[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH052379B2 - - Google Patents

Info

Publication number
JPH052379B2
JPH052379B2 JP26140984A JP26140984A JPH052379B2 JP H052379 B2 JPH052379 B2 JP H052379B2 JP 26140984 A JP26140984 A JP 26140984A JP 26140984 A JP26140984 A JP 26140984A JP H052379 B2 JPH052379 B2 JP H052379B2
Authority
JP
Japan
Prior art keywords
mol
catalyst
reaction
disproportionation
chlorosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26140984A
Other languages
Japanese (ja)
Other versions
JPS61138540A (en
Inventor
Masahiko Nakajima
Akira Myai
Shinsei Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP26140984A priority Critical patent/JPS61138540A/en
Publication of JPS61138540A publication Critical patent/JPS61138540A/en
Publication of JPH052379B2 publication Critical patent/JPH052379B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、クロルシランの不均化触媒及びシラ
ン化合物の連続的製法に関する。更に詳しくは、
第3級アミンを除く電子供与基を有する窒素化合
物と塩化水素との混合物或いは反応物を触媒とし
て用い、クロルシランを反応塔内で不均斉化反応
させると共に蒸留分離を同時に行なわせ、ジクロ
ルシラン、モノシラン等のシラン化合物を連続的
に取得するシラン化合物の連続的製法及び該製造
に用いる触媒に関するものである。 ジクロルシラン、モノシラン等は半導体や太陽
電池素子に使用される原料として、近年益々需要
増加が見込まれており、これらを大量に効率よく
製造することが要望されている。 〔従来の技術〕 シランは下記平衡反応に従つて触媒の存在下に
SiHCl3の不均斉化反応により得らること公知で
ある。 (1) 2SiHCl3SiHC2l2+SiCl4 (2) 2SiH2Cl2SiH3Cl+SiHCl3 (3) 2SiH3ClSiH4+SiH2Cl2 全体で (4) 4SiHCl3SiH43+3SiCl4 その際の不均化触媒としては種々のものが提案
されているが一長一短がある。例えば、ニトリル
類を用いる方法(USP2732282)は反応温度を
150℃以上で操作しなければならず、ジメチルフ
オルムアミドやジメチルブチルアミドを用いる方
法(USP3222511)は触媒が劣化しやすい等の欠
点があつた。 これらの欠点を改良することを目的とし、例え
ば、α−オキソアミン類特にテトラメチル尿素、
Nメチルピロリドンなどを用いる方法
(USP4038371、USP4018871)、テトラメチルグ
アニジン、1,3ジメチルイミダゾリジノン、ε
カプロラクタム、トリメチルシリルイミダゾール
などを用いる方法(特開昭56−17918号公報)、高
級第3級アミンを用いる方法(特願昭58−149996
号)などが提案されている。しかし、これらの触
媒では不均斉化速度が小さいか或いはクロルシラ
ンと反応して凝固性の固形物を形成するため、撹
拌を充分に行ない分散させても装置内各部で凝集
を起こし運転操作上いろいろトラブルを引き起こ
すなどの欠点があつた。 〔発明が解決しようとする問題点〕 本発明は、クロルシラン類の不均斉化に効果の
ある触媒として、第3級アミン又は第3級アミン
に塩化水素を添加したものはクロルシランの不均
斉化速度を早くでき、さらには、その触媒はクロ
ルシランと反応して固形物を作つたとしてもさら
さらとした凝集しにくいものとなるため、装置上
のトラブルが低減することを見い出し、先に特許
出願をした。本発明者は、さらに検討を進めたと
ころ、電子供与基を有する窒素化合物は、ほぼ第
3級アミンと近い性能を示すことを知り、本発明
を提案するに到つたものである。 〔問題点を解決するための手段〕 すなわち、本発明の第1は、第3級アミンを除
く電子供与基を有する窒素化合物98〜20モル%と
塩化水素2〜80モル%との混合物及び/又は反応
物からなることを特徴とするクロルシランの不均
化触媒であり、第2の発明は、トルクロルシラン
等の原料クロルシランを、不均化触媒を存在させ
た蒸留機能を有する反応塔に供給し、反応塔の上
部から原料クロルシランよりも水素原子の多いシ
ラン化合物を取得する一方、反応塔の底部から塩
素原子の多いシラン化合物と触媒の混合液の抜き
取る方法において、前記不均化触媒が、第3級ア
ミンを除く電子供与基を有する窒素化合物98〜20
モル%と塩化水素2〜80モル%との混合物及び/
又は反応物であることを特徴とするシラン化合物
の連続的製法である。 以下、さらに詳しく本発明について説明する。
第3級アミンを除く電子供与基を有する窒素化合
物(以下、単に電子供与基を有する窒素化合物と
いう。)としては、オキソアミン類、ニトリル類、
アゾ化合物、シラザン化合物、ニトロ化合物など
があるがオキソアミン類が好ましく、中でも、テ
トラメチル尿素、Nメチルピロリドン、モルホリ
ン、εカプロラクタム、Nメチルカプロラクタ
ム、サルコシンアンハイドライド、ビスペンタメ
