[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0521446B2 - - Google Patents

Info

Publication number
JPH0521446B2
JPH0521446B2 JP62284919A JP28491987A JPH0521446B2 JP H0521446 B2 JPH0521446 B2 JP H0521446B2 JP 62284919 A JP62284919 A JP 62284919A JP 28491987 A JP28491987 A JP 28491987A JP H0521446 B2 JPH0521446 B2 JP H0521446B2
Authority
JP
Japan
Prior art keywords
fet
field effect
effect transistor
drain
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62284919A
Other languages
Japanese (ja)
Other versions
JPH01125108A (en
Inventor
Tsutomu Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP62284919A priority Critical patent/JPH01125108A/en
Publication of JPH01125108A publication Critical patent/JPH01125108A/en
Publication of JPH0521446B2 publication Critical patent/JPH0521446B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)
  • Logic Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタ(以下FETと
いう)負荷増幅回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor (hereinafter referred to as FET) load amplification circuit.

〔従来の技術〕[Conventional technology]

従来、この種の増幅回路は、第4図に示す如
く、ソース接地で用いるFET11と、ゲートと
ソースを共通電位にした負荷FET41とを接続
し、負荷FET41のドレイン端から直流電源電
圧VDDを供給し、入力端子42から信号を入力し
端子12から出力を取り出していた。
Conventionally, as shown in FIG. 4, this type of amplifier circuit connects a FET 11 used with a common source to a load FET 41 whose gate and source are at a common potential, and receives a DC power supply voltage V DD from the drain end of the load FET 41. A signal was input from the input terminal 42 and an output was taken from the terminal 12.

〔発明が解決しようとする問題点〕 上述した従来のFET増幅回路は、FET41の
ドレイン・ソース間抵抗を負荷として用いるた
め、容易に高抵抗が得られ、同時に高い電圧利得
が得られている。しかし、出力端子12のDC電
圧、即ちソース接地FET11の動作電圧が、素
子のバラツキに非常に敏感であり、安定な動作電
圧が得られなかつた。従つて、FET11とFET
41が少しでも異なる特性を持つた場合は、設計
値から大きくずれた動作状態となり所定の電圧利
得が得られないという欠点を持つていた。
[Problems to be Solved by the Invention] The conventional FET amplifier circuit described above uses the drain-source resistance of the FET 41 as a load, and therefore can easily obtain a high resistance and at the same time obtain a high voltage gain. However, the DC voltage at the output terminal 12, ie, the operating voltage of the common source FET 11, is extremely sensitive to variations in the elements, and a stable operating voltage cannot be obtained. Therefore, FET11 and FET
If 41 has even a slightly different characteristic, the operating state will deviate greatly from the designed value, resulting in a disadvantage that a predetermined voltage gain cannot be obtained.

本発明は、従来の増幅回路に対し、FETを負
荷とし高い電圧利得を得ると同時に、負荷FET
のゲート供給電圧を別回路から導入することによ
り安定な動作状態が得られるという相違点を持つ
ている。
The present invention uses a FET as a load to obtain a high voltage gain, and at the same time, compared to a conventional amplifier circuit, the load FET is
The difference is that a stable operating state can be obtained by introducing the gate supply voltage from a separate circuit.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のFET負荷増幅回路は、電源の一端に
接続されたソースを有しゲートを信号の入力端子
としドレインを信号の出力端子とする第1の電界
効果トランジスタと、電源の他端に接続されたド
レインと前記第1の電界効果トランジスタのドレ
インに接続されたソースとを有する第2の電界効
果トランジスタと、電源の一端に電圧降下発生装
置を通して接続されたソースを有する第3の電界
効果トランジスタと、電源の他端に接続されたド
レインと前記第3の電界効果トランジスタのドレ
インに接続されたソースとを有する第4の電界効
果トランジスタとを備え、前記第1および第3の
電界効果トランジスタのゲートを抵抗を通して接
続して構成される。
The FET load amplification circuit of the present invention includes a first field effect transistor having a source connected to one end of a power supply, a gate serving as a signal input terminal, and a drain serving as a signal output terminal; a second field effect transistor having a drain connected to the drain of the first field effect transistor and a source connected to the drain of the first field effect transistor; and a third field effect transistor having a source connected to one end of the power supply through a voltage drop generator. , a fourth field effect transistor having a drain connected to the other end of the power supply and a source connected to the drain of the third field effect transistor, the gates of the first and third field effect transistors connected through a resistor.

