[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0521664B2 - - Google Patents

Info

Publication number
JPH0521664B2
JPH0521664B2 JP60028446A JP2844685A JPH0521664B2 JP H0521664 B2 JPH0521664 B2 JP H0521664B2 JP 60028446 A JP60028446 A JP 60028446A JP 2844685 A JP2844685 A JP 2844685A JP H0521664 B2 JPH0521664 B2 JP H0521664B2
Authority
JP
Japan
Prior art keywords
steel
slab
cooling
molten
rapidly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60028446A
Other languages
Japanese (ja)
Other versions
JPS61189845A (en
Inventor
Kazuhide Nakaoka
Yoshiichi Takada
Junichi Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP2844685A priority Critical patent/JPS61189845A/en
Publication of JPS61189845A publication Critical patent/JPS61189845A/en
Publication of JPH0521664B2 publication Critical patent/JPH0521664B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、例えば同期式連続鋳造機により、
9%Ni鋼、Si−Mn鋼または構造用炭素鋼の溶鋼
を急冷凝固させて、直接薄板状の鋳片を連続鋳造
する急冷凝固法による薄板状鋳片の製造方法に関
するものである。 〔従来技術とその問題点〕 近年、溶融金属を超急冷凝固させて、直接薄板
状の鋳片を鋳造する方法が研究されている。例え
ば、特開昭58−210150号公報には、鉄とほう素と
けい素とからなるアモルフアス合金の溶融物を超
急冷して、急速に凝固させ、アモルフアス合金の
薄帯を鋳造する方法が開示されている。 しかしながら、上述した方法は、その急冷速度
が105℃/秒以上であるため、鋳造される薄帯の
厚さを200μm程度以下、幅を数百mm以下にせざ
るを得ない。従つて、その用途は特殊なものに限
られていた。 一方、鋳造工程を簡略化するために、例えば、
同一方向に且つ同一速度で移動する少なくとも1
対の無端帯を、互いに所定間隔をおいて対向配置
して水平な鋳型を形成し、前記鋳型内に供給され
た溶融金属を前記鋳型との接触によつて急冷凝固
せしめ、前記無端帯と同期させて引抜くことによ
り薄状板の鋳片を連続的に鋳造することからなる
同期式連続鋳造方法、および、1対の回転冷却体
の表面上に供給された溶融金属を、前記回転冷却
体との接触によつて急冷凝固せしめ、薄板状の鋳
片を連続的に鋳造することからなる双ロール式連
続鋳造方法等、多数の方法が提案されている。 上述の鋳造方法によれば、溶融金属の冷却速度
がアモルフアス合金薄板の鋳造の場合のような超
急冷ではないので、板厚が厚く且つ広幅の板状鋳
片を連続的に鋳造することができる。 しかしながら、上述のような方法により、溶融
金属を急冷凝固させて鋳造した鋳片は、冷却速度
が遅いため、鋳造のままでは、従来のインゴツト
材と類似の、オーステナイトまたはフエライト、
パーライト等が存在する組織しか得られないと考
えられており、その組織および材質についての検
討は従来ほとんどなされていなかつた。 〔発明の目的〕 従つて、この発明の目的は、9%Ni鋼、Si−
Mn鋼または構造用炭素鋼の溶鋼を急冷凝固させ
て、薄板状の鋳片を連続鋳造するに当り、焼入れ
処理等、付加的な熱処理を施すことなく、その組
織をマルテンサイト組織にすることができ、優れ
た特性を有する薄板状鋳片を製造する方法を提供
することにある。 本発明者等は、鉄基溶融金属を急冷し、薄板状
の鋳片を連続鋳造するに当り、その冷却速度によ
る金属組織の変化について鋭意研究を重ねた。 その結果、9%Ni鋼、Si−Mn鋼または構造用
炭素鋼のように、焼入れ性の良好な鋼種では、そ
の溶鋼を、40℃/秒以上、104℃/秒未満の範囲
内の冷却速度で凝固させ次いで常温まで連続的に
冷却することにより、鋳造後、焼入れ等の処理を
施さなくても、鋳造のままでマルテンサイト組織
が得られることを知見した。 〔発明の概要〕 この発明は、上記知見に基づいてなされたもの
であつて、9%Ni鋼、Si−Mn鋼または構造用炭
素鋼の溶鋼を急冷し、厚さ0.5mm以上の鋳片を連
続的に鋳造する薄板状鋳片の製造方法において、
前記溶鋼の凝固までの急冷を、40℃/秒以上、
104℃/秒未満の範囲内の冷却速度により行つて
前記溶鋼を凝固させ、次いで常温まで連続的に冷
却して、前記薄板状鋳片を組織をマルテンサイト
組織とすることに特徴を有するものである。 〔発明の構成〕 この発明において、9%Ni鋼は、C≦0.12%、
0.15≦Si≦0.30%、Mn≦0.90%、P≦0.025%、
S≦0.025%、8.50%≦Ni≦9.50%、Fe:残り、
からなる成分組成の鋼であり、例えば、JIS
SL9N53、SL9N60等に規定されている。 Si−Mn鋼は、0.11≦C≦0.49%、0.15≦Si≦
0.35%、0.30≦Mn≦1.70%、P≦0.03%、S≦
0.030%、0≦Ni≦2.0%、0≦Cr≦1.25%、0≦
Mo≦1.35%、Fe:残り、からなる成分組成の鋼
であり、例えば、JIS SMn420H〜438H、
SMnC420H〜443H、SCr415H〜440H、
SCM415H〜822H、SNC45H〜815H、
SNCM220H〜420H等に規定されている。 そして、構造用炭素鋼は、0.07≦C≦0.61%、
0.15≦Si≦0.35%、0.30≦Mn≦0.90%、P≦0.03
%、S≦0.035%、Fe:残り、からなる成分組成
の鋼であり、例えば、JIS S10C〜S58C、S09CK
〜S20CK等に規定されている。 この発明において、9%Ni鋼、Si−Mn鋼また
は構造用炭素鋼の溶鋼の凝固までの急冷を、40
℃/秒以上、104℃/秒未満の範囲内の冷却速度
で行う理由は、次の通りである。 即ち、上記溶鋼の凝固までの急冷が40℃/秒未
満では、鋳造のままの鋳片の組織が、通常の方法
で鋳造された鋳片の組織と同じになり、マルテン
サイト組織とすることができない。 一方、上記溶鋼の凝固までの急冷が104℃/秒
以上に早くなると、鋳片の厚さを約500μm以下
まで薄くしないと所定の冷却速度が得られず、従
つて、鋳片の幅も短くなる結果、特殊な用途の製
品のみに限定される問題が生ずる。 9%Ni鋼、Si−Mn鋼または構造用炭素鋼のよ
うに、低温でマルテンサイト変態(無拡散変態)
が生ずるような鋼種の場合には、上述した範囲内
の冷却速度による急冷凝固によつて、そのままで
マルテンサイト相が形成される。従つて、組織の
微細化と共に製造工程を大幅に短縮することがで
きる。 上述した範囲内の冷却速度による急冷凝固後、
常温までの冷却手段は、板厚が2mm以下の場合は
空冷で十分であるが、板厚が2mmを超えて厚い場
合は、強制空冷または水焼入れ等により急冷する
ことが必要である。 なお、上述した方法で製造された薄板上鋳片を
素材として薄板製品を製造するためには、いかな
る加工熱処理を施してもよい。 次にこの発明を、更に実施例によつて詳述す
る。 実施例 1 第1表に示す成分組成の9%Ni鋼の溶鋼を、
第200℃/秒(鋳片厚さ20mm)の冷却速度、およ
び、約5×103℃/秒(鋳片厚さ:1mm)の冷却