チレン尿素、1,3ジメチルチオ尿素、1,3ジ
メチルイミダゾリジノンが良好で、更に、テトラ
メチルグアニジン、トリメチルシリルイミダゾー
ルも効果がある。これらは単味でもある程度触媒
作用を示すが、塩化水素と共存させると不均斉化
速度が早くなると共に、固形物を形成しても凝集
してしまうようなことはなく、撹拌により良く分
散するため系内に沈積しなくなる。 電子供与基を有する窒素化合物と塩化水素の割
合は、前者98〜20モル%、後者2〜80モル%であ
り、電子供与基を有する窒素化合物と塩化水素は
混合物及び/又は反応物の形態のいずれであつて
もよい。塩化水素の割合が2モル%未満では、不
均斉化反応速度を向上させる効果は小さく、ま
た、80モル%を越えると、触媒固形物としてクロ
ルシラン中に殆んど存在することになり、流動性
が乏しくなる。好ましい割合は、電子供与基を有
する窒素化合物95〜70モル%、塩化水素5〜30モ
ル%である。 本発明の触媒は、一般式R3N(但し、Rは炭素
数4以上のアルキル基である)で示される第3級
アミンと併用すると、その第3級アミンのクロル
シランに対する易溶解性によつて反応液全体の流
動性を改善することができるので好ましいことで
ある。第3級アミンの併用量は、電子供与基を有
する窒素化合物95〜5モル%に対し5〜95モル
%、好ましくは50〜5モル%に対し50〜95モル%
である。第3級アミンは、電子供与基を有する窒
素化合物とあらがじめ混合してから塩化水素を添
加してもよく、また、電子供与基を有する窒素化
合物に塩化水素を添加してから第3級アミンを混
合してもよい。第3級アミンとしては、トリnオ
クチルアミン、トリnブチルアミン、トリnペン
チルアミン、メチルジオクチルアミンなどがあげ
られるが、入手と効果の面から、トリnオクチル
アミン及びトリnブチルアミンが最適である。 本発明の第2は、不均化触媒を存在させた蒸留
機能をもつ反応塔に原料クロルシランを供給し、
反応塔の上部より原料クロルシランより水素原子
の多いシラン化合物を取得し、一方、反応塔の底
部より副生する塩素原子の多いシラン化合物及び
触媒からなる混合溶液を抜き取り、その後、該シ
ラン化合物と触媒を分離し、触媒を反応塔に循環
させるモノシラン、モノクロルシラン、ジクロル
シラン等のシラン化合物を連続的に製造する方法
において、不均化触媒として、本発明の第1で説
明した触媒を用いるものである。 以下、これについてさらに詳しく説明する。 本発明において、クロルシランとはSiHCl3
SiH2Cl2およびSiH3Clから選ばれた1種又は2種
以上のものをいう。 原料クロルシランに対する触媒量は2〜50モル
%好ましくは5〜40モル%である。触媒量が50モ
ル%を越えると反応液全体の流動性がそこなわれ
る。また、2モル%未満であると不均斉化速度を
高める効果が小さい。 本発明で使用される反応塔は、蒸留塔形式のも
のであり、例えばシーブトレイあるいはバブルキ
ヤツプトレイ等で仕切られた段塔あるいはラシヒ
リングあるいはポールリング等の充填物を充填し
た充填塔である。これら蒸留機能を有する反応塔
であればどんな構造のものでもよいが、本発明に
係わるシラン化合物の不均斉化反応が液相反応で
あるので、液ホールドアツプの大きい反応塔が望
ましい。 反応塔内の温度は一定ではなく、温度分布が生
ずる。すなわち、反応塔内では反応と同時に蒸留
による分離が行われるので、塔頂部の温度は低
く、塔底部は高くなるが、通常、反応は10〜200
℃の範囲で行われる。温度10℃未満では反応速度
が低く不均斉化反応が実質的に進行せず、また、
200℃をこえると触媒の熱分解が生じやすく好ま
しくない。また、反応は沸騰状態で行われるので
上記反応温度に保つために、ゲージ圧力は0〜20
Kg/cm程度とあなる。反応塔に供給された原料ク
ロルシランは前述のように、反応と分離が行わ
れ、沸点の差により、塔の上部からモノシラン、
モノクロルシラン、ジクロルシラン、トリクロル
シラン、四塩化珪素の順に濃度分布が生ずる。 次に、図面に従うつて説明すると、図面は本発
明の実施例に用いた装置の説明図である。トリク
ロルシラン等の原料クロルシランは原料供給導管
4を通じて反応塔1の中上段部に供給する。反応
塔1は塔径93mm、高さ2000mmで18の段数を有する
ステンレス鋼製蒸留塔で、各トレイは孔径1.5mm
の孔が37あるシーブトレイである。反応塔1の上
部にはステンレス鋼製の凝縮器3を設けており、
ジヤケツトにメタノールドライアイスを通して冷
却出来るようになつている。また、反応塔1の下
部には最大出力1KWのヒーターを内蔵するリボ
イラー2が設けられている。 反応塔1では不均斉反応と蒸留による分離が同
時に起こり不均斉化反応で生じた低沸点成分に富
んだガスは上方に移動し凝縮器3で冷却され同伴
する高沸点成分を凝縮した後、液体窒素で冷却さ
れたステンレス鋼製凝縮器6で凝縮させ、液体で
補集貯槽7に回収される。 一方、不均斉化反応で生じたトリクロルシラ
ン、四塩化珪素等の高沸点成分は塔底に移行し、
触媒と共にボイラー2よりその液面を調節しつつ
蒸発槽9に抜取られる。蒸発槽9は内容積3の
撹拌機付ステンレス鋼製容器からなりこれにジヤ
ケツトが設けられている。それに加熱された熱媒
油を循環させ、蒸発槽が加温されるようになつて
いる。この蒸発槽9は不均斉化反応で生じた四塩
化珪素の沸点よりも高く触媒より低い温度で操作
され、リボイラー2より抜取られたトリクロルシ
ランおよび四塩化珪素は蒸発し、メタノールドラ
イアイスで冷却された凝縮器11で補集され、貯
槽12に回収される。蒸発槽9に残つた触媒はポ
ンプ10により抜取られ、再び反応塔1の塔頂に
循環される。この場合、触媒中の塩化水素濃度が
所定値にたつていないときは補給管13から塩化
水素を補給する。 〔実施例〕 以下実施例と比較例をあげてさらに具体的に説
明する。 実施例 1 内容量500c.c.のSUS304製オートクレーブ(ジ
ヤケツト及び撹拌機付)にトリクロルシラン
(SiHCl3)1モルを用いて反応温度、触媒の種
類、塩化水素の添加量及び触媒添加量を第1表に
示すように変えて密閉状態で不均斉化反応を行
い、ガス相のクロルシラン量を経時的にガスクロ
マトグラフイーにて定量した。なお、ガス相の
SiHCl3量の変化は転換率に相当するが、ここで
はSiHCl3濃度が一定値になる迄の時間とその時
のSiHCl3の濃度について第1表に示した。第1
表において時間が短い程転換速度(不均斉化速
度)が速く、SiHCl3の濃度値が低いもの程転換
率が良いことを示す。また第1表には計算により
求めた平衡SiHCl3濃度を参考として示した。塩
化水素の添加は、所定量に相当するガス量をオー
トクレーブに加圧封入して行なつた。 実施例 2 実施例1において原料SiHCl3をSiH2Cl2に変更
し、第2表に示す条件で不均斉化反応させそのガ
ス相のSiH4濃度をガスクロマトグラフイーで定
量し濃度が一定となる時間とその時の濃度を第2
表に示した。 参考として計算により求められた平衡SiH4
ガス相濃度を第2表に示した。 実施例 3 触媒として、第3級アミンと電子供与基を有す
る窒素化合物との混合物に塩化水素を添加したも
のを用いた以外は実施例1と同様にして実験を行
なつた。その結果を第3表に示す。 実施例 4 実施例3において、原料をジクロルシランに変
更したところ、実施例2で示した結果とほゞ同等
の値が得られた。 比較例 1 実施例1に示したと同様の方法で、HClを添加
しない場合と多すぎる場合につき実験した。その
結果を第1表に示した。 比較例 2 実施例2に示したと同様の方法で、HClを添加
しない場合と、多量添加の場合につき実験した。 比較例 3 触媒として、トリnオクチルアミンと、テトラ
メチル尿素又はテトラメチルグアニジンとの混合
物(HClは添加せず)を用い実施例3と同様の実
験を行なつた。その結果を第3表に示す。
[Industrial Field of Application] The present invention relates to a chlorosilane disproportionation catalyst and a continuous method for producing a silane compound. For more details,
Using a mixture or reactant of a nitrogen compound having an electron-donating group other than a tertiary amine and hydrogen chloride as a catalyst, chlorosilane is subjected to a disproportionation reaction in a reaction column, and distillation separation is simultaneously carried out to produce dichlorosilane, monosilane, etc. The present invention relates to a continuous method for producing a silane compound for continuously obtaining a silane compound, and a catalyst used for the production. Demand for dichlorosilane, monosilane, etc. is expected to increase in recent years as raw materials used in semiconductors and solar cell elements, and there is a demand for efficient production of large quantities of these. [Prior art] Silane is produced in the presence of a catalyst according to the following equilibrium reaction.
It is known that it can be obtained by a disproportionation reaction of SiHCl 3 . (1) 2SiHCl 3 SiHC 2 l 2 +SiCl 4 (2) 2SiH 2 Cl 2 SiH3Cl + SiHCl 3 (3) 2SiH 3 ClSiH4 + SiH 2 Cl 2 in total (4) 4SiHCl 3 SiH4 3 +3SiCl 4There are various disproportionation catalysts at that time. Although some methods have been proposed, they have advantages and disadvantages. For example, the method using nitriles (USP2732282) requires a lower reaction temperature.
It is necessary to operate at a temperature of 150°C or higher, and the method using dimethylformamide or dimethylbutyramide (US Pat. No. 3,222,511) had drawbacks such as easy catalyst deterioration. In order to improve these drawbacks, for example, α-oxoamines, especially tetramethylurea,