〔実施例〕〔Example〕

次に、本発明について図面を用いて説明する。 Next, the present invention will be explained using the drawings.

まず、第1図を見るに、ソース接地のFET1
1のドレイン端子に負荷のFET13のソース端
子を接続し、負荷となるFET13のドレイン端
子に直流電源電圧VDDを供給する。一方、負荷の
FET13のゲート端子14の電圧を、ゲートと
ソースが抵抗15を介して接続された電流源の
FET16と、この電流源のFET16のソースに
接続されたFET17と、このFET17のソース
に接続された抵抗18とから成るバイアス回路に
より、抵抗19を介して設定される。
First, looking at Figure 1, FET 1 with a common source
The source terminal of the load FET 13 is connected to the drain terminal of the load FET 13, and the DC power supply voltage V DD is supplied to the drain terminal of the load FET 13. On the other hand, the load
The voltage at the gate terminal 14 of the FET 13 is controlled by a current source whose gate and source are connected via a resistor 15.
It is set via a resistor 19 by a bias circuit consisting of an FET 16, a FET 17 connected to the source of the FET 16 of this current source, and a resistor 18 connected to the source of this FET 17.

このバイアス回路でFET13のゲート端子1
4の電圧が設定されることによりFET11のド
レイン端子12すなわち出力端子12の電圧が決
定され安定な動作が得られる。しかし、端子14
に接続されるバイアス回路のインピーダンスが十
分に高く設定されない場合は、FET13のゲー
ト・ソース間容量CGSを介して端子12の高周波
電圧も決定されるため高周波利得を低下させるこ
とになる。これを防ぐため、本実施例のバイアス
回路は、端子14から見たインピーダンスを高く
する設計がされている。
With this bias circuit, gate terminal 1 of FET13
By setting the voltage No. 4, the voltage at the drain terminal 12, that is, the output terminal 12 of the FET 11 is determined, and stable operation can be obtained. However, terminal 14
If the impedance of the bias circuit connected to the FET 13 is not set high enough, the high frequency voltage at the terminal 12 will also be determined via the gate-source capacitance CGS of the FET 13, reducing the high frequency gain. To prevent this, the bias circuit of this embodiment is designed to increase the impedance seen from the terminal 14.

まず、本バイアス回路の直流電圧は次の様に設
定される。電流源FET16により、抵抗18を
流れる電流IBが設定される。従つて、端子20の
直流電位は、抵抗18の抵抗値をRとするとR・
IBとなる。この時、FET17にも同じ電流IBが流
れており、このFET17のゲート電位はこの電
流を流すために必要なゲート・ソース間電圧VGS
を保つ必要があるため、R・IB+VGSの電位にな
る。FET17とFET13のゲート端子間を結ぶ
抵抗19にはほとんど直流電流は流れない(通常
1μA以下)ため、端子14のDC電位はFET17
のゲート電位R・IB+VGSに設定される。
First, the DC voltage of this bias circuit is set as follows. A current I B flowing through the resistor 18 is set by the current source FET 16 . Therefore, if the resistance value of the resistor 18 is R, the DC potential of the terminal 20 is R.
It becomes I B. At this time, the same current I B is flowing through FET 17, and the gate potential of this FET 17 is the gate-source voltage V GS required for this current to flow.
Since it is necessary to maintain the voltage, the potential becomes R・I B +V GS . Almost no direct current flows through the resistor 19 connecting the gate terminals of FET17 and FET13 (normally
1μA or less), so the DC potential of terminal 14 is
The gate potential R・I B +V GS is set.

また、端子14から見たバイアス回路は、ソー
スホロアー回路と等価になつているため、高周波
インピーダンスも高くなり、抵抗19の抵抗値を
RG,FET17のゲート容量をCGS、トランスコン
ダクタンスをgnとすると、このバイアス回路の
インピーダンスはおおむねRG+[(1+gnRS)/
(jωCGS)]となる。FET13のゲート容量CGS
十分小さくすることが可能なため、このインピー
ダンスを高くすることは容易である。
In addition, since the bias circuit viewed from the terminal 14 is equivalent to a source follower circuit, the high frequency impedance is also high, and the resistance value of the resistor 19 is
R G , the gate capacitance of FET 17 is C GS , and the transconductance is g n , the impedance of this bias circuit is approximately R G + [(1+g n R S )/
(jωC GS )]. Since the gate capacitance C GS of the FET 13 can be made sufficiently small, it is easy to increase this impedance.

従つて、このバイアス回路により、FET11
のドレイン直流電圧を安定に設定できると同時
に、高周波利得を劣化させない増幅器が得られ
る。
Therefore, with this bias circuit, FET11
An amplifier can be obtained in which the drain DC voltage of the amplifier can be set stably and at the same time the high frequency gain does not deteriorate.

次に、本発明の第2の実施例について説明す
る。
Next, a second embodiment of the present invention will be described.

第2図は、本発明の第2の実施例の構成を示
し、第1の実施例の抵抗18をダイオード21で
置き換えた構成のバイアス回路を用いた増幅器で
ある。電流源FET16により定電流IBがダイオー
ドに流れ、ダイオードの順方向電圧VFにより端
子20の直流電位は3×VFに設定される。ダイ
オードの順方向電圧VFは電流IBの変化に対しても
安定なため、端子20の電位は容易に安定に設定
でき、第1の実施例と同様に、端子12の電位を
安定させた増幅器を構成することができる。この
実施例のバイアス回路のインピーダンスは多少低
下するが、FET17のゲート容量CGSのインピー
ダンス以下に低下することは無いため、RF利得
に大きな影響を与えるまでには低下しない。
FIG. 2 shows the configuration of a second embodiment of the present invention, which is an amplifier using a bias circuit in which the resistor 18 of the first embodiment is replaced with a diode 21. A constant current I B flows through the diode by the current source FET 16, and the DC potential of the terminal 20 is set to 3×V F by the forward voltage V F of the diode. Since the forward voltage V F of the diode is stable even with changes in the current I B , the potential of the terminal 20 can be easily set to be stable, and the potential of the terminal 12 can be stabilized as in the first embodiment. An amplifier can be configured. Although the impedance of the bias circuit in this embodiment decreases to some extent, it does not decrease to below the impedance of the gate capacitance CGS of the FET 17, so it does not decrease to the extent that it significantly affects the RF gain.

次に、本発明の第3の実施例について説明す
る。
Next, a third embodiment of the present invention will be described.

第3図は、本発明の第3の実施例の構成を示す
回路図で、第2の実施例と同じバイアス回路を用
いた差動型の増幅回路である。このバイアス回路
のダイオード21を抵抗18と組合せて使うこと
も可能である。従つてFET42A,42Bのゲ
ートが入力端子となり、FET42A,42Bの
ドレインが出力端子12A,12Bとなり、負荷
用のFET13A,13Bのゲートはそれぞれ抵
抗19A,19Bを介してバイアス回路のFET
17のゲートに接続されている。また、FET1
1A,11Bのソースの端子42A,42Bは低
電流回路を形成するFET31の通し、直流電流
電圧VDDと反対符号の直流電源電圧VSSに接続さ
れている。
FIG. 3 is a circuit diagram showing the configuration of a third embodiment of the present invention, which is a differential amplifier circuit using the same bias circuit as the second embodiment. It is also possible to use the diode 21 of this bias circuit in combination with the resistor 18. Therefore, the gates of FETs 42A and 42B become input terminals, the drains of FETs 42A and 42B become output terminals 12A and 12B, and the gates of load FETs 13A and 13B are connected to the bias circuit FETs via resistors 19A and 19B, respectively.
It is connected to 17 gates. Also, FET1
The source terminals 42A and 42B of 1A and 11B are connected to a DC power supply voltage V SS having the opposite sign to the DC current voltage V DD through a FET 31 forming a low current circuit.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、定電流源FET
と抵抗あるいはダイオードによりDC電圧を決定
し、これらの間に接続されるFETのゲート電位
を増幅器の負荷となるFETのゲート電位として
与えることにより、増幅用のFETの直流ドレイ
ン電圧を安定に設定すると共に、FET負荷の持
つ高い電圧利得を同時に得られるという効果があ
る。
As explained above, the present invention is a constant current source FET.
By determining the DC voltage using a resistor or diode, and applying the gate potential of the FET connected between these as the gate potential of the FET that serves as the load of the amplifier, the DC drain voltage of the amplification FET can be set stably. At the same time, the high voltage gain of the FET load can be obtained at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の構成を示す回
路図、第2図は本発明の第2の実施例の構成を示
す回路図、第3図は本発明の第3の実施例の構成
を示す回路図、第4図は従来の技術によるFET
負荷増幅回路の一例を示す回路図。 11,13,15,17……電界効果トランジ
スタ(FET)。
FIG. 1 is a circuit diagram showing the configuration of a first embodiment of the invention, FIG. 2 is a circuit diagram showing the configuration of a second embodiment of the invention, and FIG. 3 is a circuit diagram of a third embodiment of the invention. A circuit diagram showing the configuration of , Figure 4 is an FET using conventional technology.
FIG. 2 is a circuit diagram showing an example of a load amplification circuit. 11, 13, 15, 17...field effect transistor (FET).

Claims (1)

【特許請求の範囲】[Claims] 1 電源の一端に接続されたソースを有しゲート
を信号の入力端子としドレインを信号の出力端子
とする第1の電界効果トランジスタと、電源の他
端に接続されたドレインと前記第1の電界効果ト
ランジスタのドレインに接続されたソースとを有
する第2の電界効果トランジスタと、電源の一端
に電圧降下発生装置を通して接続されたソースを
有する第3の電界効果トランジスタと、電源の他
端に接続されたドレインと前記第3の電界効果ト
ランジスタのドレインに接続されたソースとを有
する第4の電界効果トランジスタとを備え、前記
第1および第3の電界効果トランジスタのゲート
を抵抗を通して接続したことを特徴とするFET
負荷増幅回路。
1 A first field effect transistor having a source connected to one end of a power supply, a gate serving as a signal input terminal, and a drain serving as a signal output terminal; a drain connected to the other end of the power supply; and the first field effect transistor having a source connected to one end of the power supply. a second field effect transistor having a source connected to the drain of the effect transistor; a third field effect transistor having a source connected through a voltage drop generator to one end of the power supply; and a third field effect transistor having a source connected to the other end of the power supply. and a fourth field effect transistor having a drain connected to the third field effect transistor, and a source connected to the drain of the third field effect transistor, and the gates of the first and third field effect transistors are connected through a resistor. FET
Load amplifier circuit.
JP62284919A 1987-11-10 1987-11-10 Fet load amplifier circuit Granted JPH01125108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284919A JPH01125108A (en) 1987-11-10 1987-11-10 Fet load amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284919A JPH01125108A (en) 1987-11-10 1987-11-10 Fet load amplifier circuit

Publications (2)

Publication Number Publication Date
JPH01125108A JPH01125108A (en) 1989-05-17
JPH0521446B2 true JPH0521446B2 (en) 1993-03-24

Family

ID=17684757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284919A Granted JPH01125108A (en) 1987-11-10 1987-11-10 Fet load amplifier circuit

Country Status (1)

Country Link
JP (1) JPH01125108A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621346A (en) * 1992-05-05 1994-01-28 Xerox Corp Integrated linear high-voltage device
FR2816133B1 (en) * 2000-10-31 2003-04-04 St Microelectronics Sa ASSISTANCE CIRCUIT FOR SWITCHING A LOGIC CIRCUIT
JP4950568B2 (en) * 2006-06-19 2012-06-13 旭サナック株式会社 Mixing paint supply device
JPWO2009096192A1 (en) * 2008-01-31 2011-05-26 パナソニック株式会社 Buffer circuit, image sensor chip including the same, and imaging device

Also Published As

Publication number Publication date
JPH01125108A (en) 1989-05-17

Similar Documents

Publication Publication Date Title
US4333058A (en) Operational amplifier employing complementary field-effect transistors
US5266887A (en) Bidirectional voltage to current converter
US4247824A (en) Linear amplifier
US4038607A (en) Complementary field effect transistor amplifier
JP2665025B2 (en) Amplifier circuit
US4459555A (en) MOS Differential amplifier gain control circuit
US4377789A (en) Operational amplifier employing complementary field-effect transistors
US3953807A (en) Current amplifier
JPH07106875A (en) Semiconductor integrated circuit
GB1518961A (en) Amplifier circuits
US5801523A (en) Circuit and method of providing a constant current
JPH02206210A (en) Source driving type differential amplifier by common base method
JPH0235485B2 (en)
JPH06216666A (en) Differential amplifier
US4749955A (en) Low voltage comparator circuit
JPS6119134B2 (en)
JPH0583003B2 (en)
JPH09130162A (en) Current driver circuit with side current adjustment
US5442319A (en) Active biasing control for class-AB CMOS operational amplifiers
US4550291A (en) Noise-free, die area efficient cascode circuit
JPH0521446B2 (en)
JP3160000B2 (en) Buffer and method for providing unity gain
US5164614A (en) Low power bias voltage generating circuit comprising a current mirror
US4311967A (en) Compensation for transistor output resistance
JPS61157106A (en) Fixed bias circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 15