速度で急冷凝固させ、その金属組織を顕微鏡写真
によつて調べた。
[Industrial Application Field] The present invention is applicable to, for example, a synchronous continuous casting machine that
The present invention relates to a method for producing thin slabs using a rapid solidification method, in which molten steel such as 9% Ni steel, Si-Mn steel, or structural carbon steel is rapidly cooled and solidified, and thin slabs are directly continuously cast. [Prior Art and its Problems] In recent years, research has been conducted on methods of directly casting thin slabs by ultra-rapidly solidifying molten metal. For example, JP-A No. 58-210150 discloses a method for casting a thin strip of amorphous alloy by ultra-quenching a molten amorphous alloy consisting of iron, boron, and silicon to rapidly solidify it. ing. However, in the above-mentioned method, since the quenching rate is 10 5 °C/second or more, the thickness of the cast ribbon must be approximately 200 μm or less and the width must be several hundred mm or less. Therefore, its use was limited to special things. On the other hand, to simplify the casting process, e.g.
at least one moving in the same direction and at the same speed
A pair of endless bands are arranged facing each other at a predetermined distance to form a horizontal mold, and the molten metal supplied into the mold is rapidly solidified by contact with the mold, and is synchronized with the endless band. A synchronous continuous casting method that consists of continuously casting a thin plate slab by pulling the molten metal onto the surface of a pair of rotary cooling bodies. A number of methods have been proposed, such as a twin-roll continuous casting method, which involves continuous casting of thin plate slabs by rapid solidification by contact with steel. According to the above-mentioned casting method, the cooling rate of the molten metal is not ultra-quick as in the case of casting amorphous alloy thin plates, so thick and wide plate slabs can be continuously cast. . However, the cooling rate of slabs cast by rapidly solidifying molten metal using the method described above is slow, so when they are cast, they produce austenite, ferrite, or similar to conventional ingot materials.
It is thought that only a structure in which pearlite etc. is present can be obtained, and there has been little investigation into the structure and material. [Object of the Invention] Therefore, the object of the present invention is to provide 9% Ni steel, Si-
When molten Mn steel or structural carbon steel is rapidly cooled and solidified to continuously cast thin slabs, it is possible to transform the structure into a martensitic structure without performing additional heat treatment such as quenching. The object of the present invention is to provide a method for manufacturing a thin plate-shaped slab having excellent characteristics. The present inventors conducted extensive research on changes in the metal structure depending on the cooling rate when rapidly cooling an iron-based molten metal and continuously casting a thin slab. As a result, for steel types with good hardenability, such as 9% Ni steel, Si-Mn steel, or structural carbon steel, the molten steel is cooled within the range of 40°C/second or more and less than 104 °C/second. It has been found that by solidifying at a rapid rate and then continuously cooling to room temperature, a martensitic structure can be obtained as cast, without any treatment such as quenching after casting. [Summary of the Invention] This invention was made based on the above findings, and consists of rapidly cooling molten steel such as 9% Ni steel, Si-Mn steel, or structural carbon steel to form slabs with a thickness of 0.5 mm or more. In a method for manufacturing thin plate slabs that are continuously cast,
The molten steel is rapidly cooled to solidification at 40°C/second or more,
The method is characterized in that the molten steel is solidified at a cooling rate within a range of less than 10 4 °C/sec, and then continuously cooled to room temperature, so that the thin plate-like slab has a martensitic structure. It is. [Structure of the invention] In this invention, the 9% Ni steel has C≦0.12%,
0.15≦Si≦0.30%, Mn≦0.90%, P≦0.025%,
S≦0.025%, 8.50%≦Ni≦9.50%, Fe: remainder,
It is a steel with a composition consisting of, for example, JIS
Specified in SL9N53, SL9N60, etc. Si-Mn steel is 0.11≦C≦0.49%, 0.15≦Si≦
0.35%, 0.30≦Mn≦1.70%, P≦0.03%, S≦
0.030%, 0≦Ni≦2.0%, 0≦Cr≦1.25%, 0≦
It is a steel with a composition consisting of Mo≦1.35%, Fe: the balance, for example, JIS SMn420H to 438H,
SMnC420H~443H, SCr415H~440H,
SCM415H~822H, SNC45H~815H,
Specified in SNCM220H to 420H, etc. And structural carbon steel is 0.07≦C≦0.61%,
0.15≦Si≦0.35%, 0.30≦Mn≦0.90%, P≦0.03
%, S≦0.035%, Fe: remainder, for example, JIS S10C to S58C, S09CK
~ Specified in S20CK, etc. In this invention, the molten steel of 9% Ni steel, Si-Mn steel or structural carbon steel is rapidly cooled until solidification for 40 minutes.
The reason why the cooling rate is within the range of 10 4 C/sec or more and less than 10 4 C/sec is as follows. In other words, if the molten steel is rapidly cooled to solidification at less than 40°C/second, the structure of the as-cast slab becomes the same as that of a slab cast by a conventional method, and it cannot be made into a martensitic structure. Can not. On the other hand, if the rapid cooling of the molten steel to solidification becomes faster than 10 4 °C/sec, the specified cooling rate cannot be obtained unless the thickness of the slab is reduced to approximately 500 μm or less. This shortening results in the problem of being limited to products with special applications. Martensitic transformation (non-diffusion transformation) at low temperatures like 9%Ni steel, Si-Mn steel or structural carbon steel
In the case of a steel type in which this occurs, a martensitic phase is directly formed by rapid solidification at a cooling rate within the above-mentioned range. Therefore, the structure can be made finer and the manufacturing process can be significantly shortened. After rapid solidification with a cooling rate within the range mentioned above,
As for cooling means to room temperature, if the plate thickness is 2 mm or less, air cooling is sufficient, but if the plate thickness exceeds 2 mm, it is necessary to rapidly cool the plate by forced air cooling or water quenching. In addition, in order to manufacture a thin plate product using the thin plate cast slab manufactured by the method described above as a raw material, any processing heat treatment may be performed. Next, the present invention will be further explained in detail with reference to Examples. Example 1 Molten steel of 9% Ni steel with the composition shown in Table 1 was
Rapid solidification was performed at a cooling rate of 200°C/sec (slab thickness: 20 mm) and approximately 5×10 3 °C/sec (slab thickness: 1 mm), and the metallographic structure was observed using a microscopic photograph. I looked it up.

【表】 第1図aは、冷却速度が約200℃/秒(鋳片厚
さ20mm)の場合の金属組織顕微鏡写真であり、第
1図bは、冷却速度が約5×103℃/秒(鋳片厚
さ:1mm)の場合の金属組織顕微鏡写真であり、
そして、第1図cは、上記成分組成の50Kgインゴ
ツト材を、分塊圧延し次いで仕上げ圧延した後、
直ちにミスト冷却することにより得られた比較材
の金属組織顕微鏡写真である。 第1図a〜第1図cか明らかなように、第1図
aの、冷却速度が約200℃/秒(鋳片厚さ20mm)
の場合でも、溶鋼からの急冷凝固のままでマルテ
ンサイト組織が得られており、第1図bの、冷却
速度が約5×103℃/秒(鋳片厚さ:1mm)の場
合には、第1図cに示す従来の焼入れ処理材と同
等のマルテンサイト組織が得られた。 実施例 2 第2表に示す成分組成の構造用炭素鋼の溶鋼
を、種々の冷却速度で急冷し凝固させた。
[Table] Figure 1a is a metallographic micrograph when the cooling rate is approximately 200°C/sec (slab thickness 20mm), and Figure 1b is a metallographic micrograph when the cooling rate is approximately 5 x 10 3 °C/sec. This is a metallographic micrograph in the case of 1 mm (slab thickness: 1 mm),
FIG. 1c shows that after the 50 kg ingot material having the above-mentioned composition was subjected to blooming rolling and finishing rolling,
This is a metallographic micrograph of a comparative material obtained by immediate mist cooling. As is clear from Figures 1a to 1c, the cooling rate in Figure 1a is approximately 200℃/sec (slab thickness 20mm).
Even in the case of , a martensitic structure is obtained as it is rapidly solidified from molten steel, and in the case of the cooling rate of approximately 5 × 10 3 °C/sec (slab thickness: 1 mm) as shown in Fig. 1 b, , a martensitic structure equivalent to that of the conventional hardened material shown in FIG. 1c was obtained. Example 2 Molten structural carbon steel having the composition shown in Table 2 was rapidly cooled and solidified at various cooling rates.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明の方法によれば、
9%Ni鋼、Si−Mn鋼または構造用炭素鋼の溶鋼
を、同期式連続鋳造法、双ロール式連続鋳造法等
によつて急冷凝固し薄板状の鋳片を連続鋳造する
に当り、焼入れ処理等付加的な熱処理を施すこと
なく、その組織をマルテンサイト組織とすること
ができ、従つて、材質的に優れた特性を有する薄
板製造用原板を製造することができる工業上優れ
た効果がもたらされる。
As described above, according to the method of this invention,
When molten steel such as 9% Ni steel, Si-Mn steel, or structural carbon steel is rapidly solidified by synchronous continuous casting method, twin roll continuous casting method, etc. and continuously cast into thin slabs, quenching is performed. The structure can be made into a martensitic structure without additional heat treatment such as processing, and therefore, it has an industrially excellent effect of producing a base plate for thin plate production having excellent material properties. brought about.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aおよび第1図bは、この発明の方法に
より製造された9%Ni鋼の鋳片の金属組織を示
す顕微鏡写真であり、第1図cは、従来法で製造
された比較材の金属組織を示す顕微鏡写真であ
り、そして、第2図は、構造用炭素鋼の冷却速度
と非マルテンサイト量との関係を示すグラフであ
る。
Figures 1a and 1b are micrographs showing the metallographic structure of a 9% Ni steel slab manufactured by the method of the present invention, and Figure 1c is a comparison photograph of a slab of 9% Ni steel manufactured by the conventional method. FIG. 2 is a graph showing the relationship between the cooling rate and the amount of non-martensite in structural carbon steel.

Claims (1)

【特許請求の範囲】 1 9%Ni鋼、Si−Mn鋼または構造用炭素鋼の
溶鋼を急冷し、厚さ0.5mm以上の鋳片を連続的に
鋳造する薄板状鋳片の製造方法において、 前記溶鋼の凝固までの急冷を、40℃/秒以上、
104℃/秒未満の範囲内の冷却速度により行つて
前記溶鋼を凝固させ、次いで常温まで連続的に冷
却することによつて、前記薄板状鋳片の組織を、
鋳造のままでマルテンサイト組織とすることを特
徴とする薄板状鋳片の製造方法。
[Claims] 1. A method for producing a thin slab by rapidly cooling molten steel of 9% Ni steel, Si-Mn steel or structural carbon steel and continuously casting slabs with a thickness of 0.5 mm or more, The molten steel is rapidly cooled to solidification at 40°C/second or more,
By solidifying the molten steel at a cooling rate in the range of less than 10 4 °C/sec and then continuously cooling it to room temperature, the structure of the thin slab is changed.
A method for producing a thin plate-like slab, characterized by forming a martensitic structure as cast.
JP2844685A 1985-02-18 1985-02-18 Manufacture of sheet-shaped slab Granted JPS61189845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2844685A JPS61189845A (en) 1985-02-18 1985-02-18 Manufacture of sheet-shaped slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2844685A JPS61189845A (en) 1985-02-18 1985-02-18 Manufacture of sheet-shaped slab

