JPH05218471A - Manufacture of thin-film solar cell device - Google Patents
Manufacture of thin-film solar cell deviceInfo
- Publication number
- JPH05218471A JPH05218471A JP4015609A JP1560992A JPH05218471A JP H05218471 A JPH05218471 A JP H05218471A JP 4015609 A JP4015609 A JP 4015609A JP 1560992 A JP1560992 A JP 1560992A JP H05218471 A JPH05218471 A JP H05218471A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- solar cell
- film solar
- laser
- electrode layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Drying Of Semiconductors (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、可とう性基板上に形成
されたアモルファスシリコン等を主成分とする薄膜半導
体を用いた太陽電池のユニットセルを直列接続してなる
薄膜太陽電池装置の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film solar cell device in which unit cells of a solar cell formed on a flexible substrate and using a thin film semiconductor containing amorphous silicon as a main component are connected in series. Regarding the method.
【0002】[0002]
【従来の技術】原料ガスのグロー放電分解や光CVDに
より形成されるアモルファス半導体薄膜は、膜を低温で
形成するために、高分子材料等の可とう性基板上に容易
に形成することができる。このため、住宅建材や自動車
のサンルーフ等の曲面を有する物の上へ設置する太陽電
池の材料として期待されている。こうしたアモルファス
太陽電池から発電した電力を効率よく取り出すために、
太陽電池の装置を、例えば図2に示すような形状とし、
ユニットセルが直列接続されるような構造が望ましい。
この構造は、透光性を有する高分子材料等の可とう性絶
縁基板1上に、SnO2 やZnO等からなる太陽電池の発電
波長領域に対し透光性と導電性とを有する第一電極層2
1、22、23を短冊状に形成し、その上に光起電力発生部
であるアモルファス半導体層31、32、33、次いで透光性
・導電性薄膜や金属薄膜からなる第二電極層41、42、43
を順に積層する。そして、一つのユニットセルの第一電
極層が隣接するユニットセルの第二電極層と一部接触す
る構造となるように両電極層およびアモルファス半導体
層のパターンを構成する。このような各層のパターンは
全面形成した薄膜をレーザパターニング法によりパター
ニングすることにより形成される。2. Description of the Related Art An amorphous semiconductor thin film formed by glow discharge decomposition of a raw material gas or optical CVD can be easily formed on a flexible substrate such as a polymer material because the film is formed at a low temperature. .. Therefore, it is expected as a material for a solar cell to be installed on a house building material, an automobile sunroof, or any other object having a curved surface. In order to efficiently extract the power generated from such amorphous solar cells,
For example, the solar cell device has a shape as shown in FIG.
A structure in which the unit cells are connected in series is desirable.
This structure has a first electrode having transparency and conductivity in the power generation wavelength region of a solar cell made of SnO 2 , ZnO or the like on a flexible insulating substrate 1 such as a polymer material having transparency. Layer 2
1, 22, 23 is formed in a strip shape, the amorphous semiconductor layer 31, 32, 33 is a photovoltaic generation portion on it, then the second electrode layer 41 consisting of a light-transmitting / conductive thin film or a metal thin film, 42, 43
Are sequentially stacked. Then, the patterns of both electrode layers and the amorphous semiconductor layer are configured so that the first electrode layer of one unit cell partially contacts the second electrode layer of the adjacent unit cell. Such a pattern of each layer is formed by patterning a thin film formed over the entire surface by a laser patterning method.