Method using N-methylpyrrolidone etc. (USP4038371, USP4018871), tetramethylguanidine, 1,3 dimethylimidazolidinone, ε
A method using caprolactam, trimethylsilylimidazole, etc. (Japanese Unexamined Patent Publication No. 17918/1982), a method using higher tertiary amines (Japanese Patent Application No. 149996/1982)
) have been proposed. However, these catalysts either have a low disproportionation rate or react with chlorosilane to form a coagulable solid, so even if sufficient stirring is performed to disperse the catalyst, agglomeration occurs in various parts of the device, causing various operational problems. It had drawbacks such as causing [Problems to be Solved by the Invention] The present invention provides that, as a catalyst effective for disproportionation of chlorosilanes, a tertiary amine or a tertiary amine to which hydrogen chloride is added can improve the disproportionation rate of chlorosilanes. The company discovered that the catalyst can be used quickly, and even if it reacts with chlorosilane to form a solid substance, it becomes smooth and resistant to agglomeration, reducing equipment troubles. . Upon further investigation, the present inventor found that a nitrogen compound having an electron donating group exhibits a performance almost similar to that of a tertiary amine, and came to propose the present invention. [Means for Solving the Problems] That is, the first aspect of the present invention is a mixture of 98 to 20 mol% of a nitrogen compound having an electron-donating group other than a tertiary amine and 2 to 80 mol% of hydrogen chloride and/or The second invention is a disproportionation catalyst for chlorosilane, characterized in that it consists of a reactant, and the second invention is a catalyst for disproportionation of chlorosilane, which is characterized in that a raw material chlorosilane such as toluchlorosilane is supplied to a reaction column having a distillation function in which a disproportionation catalyst is present. However, in a method for obtaining a silane compound having more hydrogen atoms than the raw material chlorosilane from the upper part of the reaction tower, and extracting a mixed liquid of a silane compound having more chlorine atoms and a catalyst from the bottom of the reaction tower, the disproportionation catalyst is Nitrogen compounds with electron-donating groups excluding tertiary amines98-20
A mixture of mol% and hydrogen chloride 2 to 80 mol% and/or
Or, it is a continuous production method of a silane compound characterized by being a reactant. The present invention will be explained in more detail below.
Nitrogen compounds having an electron donating group other than tertiary amines (hereinafter simply referred to as nitrogen compounds having an electron donating group) include oxoamines, nitriles,
There are azo compounds, silazane compounds, nitro compounds, etc., but oxoamines are preferred, and among them, tetramethylurea, N-methylpyrrolidone, morpholine, ε-caprolactam, N-methylcaprolactam, sarcosine anhydride, bispentamethylene urea, 1,3 dimethylthiourea , 1,3 dimethylimidazolidinone are good, and tetramethylguanidine and trimethylsilylimidazole are also effective. These substances exhibit some degree of catalytic activity even when used alone, but when they coexist with hydrogen chloride, the rate of disproportionation increases, and even if solids are formed, they do not aggregate and are better dispersed by stirring. No more deposits in the system. The ratio of the nitrogen compound having an electron donating group and hydrogen chloride is 98 to 20 mol% for the former and 2 to 80 mol% for the latter, and the nitrogen compound having an electron donating group and hydrogen chloride are in the form of a mixture and/or a reactant. It can be either. If the proportion of hydrogen chloride is less than 2 mol%, the effect of improving the disproportionation reaction rate is small, and if it exceeds 80 mol%, most of it will exist in the chlorosilane as a catalyst solid, and the fluidity will decrease. becomes scarce. Preferred proportions are 95 to 70 mol% of the nitrogen compound having an electron donating group and 5 to 30 mol% of hydrogen chloride. When the catalyst of the present invention is used in combination with a tertiary amine represented by the general formula R 3 N (where R is an alkyl group having 4 or more carbon atoms), the tertiary amine is easily soluble in chlorosilane. This is preferable because the fluidity of the entire reaction solution can be improved. The combined amount of the tertiary amine is 5 to 95 mol% relative to 95 to 5 mol% of the nitrogen compound having an electron donating group, preferably 50 to 95 mol% relative to 50 to 5 mol%.
It is. The tertiary amine may be mixed in advance with a nitrogen compound having an electron-donating group and then hydrogen chloride is added, or hydrogen chloride may be added to the nitrogen compound having an electron-donating group and then the tertiary amine is mixed with a nitrogen compound having an electron-donating group. grade amines may be mixed. Examples of the tertiary amine include tri-n-octylamine, tri-n-butylamine, tri-n-pentylamine, and methyldioctylamine, but tri-n-octylamine and tri-n-butylamine are most suitable in terms of availability and effectiveness. The second aspect of the present invention is to supply raw material chlorosilane to a reaction column having a distillation function in which a disproportionation catalyst is present,
A silane compound with more hydrogen atoms than the raw material chlorosilane is obtained from the upper part of the reaction tower, and a mixed solution consisting of a by-product silane compound with more chlorine atoms and a catalyst is extracted from the bottom of the reaction tower, and then the silane compound and the catalyst are extracted. A method for continuously producing silane compounds such as monosilane, monochlorosilane, dichlorosilane, etc., in which the catalyst is separated and the catalyst is circulated to a reaction column, in which the catalyst described in the first aspect of the present invention is used as a disproportionation catalyst. . This will be explained in more detail below. In the present invention, chlorosilane refers to SiHCl 3 ,
Refers to one or more selected from SiH 2 Cl 2 and SiH 3 Cl. The amount of catalyst relative to the raw material chlorosilane is 2 to 50 mol%, preferably 5 to 40 mol%. If the amount of catalyst exceeds 50 mol%, the fluidity of the entire reaction solution will be impaired. Moreover, if it is less than 2 mol %, the effect of increasing the disproportionation rate is small. The reaction column used in the present invention is in the form of a distillation column, such as a plate column partitioned with sieve trays or bubble cap trays, or a packed column filled with a packing such as a Raschig ring or a Pall ring. Any structure may be used as long as the reaction column has a distillation function, but since the disproportionation reaction of the silane compound according to the present invention is a liquid phase reaction, a reaction column with a large liquid hold-up is desirable. The temperature inside the reaction tower is not constant, but a temperature distribution occurs. In other words, in the reaction column, separation by distillation occurs simultaneously with the reaction, so the temperature at the top of the column is low and the temperature at the bottom is high.
It is carried out in the range of °C. At temperatures below 10°C, the reaction rate is low and the disproportionation reaction does not substantially proceed;
If the temperature exceeds 200°C, thermal decomposition of the catalyst tends to occur, which is not preferable. In addition, since the reaction takes place in a boiling state, the gauge pressure must be set between 0 and 20 to maintain the reaction temperature above.
It is around Kg/cm. The raw material chlorosilane supplied to the reaction tower undergoes reaction and separation as described above, and due to the difference in boiling point, monosilane,
The concentration distribution occurs in the order of monochlorosilane, dichlorosilane, trichlorosilane, and silicon tetrachloride. Next, referring to the drawings, the drawings are explanatory diagrams of an apparatus used in an embodiment of the present invention. Raw material chlorosilane such as trichlorosilane is supplied to the upper middle section of the reaction tower 1 through the raw material supply conduit 4 . Reaction column 1 is a stainless steel distillation column with a column diameter of 93 mm, a height of 2000 mm, and 18 plates, each tray having a pore size of 1.5 mm.
This is a sieve tray with 37 holes. A stainless steel condenser 3 is installed at the top of the reaction tower 1.
The jacket can be cooled by passing methanol dry ice through it. Furthermore, a reboiler 2 containing a built-in heater with a maximum output of 1KW is provided at the bottom of the reaction tower 1. In the reaction column 1, the asymmetric reaction and separation by distillation occur simultaneously, and the gas rich in low-boiling components produced by the disproportionation reaction moves upward, is cooled in the condenser 3, condenses the accompanying high-boiling components, and then becomes a liquid. It is condensed in a stainless steel condenser 6 cooled with nitrogen, and collected as a liquid in a collecting storage tank 7. On the other hand, high-boiling components such as trichlorosilane and silicon tetrachloride generated in the disproportionation reaction migrate to the bottom of the column.
Together with the catalyst, it is extracted from the boiler 2 into the evaporation tank 9 while its liquid level is adjusted. The evaporation tank 9 is a stainless steel container with an internal volume of 3 and equipped with a stirrer, and is equipped with a jacket. The evaporation tank is heated by circulating heated heat transfer oil. This evaporation tank 9 is operated at a temperature higher than the boiling point of silicon tetrachloride produced in the disproportionation reaction and lower than the catalyst, and trichlorosilane and silicon tetrachloride extracted from the reboiler 2 are evaporated and cooled with methanol dry ice. It is collected in a condenser 11 and collected in a storage tank 12. The catalyst remaining in the evaporation tank 9 is extracted by a pump 10 and circulated to the top of the reaction tower 1 again. In this case, when the hydrogen chloride concentration in the catalyst has not reached a predetermined value, hydrogen chloride is supplied from the supply pipe 13. [Example] A more specific explanation will be given below with reference to Examples and Comparative Examples. Example 1 Using 1 mole of trichlorosilane (SiHCl 3 ) in a SUS304 autoclave (equipped with jacket and stirrer) with an internal capacity of 500 c.c., the reaction temperature, type of catalyst, amount of hydrogen chloride added, and amount of catalyst added were adjusted. The disproportionation reaction was carried out in a closed state as shown in Table 1, and the amount of chlorosilane in the gas phase was determined over time by gas chromatography. In addition, in the gas phase
The change in the amount of SiHCl 3 corresponds to the conversion rate, and Table 1 shows the time required for the SiHCl 3 concentration to reach a constant value and the SiHCl 3 concentration at that time. 1st
The table shows that the shorter the time, the faster the conversion rate (disproportionation rate), and the lower the SiHCl 3 concentration value, the better the conversion rate. Table 1 also shows the equilibrium SiHCl 3 concentration determined by calculation for reference. Hydrogen chloride was added by pressurizing and sealing a gas amount corresponding to a predetermined amount into an autoclave. Example 2 In Example 1, the raw material SiHCl 3 was changed to SiH 2 Cl 2 and a disproportionation reaction was carried out under the conditions shown in Table 2. The SiH 4 concentration in the gas phase was determined by gas chromatography and the concentration became constant. The time and the concentration at that time are the second
Shown in the table. For reference, the equilibrium SiH 4 gas phase concentration determined by calculation is shown in Table 2. Example 3 An experiment was carried out in the same manner as in Example 1 except that a mixture of a tertiary amine and a nitrogen compound having an electron donating group to which hydrogen chloride was added was used as a catalyst. The results are shown in Table 3. Example 4 In Example 3, when the raw material was changed to dichlorosilane, values almost equivalent to those shown in Example 2 were obtained. Comparative Example 1 In the same manner as shown in Example 1, an experiment was conducted with no addition of HCl and with too much HCl. The results are shown in Table 1. Comparative Example 2 In the same manner as shown in Example 2, an experiment was conducted in which HCl was not added and in which a large amount of HCl was added. Comparative Example 3 An experiment similar to Example 3 was conducted using a mixture of tri-n-octylamine and tetramethylurea or tetramethylguanidine (without adding HCl) as a catalyst. The results are shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以下の効果を奏する。 (1) 従来の触媒に比べて、150℃以下の低温で平
衡転換率に近い転換率が得られる。 (2) 平衡転換率に達する時間が短く、不均斉化速
度が大きくなるので装置を小型化できる。 (3) 触媒が凝固することがないので長期の連続運
転が可能となる。
According to the present invention, the following effects are achieved. (1) Compared to conventional catalysts, conversion rates close to equilibrium conversion rates can be obtained at low temperatures below 150°C. (2) The time required to reach the equilibrium conversion rate is short and the disproportionation rate increases, so the equipment can be made smaller. (3) Since the catalyst does not solidify, long-term continuous operation is possible.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の実施例に用いた装置の説明図
である。 1……反応塔、2……リボイラー、3……凝縮
器、4……原料供給導管、5……調節弁、6……
凝縮器、7……補集貯槽、8……ニードルバル
ブ、9……蒸発槽、10……ポンプ、11……凝
縮器、12……貯槽、13……塩化水素補給管。
The drawing is an explanatory diagram of an apparatus used in an example of the present invention. DESCRIPTION OF SYMBOLS 1... Reaction tower, 2... Reboiler, 3... Condenser, 4... Raw material supply conduit, 5... Control valve, 6...
Condenser, 7... Collection storage tank, 8... Needle valve, 9... Evaporation tank, 10... Pump, 11... Condenser, 12... Storage tank, 13... Hydrogen chloride supply pipe.

Claims (1)

【特許請求の範囲】 1 第3級アミンを除く電子供与基を有する窒素
化合物98〜20モル%と塩化水素2〜80モル%との
混合物及び/又は反応物からなることを特徴とす
るクロルシランの不均化触媒。 2 トリクロルシラン等の原料クロルシランを、
不均化触媒を存在させた蒸留機能を有する反応塔
に供給さ、反応塔の上部から原料クロルシランよ
りも水素原子の多いシラン化合物を取得する一
方、反応塔の底部から塩素原子の多いシラン化合
物と触媒の混合液を抜き取る方法において、前記
不均化触媒が、第3級アミンを除く電子供与基を
有する窒素化合物98〜20モル%と塩化水素2〜80
モル%との混合物及び/又は反応物であることを
特徴とするシラン化合物の連続的製法。
[Scope of Claims] 1. A chlorosilane comprising a mixture and/or reactant of 98 to 20 mol% of a nitrogen compound having an electron-donating group other than a tertiary amine and 2 to 80 mol% of hydrogen chloride. Disproportionation catalyst. 2 Raw material chlorosilane such as trichlorosilane,
A silane compound containing more hydrogen atoms than the raw material chlorosilane is obtained from the top of the reaction column, while a silane compound containing many chlorine atoms and a silane compound containing many chlorine atoms are obtained from the bottom of the reaction column. In the method of extracting a mixture of catalysts, the disproportionation catalyst comprises 98 to 20 mol% of a nitrogen compound having an electron-donating group excluding tertiary amines and 2 to 80 mol% of hydrogen chloride.
A continuous method for producing a silane compound, characterized in that it is a mixture and/or reactant with mol%.
JP26140984A 1984-12-11 1984-12-11 Disproportionation catalyst of chlorosilane and continuous production of silane compound Granted JPS61138540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26140984A JPS61138540A (en) 1984-12-11 1984-12-11 Disproportionation catalyst of chlorosilane and continuous production of silane compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26140984A JPS61138540A (en) 1984-12-11 1984-12-11 Disproportionation catalyst of chlorosilane and continuous production of silane compound

Publications (2)

Publication Number Publication Date
JPS61138540A JPS61138540A (en) 1986-06-26
JPH052379B2 true JPH052379B2 (en) 1993-01-12

Family

ID=17361465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26140984A Granted JPS61138540A (en) 1984-12-11 1984-12-11 Disproportionation catalyst of chlorosilane and continuous production of silane compound

Country Status (1)

Country Link
JP (1) JPS61138540A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004045245B4 (en) * 2004-09-17 2007-11-15 Degussa Gmbh Apparatus and process for the production of silanes
KR20170095917A (en) 2014-12-16 2017-08-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Adhesive article with a barrier layer
EP3659964A1 (en) * 2018-11-28 2020-06-03 Hysilabs, SAS Catalysed process of production of hydrogen from silylated derivatives as hydrogen carrier compounds

Also Published As

Publication number Publication date
JPS61138540A (en) 1986-06-26

Similar Documents

Publication Publication Date Title
JP4922303B2 (en) Monosilane production method
US4610858A (en) Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
KR960005508B1 (en) Method and apparatus for the preparation of dichlorosilane
US20100296994A1 (en) Catalyst and method for dismutation of halosilanes containing hydrogen
US20110150739A1 (en) Method for removing boron-containing impurities from halogen silanes and apparatus for performing said method
JP5419456B2 (en) Continuous production method of monosilane
CN102741167A (en) Systems and methods of producing trichlorosilane
JP2012532821A (en) Method and system for producing monosilane
JPS641406B2 (en)
JPH052379B2 (en)
WO2014100705A1 (en) Conserved off gas recovery systems and processes
CN112028926A (en) Separation device and separation method for removing silicon tetrachloride in organic silicon monomer azeotrope
US9242868B2 (en) Process for separating monosilane from chlorosilanes-rich mixture
JPS643804B2 (en)
JPH0471008B2 (en)
JPS643807B2 (en)
US4405590A (en) Dismutation/redistribution of halogenosilanes into silane
JP2648615B2 (en) Simple production method of monosilane
JPH0470249B2 (en)
JPH0472764B2 (en)
CA1254716A (en) Chlorosilane dispropotionation catalyst and method for producing a silane compound by means of the catalyst
EP0213215B1 (en) Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
US8871168B2 (en) Process for producing monosilane from dichlorosilane
JPS6333422B2 (en)
JPS59121110A (en) Continuous preparation of silane compound