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4326224A Division JP2527105B2 (en) 1992-11-12 1992-11-12 Method for manufacturing thin plate duplex stainless steel slab

Publications (2)

Publication Number Publication Date
JPS61189845A JPS61189845A (en) 1986-08-23
JPH0521664B2 true JPH0521664B2 (en) 1993-03-25

Family

ID=12248897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2844685A Granted JPS61189845A (en) 1985-02-18 1985-02-18 Manufacture of sheet-shaped slab

Country Status (1)

Country Link
JP (1) JPS61189845A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000454A1 (en) * 1988-07-08 1990-01-25 Nippon Steel Corporation PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
JP2527105B2 (en) * 1992-11-12 1996-08-21 日本鋼管株式会社 Method for manufacturing thin plate duplex stainless steel slab
DE69825734T2 (en) 1997-03-25 2005-08-25 Aluminum Company Of America DEMOLITION PROCESS FOR HEAT-TREATABLE ALLOYS
DE10215597A1 (en) * 2002-04-10 2003-10-30 Thyssenkrupp Nirosta Gmbh Method for producing a high carbon martensitic steel strip and use of such a steel strip
ES2325961T3 (en) * 2006-10-30 2009-09-25 Thyssenkrupp Steel Ag PROCEDURE FOR MANUFACTURING STEEL FLAT PRODUCTS FROM A STEEL FORMING A MARTENSITICAL STRUCTURE.
KR101268800B1 (en) * 2009-12-21 2013-05-28 주식회사 포스코 Martensitic stainless steels containing high carbon content and method of manufacturing the same
JP6778943B2 (en) 2014-12-19 2020-11-04 ニューコア・コーポレーション Hot-rolled lightweight martensite steel sheet and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
METALLURGICAL TRANSACTION A=1983US *

Also Published As

Publication number Publication date
JPS61189845A (en) 1986-08-23

Similar Documents

Publication Publication Date Title
KR102203018B1 (en) Methods for creating a flat steel product with an amorphous, partially amorphous or finely crystalline structure and flat steel product of such a type
US3872704A (en) Method for manufacturing grain-oriented electrical steel sheet and strip in combination with continuous casting
JP3836793B2 (en) Process for the production of hot strips from steel with a high manganese content
CN1481445A (en) Process for prodn. of grain oriented electrical steel strips
JPH0521664B2 (en)
US4715905A (en) Method of producting thin sheet of high Si-Fe alloy
JPH0665724B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
KR950005320B1 (en) Process for producing thin sheet of cr-ni based stainless steel having excellent surface quality and workability
US4115160A (en) Electromagnetic silicon steel from thin castings
JP2550848B2 (en) Method of manufacturing thin plate slab
JP2527105B2 (en) Method for manufacturing thin plate duplex stainless steel slab
KR920700077A (en) Manufacturing method of rolled metal sheet based on quench solidified thin cast sheet
KR19980703297A (en) Steel sheet continuous casting method and steel sheet continuous manufacturing device
KR930011743B1 (en) METHOD OF MANUFACTURING Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN SURFACE QUALITY AND MATERIAL THEREOF
JPH0338941B2 (en)
JP3067894B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
JP2856440B2 (en) Method for producing Cr-Ni stainless thin cast slab having fine surface crystal structure
JPS63207455A (en) Production of high speed steel strip
JP2588635B2 (en) Thin slabs for manufacturing unidirectional electrical steel sheets
JPS6335747A (en) Production of thin high-speed steel sheet
JPH02133529A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
JPH0742544B2 (en) High alloy grain cast iron material for rolling rolls with excellent surface roughening resistance
JPS6179723A (en) Manufacture of high silicon steel strip having superior magnetic characteristic
JPS55152128A (en) Preparation of low yield ratio and high strength cold rolled steel plate with excellent processability by continuous annealing
JPH02258149A (en) Production of unidirectional high magnetic flux density magnetic steel sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees