have a perfect spherical shape because it collapses during pressure molding. However, each dense part 2 was clearly distinguishable, and the average diameter thereof was within the range of 0.5 to 10 mm.

【0023】上記本発明の多孔質セラミック体1は、連
通気孔を有することから、静圧軸受やフィルタなどに用
いることができるが、特に真空吸着装置に好適に用いる
ことができる。そして、真空吸着装置に用いる場合は、
この多孔質セラミック体1の周囲に緻密質セラミックス
を一体的に形成して隔壁部となすこともできる。
Since the porous ceramic body 1 of the present invention has the continuous ventilation holes, it can be used for a static pressure bearing, a filter, etc., but can be particularly preferably used for a vacuum adsorption device. And when used in a vacuum suction device,
It is also possible to integrally form dense ceramics around the porous ceramic body 1 to form partition walls.

【0024】例えば、図3に示すように中央が緻密質部
2と気孔3からなる多孔質セラミック体1であり、周辺
部が緻密質セラミック体4であり、両者が一体的に形成
された複合体5とすることができる。このような複合体
5の製造方法は、まず、図2に示すものと同様に、0.
5〜10mmのセラミックス球状成形体11をゴム型1
2中に充填してラバープレス法により加圧成形した後、
図4に示すように得られた成形体を取り出さずに、成形
体とゴム型12との隙間に球状成形体11と同じセラミ
ック原料の微粉末13を充填し、再度加圧した後、焼成
し、切断すればよい。このようにすれば、図3に示すよ
うな中央部が多孔質セラミック体1で、周辺部が緻密質
セラミック体4となり、しかも両者が完全に焼結一体化
された複合体5を得ることができる。
For example, as shown in FIG. 3, a central portion is a porous ceramic body 1 composed of a dense portion 2 and pores 3, and a peripheral portion is a dense ceramic body 4, both of which are integrally formed into a composite. It can be the body 5. The manufacturing method of such a composite 5 is as follows.
A rubber mold 1 is used to attach a ceramic spherical molded body 11 of 5 to 10 mm
After being filled in 2 and pressure-molded by the rubber press method,
As shown in FIG. 4, without taking out the molded body obtained, the fine powder 13 of the same ceramic raw material as that of the spherical molded body 11 was filled in the gap between the molded body and the rubber mold 12, and the pressure was applied again, followed by firing. , Just cut it. By doing so, it is possible to obtain a composite body 5 in which the central portion is the porous ceramic body 1 and the peripheral portion is the dense ceramic body 4, and both are completely sintered and integrated as shown in FIG. it can.

【0025】図6に示すように、この複合体5を枠体2
2に固着して真空吸着装置を構成すると、多孔質セラミ
ックス1が吸着部となり、周囲の緻密質セラミックス4
を隔壁とすることができる。このとき、真空吸着部を構
成する多孔質セラミック体1は滑らかな表面とすること
ができ、粒子脱落もないことから、シリコンウェハなど
の被吸着物に傷をつけることがない。さらに、真空吸着
部の表面を研摩する場合は多孔質セラミック体1と緻密
質セラミック体4を同時に研摩するが、両者が同程度の
研摩特性を有しており、一体形成されていることから、
同時研摩しても段差が生じることはない。
As shown in FIG. 6, the composite body 5 is attached to the frame body 2
When it is adhered to 2 to form a vacuum adsorption device, the porous ceramics 1 serves as an adsorption portion, and the surrounding dense ceramics 4
Can be a partition. At this time, since the porous ceramic body 1 forming the vacuum suction portion can have a smooth surface and particles do not fall off, the object to be attracted such as a silicon wafer is not damaged. Further, when polishing the surface of the vacuum suction portion, the porous ceramic body 1 and the dense ceramic body 4 are polished at the same time, but since both have similar polishing characteristics and are integrally formed,
Even if they are simultaneously polished, no step occurs.

【0026】実験例 図5に示すように、本発明の多孔質セラミック体を真空
吸着装置に用いて、さまざまな実験を行った。
Experimental Example As shown in FIG. 5, various experiments were conducted by using the porous ceramic body of the present invention in a vacuum adsorption device.

【0027】99.5%のAl2 3 と残部がSi
2 、MgOなどからなるセラミック原料にバインダー
を添加混合したものを直径2mmの球状成形体11とし
た。この球状成形体11にさらに水溶性バインダーを添
加混合したものを、ゴム型12に充填し、ラバープレス
法により圧力800、1000、1200kg/cm2
の3通りで加圧した。加圧後の成形体とゴム型12の隙
間に上記セラミック原料の微粉末13を充填し、再度加
圧成形した。得られた成形体を所定条件で焼成した後、
切断、研削することにより、図3に示す多孔質セラミッ
ク体1と緻密質セラミク体4の複合体5を得ることがで
きた。この複合体5を用いて図5に示す真空吸着装置を
形成した。
99.5% Al 2 O 3 and the balance Si
A spherical raw material 11 having a diameter of 2 mm was obtained by adding and mixing a binder to a ceramic raw material made of O 2 , MgO or the like. A rubber mold 12 was filled with a mixture of the spherical molded body 11 and a water-soluble binder, and the pressure was 800, 1000, 1200 kg / cm 2 by a rubber press method.
The pressure was applied in three ways. The ceramic material fine powder 13 was filled in the gap between the pressed body and the rubber mold 12, and pressure molding was performed again. After firing the obtained molded body under predetermined conditions,
By cutting and grinding, the composite body 5 of the porous ceramic body 1 and the dense ceramic body 4 shown in FIG. 3 could be obtained. Using this composite 5, a vacuum adsorption device shown in FIG. 5 was formed.

【0028】比較例として、図6に示す従来の電融アル
ミナ(#100)をガラス融着した多孔質セラミックス
を用いた真空吸着装置を用意した。これらの真空吸着装
置において、多孔質部分の見掛比重、気孔率、平均細孔
径、表面粗さ(中心線平均粗さRa)、硬度を測定し
た。なお、平均細孔径の測定は水銀圧入法で行ったが、
気孔率が10%以下では正確な評価が行えないことか
ら、本発明実施例の平均細孔径の値はあくまでも参考値
である。
As a comparative example, there was prepared a vacuum adsorption device shown in FIG. 6 which uses porous ceramics obtained by glass-melting a conventional fused alumina (# 100). In these vacuum adsorption devices, the apparent specific gravity, porosity, average pore diameter, surface roughness (center line average roughness Ra) and hardness of the porous portion were measured. The measurement of the average pore diameter was performed by the mercury porosimetry,
Since the accurate evaluation cannot be performed when the porosity is 10% or less, the value of the average pore diameter in the examples of the present invention is merely a reference value.

【0029】結果は表1に示す通り、本発明の多孔質セ
ラミックスは、気孔率が1〜2%と低く、緻密質部が多
いことから、表面の硬度が高く、表面粗さも極めて滑ら
かにできることがわかる。
The results are shown in Table 1. The porous ceramics of the present invention have a low porosity of 1 to 2% and a large number of dense parts, so that the surface hardness is high and the surface roughness can be made extremely smooth. I understand.

【0030】[0030]

【表1】 [Table 1]

【0031】次に、これらの真空吸着装置を用いて、4
インチのシリコンウェハの吸着テストを行った。それぞ
れ吸着前、吸着後の真空度を大気圧(760mmHg)
との差で表2に示す。この結果より、本発明の多孔質セ
ラミックスは気孔率が小さいことから、吸着前後での真
空度の差がやや小さいが、吸着後の真空度を充分低くで
きることから、真空吸着装置として好適に使用できるこ
とがわかる。
Next, using these vacuum suction devices, 4
An inch silicon wafer adsorption test was performed. The degree of vacuum before and after adsorption is atmospheric pressure (760 mmHg).
Table 2 shows the difference. From this result, since the porous ceramics of the present invention has a small porosity, the difference in the degree of vacuum before and after adsorption is slightly small, but the degree of vacuum after adsorption can be made sufficiently low, so that it can be suitably used as a vacuum adsorption device. I understand.

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】このように本発明によれば、平均径0.
5〜10mmの緻密質部の集合体であって、これら緻密
質部同士の間隙を連続気孔として多孔質セラミック体を
構成したことによって、高硬度、高強度で滑らかな表面
を持った多孔質セラミック体とできることから、真空吸
着装置などに好適に用いることができる。また、このよ
うな多孔質セラミック体は、セラミック原料を球状圧粉
体とし、この球状圧粉体を所定形状に押し固め、焼成す
ることによって、所定の気孔率を持ったものを容易に製
造することができる。
As described above, according to the present invention, the average diameter is 0.
A porous ceramic body having a dense surface of 5 to 10 mm and having a high hardness, a high strength, and a smooth surface by configuring a porous ceramic body with the gaps between the dense parts being continuous pores. Since it can be formed into a body, it can be suitably used in a vacuum adsorption device or the like. In addition, such a porous ceramic body can be easily manufactured with a spherical porosity by using a ceramic raw material as a spherical green compact and pressing the spherical green compact into a predetermined shape and firing it. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の多孔質セラミック体を示す斜
視図、(B)は(A)中のX−X線断面図である。
FIG. 1A is a perspective view showing a porous ceramic body of the present invention, and FIG. 1B is a sectional view taken along line XX in FIG.

【図2】図1に示す多孔質セラミック体の製造方法を説
明するための図である。
FIG. 2 is a diagram for explaining a method for manufacturing the porous ceramic body shown in FIG.

【図3】(A)は本発明の多孔質セラミック体と緻密質
セラミック体の複合体を示す斜視図、(B)は(A)中
のY−Y線断面図である。
3A is a perspective view showing a composite of a porous ceramic body and a dense ceramic body of the present invention, and FIG. 3B is a sectional view taken along line YY in FIG.

【図4】図3に示す複合体の製造方法を説明するための
図である。
FIG. 4 is a diagram for explaining a method for producing the composite body shown in FIG.

【図5】本発明の多孔質セラミック体を用いた真空吸着
装置を示す縦断面図である。
FIG. 5 is a vertical sectional view showing a vacuum adsorption device using the porous ceramic body of the present invention.

【図6】従来の多孔質セラミック体を用いた真空吸着装
置を示す縦断面図である。
FIG. 6 is a vertical cross-sectional view showing a vacuum adsorption device using a conventional porous ceramic body.

【符号の説明】[Explanation of symbols]

1・・・多孔質セラミック体 2・・・緻密質部 3・・・気孔 4・・・緻密質セラミック体 5・・・複合体 11・・・球状成形体 12・・・ゴム型 13・・・微粉末 DESCRIPTION OF SYMBOLS 1 ... Porous ceramic body 2 ... Dense part 3 ... Porosity 4 ... Dense ceramic body 5 ... Composite body 11 ... Spherical molded body 12 ... Rubber mold 13 ...・ Fine powder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】平均径0.5〜10mmの緻密質部の集合
体であって、これら緻密質部同士の間隙を連続気孔とし
て具備して成る多孔質セラミック体。
1. A porous ceramic body which is an aggregate of dense parts having an average diameter of 0.5 to 10 mm, and which has gaps between the dense parts as continuous pores.
【請求項2】セラミック原料を平均径0.5〜10mm
の球状成形体とし、これら未焼成の球状成形体の多数個
を型中に充填して所定形状に成形した後、焼成する工程
からなる多孔質セラミック体の製造方法。
2. A ceramic raw material having an average diameter of 0.5 to 10 mm.
The method for producing a porous ceramic body, comprising the steps of filling a mold with a large number of these unsintered spherical compacts, molding them into a predetermined shape, and then firing.
JP4162492A 1992-02-27 1992-02-27 Vacuum suction device and manufacturing method thereof Expired - Lifetime JP3228546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4162492A JP3228546B2 (en) 1992-02-27 1992-02-27 Vacuum suction device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4162492A JP3228546B2 (en) 1992-02-27 1992-02-27 Vacuum suction device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH05238844A true JPH05238844A (en) 1993-09-17
JP3228546B2 JP3228546B2 (en) 2001-11-12

Family

ID=12613487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4162492A Expired - Lifetime JP3228546B2 (en) 1992-02-27 1992-02-27 Vacuum suction device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3228546B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315358A (en) * 2003-03-31 2004-11-11 Nippon Tungsten Co Ltd Porous alumina sintered compact and method for manufacturing the same
JP2007514306A (en) * 2003-12-09 2007-05-31 シュンク・コーレンストッフテヒニーク・ゲーエムベーハー Support for receiving workpiece and method for manufacturing the support
JP2007176788A (en) * 2005-11-29 2007-07-12 Gako Imai Composition for porous ceramic, porous ceramic using the same and method for manufacturing the same
JP2009147384A (en) * 2009-03-26 2009-07-02 Taiheiyo Cement Corp Vacuum suction device and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315358A (en) * 2003-03-31 2004-11-11 Nippon Tungsten Co Ltd Porous alumina sintered compact and method for manufacturing the same
JP4502683B2 (en) * 2003-03-31 2010-07-14 日本タングステン株式会社 Porous alumina sintered body and method for producing the same
JP2007514306A (en) * 2003-12-09 2007-05-31 シュンク・コーレンストッフテヒニーク・ゲーエムベーハー Support for receiving workpiece and method for manufacturing the support
JP2007176788A (en) * 2005-11-29 2007-07-12 Gako Imai Composition for porous ceramic, porous ceramic using the same and method for manufacturing the same
JP2009147384A (en) * 2009-03-26 2009-07-02 Taiheiyo Cement Corp Vacuum suction device and method of manufacturing the same

Also Published As

Publication number Publication date
JP3228546B2 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
JP3469999B2 (en) Adsorber manufacturing method
JP4222588B2 (en) Honeycomb filter and manufacturing method thereof
US7141087B2 (en) Honeycomb ceramics filter
JP3663215B2 (en) Vacuum adsorption apparatus and manufacturing method thereof
JP4908263B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JP2001261463A (en) Ceramic porous body and its production process
JP3228546B2 (en) Vacuum suction device and manufacturing method thereof
JP5275946B2 (en) Manufacturing method of ceramic molded body
JP2002114579A (en) Sintering setter
JP4405887B2 (en) Vacuum adsorption device
GB2168335A (en) A ceramic foam filter
EP3962878A1 (en) Monolithic ceramic body and assembly
JP3495053B2 (en) Manufacturing method of ceramic joined body
JP6174500B2 (en) Honeycomb structure
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
JPS59156954A (en) Manufacture of porous ceramics
KR20040026504A (en) Porous Ceramic Material with Double Pore Structures and Manufacturing Process therefor
JPH09301785A (en) Ceramic porous body and its production
JPH06157157A (en) Production of ceramics with closed pore
JP2004186400A (en) Vacuum chuck for semiconductor manufacturing apparatus
RU2149051C1 (en) Ceramic filter composition
JPS62238639A (en) Sucking plate
JP2019096717A (en) Substrate suction member and manufacturing method thereof
JP2000272980A (en) Porous material having continuous pore and its production
JPH09286658A (en) Production of ceramic spherical hollow body and manufacture of ceramic panel using ceramic spherical hollow body as constituent material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070907

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11