JPH05213626A - Production of beam extending fiber - Google Patents
Production of beam extending fiberInfo
- Publication number
- JPH05213626A JPH05213626A JP4017288A JP1728892A JPH05213626A JP H05213626 A JPH05213626 A JP H05213626A JP 4017288 A JP4017288 A JP 4017288A JP 1728892 A JP1728892 A JP 1728892A JP H05213626 A JPH05213626 A JP H05213626A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- optical fiber
- heating
- laser light
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、伝搬するモードのスポ
ットサイズを拡大したビーム拡大ファイバの製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a beam expanding fiber in which the spot size of a propagating mode is expanded.
【0002】[0002]
【従来の技術】テーパ状にスポットサイズを拡大したビ
ーム拡大ファイバは、光ファイバ間に偏光子とファラデ
ー回転子を挟み込んだ構造のアイソレータの回折損失を
低減するために、あるいは、コア径の小さい先端部を発
光ダイオードに近づけ、径の大きい端面を伝送用ファイ
バと接続して低次モードを効率よく励振するため等で使
用されている。この種のビーム拡大ファイバは、一旦光
ファイバを作製した後、その中間部を抵抗炉により加熱
してコアに添加したドーパントを拡散する方法によって
作製されていた(1990年.電子情報通信学会:OQ
E89−135)。2. Description of the Related Art A beam expanding fiber having a tapered spot size is used to reduce diffraction loss of an isolator having a structure in which a polarizer and a Faraday rotator are sandwiched between optical fibers, or a tip having a small core diameter. It is used to efficiently excite low-order modes by bringing the part closer to the light emitting diode and connecting the end face with a large diameter to the transmission fiber. This type of beam expanding fiber was produced by a method in which an optical fiber was once produced and then the intermediate portion thereof was heated by a resistance furnace to diffuse the dopant added to the core (1990. Institute of Electronics, Information and Communication Engineers: OQ.
E89-135).
【0003】[0003]
【発明が解決しようとする課題】光ファイバを抵抗炉に
よって加熱し、ドーパントを熱拡散させてビーム拡大フ
ァイバを製造するには少なくとも光ファイバを1000
℃以上で昇温しなければならない。従来は局部的に加熱
することができなかったので、ファイバは必要以上に長
い範囲加熱され、強度劣化を起こす問題があった。In order to manufacture the beam expanding fiber by heating the optical fiber by the resistance furnace and thermally diffusing the dopant, at least 1000 optical fibers are required.
The temperature must be raised above ℃. Conventionally, since it was not possible to locally heat the fiber, there was a problem that the fiber was heated for a longer period than necessary and the strength was deteriorated.
【0004】[0004]
【課題を解決するための手段】本発明は、上述の欠点を
解消するためのビーム拡大ファイバを製造する方法に関
し、その特徴とするところは、光ファイバのガラスが吸
収する波長のレーザ光を前記光ファイバの局部に照射し
て加熱し、該局部のコアのドーパントを熱拡散させる方
法である。The present invention relates to a method of manufacturing a beam expanding fiber for solving the above-mentioned drawbacks, which is characterized in that a laser beam having a wavelength absorbed by the glass of the optical fiber is This is a method of irradiating and heating the local part of the optical fiber to thermally diffuse the dopant of the core of the local part.
【0005】ここで、前記光ファイバの局部を熱線によ
る加熱と併用することが好ましい。また、レーザ光の透
過性のよい伝送路によって前記光ファイバの端面を照射
し加熱することが最も好ましい方法である。Here, it is preferable to use the local part of the optical fiber together with the heating by the hot wire. Further, the most preferable method is to irradiate and heat the end face of the optical fiber through a transmission line having a high laser beam transmission property.
【0006】[0006]
【作用】図1に示す如く、光ファイバ1の石英ガラスに
ついては透過せずに吸収し発熱する10.6μm帯のC
O2レーザ光3を、レンズ2によってしぼって光ファイ
バ1の端面を照射するので局部的に効率よく加熱するこ
とができる。従って、光ファイバの端面近傍のコアのド
ーパントを効率よく拡散できる。また、図2に示す如
く、光ファイバ1の光軸と直角方向で端面近傍をアーク
放電5を併用すると、加熱する効果を増強すると同時に
放電加熱の位置によってコア拡散のテーパ部1−1−1
の傾斜を調整することもできる。以下に実施例を挙げて
本発明をより具体的に説明する。これは、本発明の一実
施例にすぎず、本発明の技術的範囲を限定するものでは
ない。As shown in FIG. 1, the quartz glass of the optical fiber 1 absorbs heat without passing through C glass in the 10.6 μm band.
Since the O 2 laser beam 3 is squeezed by the lens 2 to irradiate the end face of the optical fiber 1, the O 2 laser beam 3 can be locally and efficiently heated. Therefore, the dopant in the core near the end face of the optical fiber can be efficiently diffused. Further, as shown in FIG. 2, when arc discharge 5 is also used in the vicinity of the end face in the direction perpendicular to the optical axis of the optical fiber 1, the heating effect is enhanced and at the same time, the tapered portion 1-1-1 of the core diffusion depends on the position of the discharge heating.
You can also adjust the slope of the. Hereinafter, the present invention will be described more specifically with reference to examples. This is merely an example of the present invention and does not limit the technical scope of the present invention.
【0007】[0007]
(実施例1) 図1は、本発明のビーム拡大ファイバの
製造方法に係わる実施例の説明図である。図において、
1は光ファイバ、2はレンズ、3はレーザ光である。光
ファイバ1は石英ガラスにGeをドープしてコア1−1
を形成して1.3μm帯のシングルモードファイバを形
成し、スポットサイズ半径は5μmである。レーザ光3
は波長10.6μm帯のCO2レーザ光であり、その出
力は0.3Wである。レンズ2はCO2レーザ光をよく
透過するZnSeで形成した。プラスチック被覆1−3
の端部20mmを除去した光ファイバ1の端面に、上記
CO2レーザ光4を5分間照射し加熱した。その結果、
スポットサイズの半径は10μmであった。Example 1 FIG. 1 is an explanatory diagram of an example related to a method for manufacturing a beam expanding fiber of the present invention. In the figure,
Reference numeral 1 is an optical fiber, 2 is a lens, and 3 is laser light. The optical fiber 1 has a core 1-1 formed by doping Ge into quartz glass.
To form a 1.3 μm band single mode fiber, and the spot size radius is 5 μm. Laser light 3
Is a CO 2 laser beam with a wavelength of 10.6 μm, and its output is 0.3 W. The lens 2 is made of ZnSe that transmits CO 2 laser light well. Plastic coating 1-3
The CO 2 laser light 4 was irradiated for 5 minutes to the end surface of the optical fiber 1 from which the end portion of 20 mm was removed for heating. as a result,
The spot size radius was 10 μm.
【0008】(実施例2) 図2は、本発明の製造方法
に係わる他の実施例の説明図である。図において、4は
照射レーザ光用伝送路、5はアーク放電用電極であり、
図1と同じ番号は図1と同じ対象を表わす。照射レーザ
光伝送路5は10.6μm帯のCO2レーザ光、5.6
μm帯のCOレーザ光等はよく透過するが、0.6μm
帯のHe−Neレーザ光、1.3μm帯の半導体レーザ
光は通さないコア4−1の直径が20μmの銀ハライド
ファイバである。光ファイバ1の端面を照射レーザ光伝
送路5によって10.6μm帯のレーザ光0.3Wとア
ーク放電電流12mAを光ファイバ1の軸方向と直角方
向に照射して1分間加熱した。その結果、5μmのスポ
ットサイズ半径が14μmになった。さらに、一対の放
電用電極を追加し、光ファイバ1の端面近傍を照射して
上記加熱をしたところ、コア拡散のテーパー部1−1−
1の傾斜を変化させることができた。(Embodiment 2) FIG. 2 is an explanatory view of another embodiment relating to the manufacturing method of the present invention. In the figure, 4 is a transmission line for irradiation laser light, 5 is an electrode for arc discharge,
The same numbers as in FIG. 1 represent the same objects as in FIG. The irradiation laser light transmission line 5 is 10.6 μm band CO 2 laser light, 5.6.
CO laser light in the μm band is well transmitted, but 0.6 μm
It is a silver halide fiber having a core 4-1 having a diameter of 20 μm, which does not pass He—Ne laser light in the band and semiconductor laser light in the 1.3 μm band. The end face of the optical fiber 1 was irradiated with 0.3 W of laser light in the 10.6 μm band and 12 mA of arc discharge current in the direction perpendicular to the axial direction of the optical fiber 1 by the irradiation laser light transmission line 5 and heated for 1 minute. As a result, the spot size radius of 5 μm became 14 μm. Furthermore, when a pair of discharge electrodes were added and the vicinity of the end face of the optical fiber 1 was irradiated and the above heating was performed, the tapered portion for core diffusion 1-1-
The slope of 1 could be changed.
【0009】[0009]
【発明の効果】以上説明したように、本発明に係わる製
造方法は、 (1)光ファイバのガラス材質が吸収する波長のレーザ
光を局部的に照射し加熱するので、効率よくコアのドー
パントを熱拡散することができる。 (2)さらに、アーク放電等の熱線による加熱をも併用
することにより、加熱効果を増強できると同時に加熱す
る位置によってコア拡散のテーパ部の傾斜をも調整でき
る。 (3)局部的に加熱するので、光ファイバを保護する被
覆を除去する長さや、加熱による光ファイバの劣化する
長さが短くなるので、その後の補強等の後処理が簡単で
ある。As described above, the manufacturing method according to the present invention (1) locally irradiates and heats a laser beam having a wavelength absorbed by the glass material of the optical fiber. It can diffuse heat. (2) Further, the heating effect can be enhanced by also using heating by a heat ray such as arc discharge, and at the same time, the inclination of the tapered portion of the core diffusion can be adjusted depending on the heating position. (3) Since the heating is performed locally, the length of removing the coating that protects the optical fiber and the length of deterioration of the optical fiber due to heating are shortened, so that post-treatment such as reinforcement after that is easy.
【図1】本発明のビーム拡大ファイバの製造方法に係わ
る実施例の説明図である。FIG. 1 is an explanatory view of an embodiment relating to a method of manufacturing a beam expanding fiber of the present invention.
【図2】本発明のビーム拡大ファイバの製造方法に係わ
る他の実施例の説明図である。FIG. 2 is an explanatory view of another embodiment relating to the method for manufacturing the beam expanding fiber of the present invention.
1:光ファイバ 2:レンズ 3:レーザ光 4:照射レーザ光用伝送路 5:電極 1: Optical fiber 2: Lens 3: Laser light 4: Transmission line for irradiation laser light 5: Electrode
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 勇 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isamu Fujita 1 Taya-cho, Sakae-ku, Yokohama-shi, Kanagawa Sumitomo Electric Industries, Ltd. Yokohama Works
Claims (3)
ーザ光を前記光ファイバの局部に照射して加熱し、該局
部のコアのドーパントを熱拡散させることを特徴とする
ビーム拡大ファイバの製造方法。1. A method of manufacturing a beam expanding fiber, characterized in that a laser beam having a wavelength absorbed by glass of an optical fiber is applied to a local portion of the optical fiber to heat the optical fiber, and a dopant of a core of the local portion is thermally diffused. .
と併用することを特徴とする請求項1記載のビーム拡大
ファイバの製造方法。2. The method of manufacturing a beam expanding fiber according to claim 1, wherein a local portion of the optical fiber is used together with heating by a heating wire.
前記光ファイバの端面を照射して加熱することを特徴と
する請求項1,2記載のビーム拡大ファイバの製造方
法。3. The method of manufacturing a beam expanding fiber according to claim 1, wherein the end face of the optical fiber is irradiated with the light through a transmission line having a high laser light transmission property and heated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4017288A JPH05213626A (en) | 1992-02-03 | 1992-02-03 | Production of beam extending fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4017288A JPH05213626A (en) | 1992-02-03 | 1992-02-03 | Production of beam extending fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05213626A true JPH05213626A (en) | 1993-08-24 |
Family
ID=11939800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4017288A Pending JPH05213626A (en) | 1992-02-03 | 1992-02-03 | Production of beam extending fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05213626A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120057841A1 (en) * | 2010-09-01 | 2012-03-08 | Luna Innovation Incorporated | Registration of an extended reference for parameter measurement in an optical sensing system |
-
1992
- 1992-02-03 JP JP4017288A patent/JPH05213626A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120057841A1 (en) * | 2010-09-01 | 2012-03-08 | Luna Innovation Incorporated | Registration of an extended reference for parameter measurement in an optical sensing system |
US8842963B2 (en) * | 2010-09-01 | 2014-09-23 | Intuitive Surgical Operations, Inc. | Reducing reflection at termination of optical fiber in a small volume |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4886538A (en) | Process for tapering waveguides | |
US4678268A (en) | Method and apparatus for constructing microlens ends for optical fibers | |
JP2008273769A (en) | Optical fiber, its manufacturing method, and optical fiber manufacturing apparatus | |
JP2720950B2 (en) | Method of manufacturing tapered waveguide | |
EP0234326A2 (en) | Single mode optical fiber coupler and method of manufacture thereof | |
JPH05213626A (en) | Production of beam extending fiber | |
US6663297B1 (en) | Photon welding optical fiber with ultra violet (UV) and visible source | |
JP3224106B2 (en) | Optical fiber for laser input | |
JPH0363606A (en) | Optical fiber-inserted optical parts | |
JP3859836B2 (en) | Manufacturing method of optical fiber grating | |
JPS62223709A (en) | Multimode optical fiber coupler and manufacture thereof | |
JPH1138238A (en) | Optical fiber having long period grating and its manufacturing method | |
JP2008308361A (en) | Optical fiber and its production method | |
JPH06174955A (en) | Production of optical wave guide | |
US8217311B2 (en) | Method for laser induced fusion pigtailing of optical fiber to optical waveguide | |
JP3228016B2 (en) | Manufacturing method of glass waveguide device | |
JPH02136807A (en) | Manufacture of optical fiber coupler | |
JPH05288968A (en) | Optical fiber for laser input | |
KR19980043442A (en) | Optical fiber having an elliptical core and method of manufacturing the same | |
JP3097719B2 (en) | Optical circuit manufacturing method | |
JP2002131559A (en) | Method for manufacturing core enlarged optical fiber | |
JP2843654B2 (en) | Thermal diffusion method of optical fiber | |
JPH02168206A (en) | Refractive index distribution coupler | |
JPH04220609A (en) | Method for forming spot size converting portion | |
JP2002214486A (en) | Optical element module and method for manufacturing it |