【0003】[0003]
【発明が解決しようとする課題】図2に示すような直列
接続の薄膜太陽電池装置を製造するためには、3回のパ
ターニングが必要である。それは、透光・導電性薄膜を
短冊状に分割して電気的に分離された複数の第一電極層
を形成する第一電極パターニング、第一電極層と第二電
極層の接続できる間隙を形成するためにアモルファス半
導体薄膜を分割するアモルファスパターニングおよび第
二電極層を分割してユニットセル間で電気的に分離する
第二電極パターニングである。しかし、可とう性基板を
用いる場合、その上に第一および第二電極層あるいはア
モルファス半導体薄膜の形成により生ずる各層の応力に
より、可とう性基板の平坦性が悪くなる。図3に示すよ
うに、レーザによる加工点が基準点からレンズ方向にず
れれば加工すべき膜面におけるレーザエネルギー密度は
大きくなり、基板を支持するXYステージ側にずれれば
レーザエネルギー密度が小さくなる。従って可とう性基
板の平坦性が悪くなるとレーザパターニングの加工均一
性が低下し、各ユニットセルの寸法精度の低下、もしく
は各ユニットセル間の電気的分離あるいは電気的接続の
不完全を招く問題があった。In order to manufacture a thin film solar cell device connected in series as shown in FIG. 2, patterning is required three times. It is a first electrode patterning that forms a plurality of electrically separated first electrode layers by dividing the translucent / conductive thin film into strips, and forms a gap that can connect the first electrode layer and the second electrode layer. In order to achieve this, an amorphous patterning for dividing the amorphous semiconductor thin film and a second electrode patterning for dividing the second electrode layer to electrically separate the unit cells are performed. However, when a flexible substrate is used, the flatness of the flexible substrate deteriorates due to the stress of each layer caused by the formation of the first and second electrode layers or the amorphous semiconductor thin film on the flexible substrate. As shown in FIG. 3, if the laser processing point shifts from the reference point in the lens direction, the laser energy density on the film surface to be processed increases, and if it shifts to the XY stage side that supports the substrate, the laser energy density decreases. Become. Therefore, if the flatness of the flexible substrate is deteriorated, the processing uniformity of laser patterning is reduced, and the dimensional accuracy of each unit cell is reduced, or electrical isolation between individual unit cells or incomplete electrical connection occurs. there were.
【0004】本発明の目的は、上記の問題を解決し、各
層の成膜時の応力により平坦性を失った可とう性基板上
の薄膜のレーザによる加工を均一に行う薄膜太陽電池装
置の製造方法を提供することにある。An object of the present invention is to solve the above problems and to manufacture a thin film solar cell device which uniformly processes a thin film on a flexible substrate whose flatness is lost due to stress during the formation of each layer by laser. To provide a method.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、透光性の可とう性絶縁基板上に成膜し
た薄膜を分割することにより形成された、それぞれ第
一、第二電極層の間にアモルファス半導体層を有するユ
ニットセルを直列接続してなる薄膜太陽電池の製造方法
において、薄膜成膜後少なくとも一面が平滑面である二
つの透光性矯正板の平滑面間に可とう性絶縁基板をはさ
んで固定し、矯正板および可とう性絶縁基板を通してレ
ーザ光を照射することにより薄膜を加工し、分割するも
のとする。その際、アモルファス半導体層および第二電
極層を加工するために投射するレーザ光の波長が第一電
極層を加工するために投射するレーザ光の波長より短い
ことが有効である。また、レーザ光投射による加工時に
可とう性基板と矯正板をコンピュータ制御によりレーザ
光投射方向に垂直面内で移動できるXYステージ上に設
置することが有効である。In order to achieve the above object, the present invention provides a first thin film formed by dividing a thin film formed on a light-transmissive flexible insulating substrate. In a method for manufacturing a thin film solar cell in which unit cells having an amorphous semiconductor layer are connected in series between second electrode layers, between the smooth surfaces of two translucent straightening plates, at least one surface of which is a smooth surface after thin film formation. The flexible insulating substrate is sandwiched and fixed, and the thin film is processed and divided by irradiating a laser beam through the straightening plate and the flexible insulating substrate. At that time, it is effective that the wavelength of the laser light projected to process the amorphous semiconductor layer and the second electrode layer is shorter than the wavelength of the laser light projected to process the first electrode layer. Further, it is effective to install the flexible substrate and the correction plate on an XY stage which can be moved in a vertical plane in the laser beam projection direction by computer control during processing by laser beam projection.
【0006】[0006]
【作用】可とう性基板を可とう性基板に接する面に平滑
面を有したガラス等の透光性矯正板により両側から挟み
固定することにより、可とう性基板の平坦度を改善し、
これにより矯正板を通じて投射されるレーザ光によるレ
ーザパターニングの加工均一性が向上する。[Function] The flatness of the flexible substrate is improved by sandwiching and fixing the flexible substrate from both sides with a transparent correction plate such as glass having a smooth surface on the surface in contact with the flexible substrate,
This improves the processing uniformity of laser patterning by the laser light projected through the straightening plate.
【0007】[0007]
【実施例】次に、本発明の実施例を図2と共通の部分に
同一の符号を付した図面に基づいて説明する。図1は、
可とう性基板上の薄膜をレーザパターニングする際のX
Yステージへの取付け方法を示したものである。これ以
前の工程で高分子材料等の可とう性絶縁基板1の上に第
一電極層21、22、23としてZnO膜を1μmの厚さに形成
し、次にアモルファス半導体 (アモルファスシリコン)
層31、32、33を0.4μmの厚さで形成する。この第一電
極層とアモルファス半導体層については従来と同様のレ
ーザスクライブ法によりパターニングを行った。第一電
極層21、22、23のパターニング用のレーザ光源として
は、波長1.06μmのYAG:Naレーザを、アモルファ
ス半導体層31、32、33のパターニング用の光源としては
波長0.53μmのYAG:Ndレーザをそれぞれ使用し、
可とう性基板1の側から投射した。次いで、その上に第
二電極層のための銀薄膜40を0.2μmの厚さに成膜し
た。そして、図に示すように矯正用ガラス板51、52によ
って両面から挟むことにより平坦性が悪くなっていた可
とう性基板1を平坦になるように固定し、XYステージ
6の上に設置した。パターニングの際には、このXYス
テージ6がコンピュータ制御により任意の座標をとる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to the drawing in which the same parts as those in FIG. Figure 1
X when laser patterning a thin film on a flexible substrate
It shows how to attach to the Y stage. In the process before this, a ZnO film having a thickness of 1 μm was formed as the first electrode layers 21, 22 and 23 on the flexible insulating substrate 1 such as a polymer material, and then an amorphous semiconductor (amorphous silicon) was formed.
The layers 31, 32, 33 are formed with a thickness of 0.4 μm. The first electrode layer and the amorphous semiconductor layer were patterned by the same laser scribing method as the conventional one. A YAG: Na laser having a wavelength of 1.06 μm is used as a laser light source for patterning the first electrode layers 21, 22, and 23, and a YAG: Nd having a wavelength of 0.53 μm is used as a light source for patterning the amorphous semiconductor layers 31, 32, and 33. Using each laser,
It was projected from the side of the flexible substrate 1. Then, a silver thin film 40 for the second electrode layer was formed thereon with a thickness of 0.2 μm. Then, as shown in the figure, the flexible substrate 1 whose flatness was poor by being sandwiched by the straightening glass plates 51 and 52 from both sides was fixed so as to be flat, and placed on the XY stage 6. At the time of patterning, the XY stage 6 takes arbitrary coordinates by computer control.
【0008】レーザ光源としては波長0.53μmのYA
G:Ndレーザを使用し、やはり可とう性基板1側から
レーザ光7を入射する。この場合、レーザ光7は透明な
矯正用ガラス板51および可とう性基板1を透過し、波長
が短いので第一電極層21、22、23には吸収されず、銀薄
膜40に吸収されてこの膜の材料を蒸発させるので、XY
ステージ6の移動の制御により図に点線で示した部分8
が除去される。As a laser light source, YA having a wavelength of 0.53 μm
A G: Nd laser is used, and the laser light 7 is also incident from the flexible substrate 1 side. In this case, the laser light 7 is transmitted through the transparent straightening glass plate 51 and the flexible substrate 1 and is not absorbed by the first electrode layers 21, 22, 23 because it has a short wavelength, and is absorbed by the silver thin film 40. Since the material of this film is evaporated, XY
The portion 8 shown by the dotted line in the figure is controlled by the movement of the stage 6.
Are removed.
【0009】このように矯正用ガラス板51、52を用いる
ことにより、可とう性基板の問題点である平坦度を図3
にAで示す±500 μm以内に制御した。この結果、加工
時のレーザエネルギー密度のばらつきを±0.1以内にで
き、均一性の良いレーザパターニングが行えるようにな
った。これにより、可とう性を有した高性能な直列接続
型薄膜太陽電池を得ることができた。By using the straightening glass plates 51 and 52 as described above, the flatness, which is a problem of the flexible substrate, is shown in FIG.
It was controlled within ± 500 μm shown by A. As a result, variations in laser energy density during processing can be kept within ± 0.1, and laser patterning with good uniformity can be performed. As a result, it was possible to obtain a high-performance series-connected thin-film solar cell having flexibility.
【0010】上記の実施例では、第二電極層をパターニ
ングする時にのみ矯正用ガラス板を用いたが、第一電極
層あるいはアモルファス半導体層成膜後の可とう性基板
の平坦性の程度によっては、第一電極層のパターニング
時、あるいはアモルファス半導体層のパターニング時に
も矯正用ガラス板で挟むことが有効である。In the above embodiments, the straightening glass plate was used only when patterning the second electrode layer, but depending on the degree of flatness of the flexible substrate after the first electrode layer or the amorphous semiconductor layer is formed. It is also effective to sandwich the glass plate for correction during patterning of the first electrode layer or during patterning of the amorphous semiconductor layer.
【0011】[0011]
【発明の効果】本発明によれば、可とう性絶縁基板上に
成膜された第一電極層、アモルファス層、第二電極層か
ら直列接続される薄膜太陽電池ユニットセルを形成する
ためのパターニングの際、少なくとも一層は可とう性基
板を二つの透光性の板の間に挟んで平坦性を改善した状
態でレーザ加工することにより、レーザパターニングの
加工均一性が向上し、精度のよいパターニングを行うこ
とができた。これにより高性能で曲面上に設置できる薄
膜太陽電池装置の製造が可能になった。According to the present invention, patterning for forming a thin film solar cell unit cell connected in series from a first electrode layer, an amorphous layer and a second electrode layer formed on a flexible insulating substrate. At this time, at least one flexible substrate is sandwiched between two translucent plates to perform laser processing in a state where the flatness is improved, whereby the processing uniformity of laser patterning is improved and accurate patterning is performed. I was able to do it. As a result, it has become possible to manufacture thin film solar cell devices with high performance that can be installed on curved surfaces.
【図1】本発明の一実施例における第二電極層パターニ
ング工程時の断面図FIG. 1 is a cross-sectional view of a second electrode layer patterning step according to an embodiment of the present invention.
【図2】図1に示した工程を経て製造される薄膜太陽電
池装置の断面図2 is a cross-sectional view of a thin-film solar cell device manufactured through the steps shown in FIG.
【図3】レーザ加工の際の加工点の基準点からのずれと
加工点におけるレーザエネルギー密度の関係曲線図FIG. 3 is a relationship curve diagram of a laser energy density at a processing point and a deviation of a processing point from a reference point during laser processing.
1 可とう性絶縁基板 21 第一電極層 22 第二電極層 23 第三電極層 31 アモルファス半導体層 32 アモルファス半導体層 33 アモルファス半導体層 40 銀薄膜 41 第二電極層 42 第二電極層 43 第二電極層 51 矯正用ガラス板 52 矯正用ガラス板 6 XYステージ 7 レーザ光 8 レーザ加工部 1 Flexible Insulating Substrate 21 First Electrode Layer 22 Second Electrode Layer 23 Third Electrode Layer 31 Amorphous Semiconductor Layer 32 Amorphous Semiconductor Layer 33 Amorphous Semiconductor Layer 40 Silver Thin Film 41 Second Electrode Layer 42 Second Electrode Layer 43 Second Electrode Layer 51 Straightening Glass Plate 52 Straightening Glass Plate 6 XY Stage 7 Laser Light 8 Laser Processing Section
Claims (3)
膜を分割することにより形成された、それぞれ第一、第
二電極層の間にアモルファス半導体層を有するユニット
セルを直列接続してなる薄膜太陽電池の製造方法におい
て、薄膜成膜後少なくとも一面が平滑面である二つの透
光性矯正板の平滑面間に可とう性絶縁基板をはさんで固
定し、矯正板および可とう性絶縁基板を通してレーザ光
を照射することにより薄膜を加工し、分割することを特
徴とする薄膜太陽電池装置の製造方法。1. A unit cell having an amorphous semiconductor layer between first and second electrode layers, which is formed by dividing a thin film formed on a transparent flexible insulating substrate, is connected in series. In the method of manufacturing a thin film solar cell, the flexible insulating substrate is sandwiched between the smooth surfaces of two light transmissive straightening plates having at least one smooth surface after the thin film is formed. A method for manufacturing a thin-film solar cell device, which comprises processing and dividing a thin film by irradiating a laser beam through a flexible insulating substrate.
加工するために投射するレーザ光の波長が第一電極層を
加工するために投射するレーザ光の波長より短い請求項
1記載の薄膜太陽電池装置の製造方法。2. The thin film solar cell according to claim 1, wherein the wavelength of laser light projected to process the amorphous semiconductor layer and the second electrode layer is shorter than the wavelength of laser light projected to process the first electrode layer. Device manufacturing method.
と矯正板をコンピュータ制御によりレーザ光投射方向に
垂直面内で移動できるXYステージ上に設置する請求項
1あるいは2記載の薄膜太陽電池装置の製造方法。3. The thin film solar cell device according to claim 1, wherein the flexible substrate and the straightening plate are installed on an XY stage which can be moved in a plane vertical to the laser beam projection direction by computer control during processing by laser beam projection. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4015609A JP3042130B2 (en) | 1992-01-31 | 1992-01-31 | Method for manufacturing thin-film solar cell device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4015609A JP3042130B2 (en) | 1992-01-31 | 1992-01-31 | Method for manufacturing thin-film solar cell device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05218471A true JPH05218471A (en) | 1993-08-27 |
JP3042130B2 JP3042130B2 (en) | 2000-05-15 |
Family
ID=11893453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4015609A Expired - Fee Related JP3042130B2 (en) | 1992-01-31 | 1992-01-31 | Method for manufacturing thin-film solar cell device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3042130B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998059378A1 (en) * | 1997-06-20 | 1998-12-30 | Kaneka Corporation | Solar battery module and method for manufacturing the same |
-
1992
- 1992-01-31 JP JP4015609A patent/JP3042130B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998059378A1 (en) * | 1997-06-20 | 1998-12-30 | Kaneka Corporation | Solar battery module and method for manufacturing the same |
US6365823B1 (en) | 1997-06-20 | 2002-04-02 | Kaneka Corporation | Solar cell module and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3042130B2 (en) | 2000-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5133809A (en) | Photovoltaic device and process for manufacturing the same | |
US4517403A (en) | Series connected solar cells and method of formation | |
AU2004204637B2 (en) | Transparent thin-film solar cell module and its manufacturing method | |
JPS63232376A (en) | Manufacture of photovoltaic device | |
US20100096008A1 (en) | Semitransparent crystalline silicon thin film solar cell | |
EP0313381A2 (en) | Image sensor | |
JPH0851229A (en) | Integrated solar battery and its manufacture | |
JP4379560B2 (en) | Thin film solar cell and manufacturing method thereof | |
WO2019114599A1 (en) | Method for manufacturing transparent thin-film solar cell assembly | |
JPH05218471A (en) | Manufacture of thin-film solar cell device | |
JPH11126916A (en) | Integrated-type thin film solar cell and its manufacture | |
JP4112202B2 (en) | Method for manufacturing thin film solar cell | |
JP2586654B2 (en) | Manufacturing method of thin film solar cell | |
JP4287560B2 (en) | Method for manufacturing thin film photoelectric conversion module | |
KR0145894B1 (en) | Liquid crystal display panel and manufacturing method with solar cell | |
JPH02224278A (en) | Manufacture of photovoltaic device | |
JPS62205668A (en) | Manufacture of integrated type solar battery | |
JPS6269566A (en) | Manufacture of photoelectric conversion device | |
JPS63299173A (en) | Manufacture of semiconductor device | |
JPS62137873A (en) | Manufacture of photoelectric conversion device | |
JPH02307278A (en) | Manufacture of thin film solar battery | |
JP3326344B2 (en) | Solar cell manufacturing method | |
JPS60117688A (en) | Manufacture of amorphous solar cell | |
JPS6265480A (en) | Thin film solar battery | |
JPH0779002A (en) | Manufacture of photovoltaic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |