[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05202011A - Oxadiazole derivative - Google Patents

Oxadiazole derivative

Info

Publication number
JPH05202011A
JPH05202011A JP4011562A JP1156292A JPH05202011A JP H05202011 A JPH05202011 A JP H05202011A JP 4011562 A JP4011562 A JP 4011562A JP 1156292 A JP1156292 A JP 1156292A JP H05202011 A JPH05202011 A JP H05202011A
Authority
JP
Japan
Prior art keywords
organic
oxadiazole derivative
film
thin film
structural formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4011562A
Other languages
Japanese (ja)
Inventor
Katsuyuki Naito
勝之 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4011562A priority Critical patent/JPH05202011A/en
Publication of JPH05202011A publication Critical patent/JPH05202011A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Luminescent Compositions (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a new oxadiazole derivative which can readily form a thin organic amorphous film which is suitable for an organic electroluminescence element or an electrophotographic organic photoreceptor with high stability and heat resistance. CONSTITUTION:An oxadiazole derivative of formula I (R1 through R3 are H, halogen and monovalent group), for example a compound of formula II. The compound is synthesized by reaction between 1,3,5-benzenetricarboxylic acid trichloride and the atoms or groups represented by R1 through R3 followed by dehydration of the resultant tris(dihydrazide) with phosphorus oxychloride. The thin organic film of the compound which can be suitably used in a variety of thin organic film elements is formed by a customary film-forming process. The vaporization process is particularly preferred because it is simple and the lamination of thin films can be also done through this process. The film thickness of the organic layer can be suitably selected in the range of from 100 to 1,000 angstroms.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種の有機薄膜素子に
好適に用いられる新規なオキサジアゾール誘導体に関す
る。
FIELD OF THE INVENTION The present invention relates to a novel oxadiazole derivative suitably used for various organic thin film devices.

【0002】[0002]

【従来の技術】近年、有機分子の薄膜化を通じて新しい
機能素子を実現しようとする試みが活発化しており、例
えば、蒸着法により形成された有機薄膜を利用した有機
EL(エレクトロルミネッセンス)素子やその他の光学
素子等の研究が活発化している。このような有機薄膜素
子に用いられる有機分子のなかでも、オキサジアゾール
誘導体は固体状でも強い螢光を発し、また優れた電荷輸
送能を有することから、有機EL素子や電子写真用有機
感光体等に広く用いられており、具体的には下記一般式
[2]で示されるオキサジアゾール誘導体を用いた有機
EL素子、電子写真用有機感光体等が報告されている。
2. Description of the Related Art In recent years, attempts have been actively made to realize new functional devices by thinning organic molecules. For example, organic EL (electroluminescence) devices using organic thin films formed by a vapor deposition method and others. The research on optical elements and the like has been activated. Among the organic molecules used for such an organic thin film element, the oxadiazole derivative emits strong fluorescence even in a solid state and has an excellent charge transporting ability, and therefore, an organic EL element or an organic photoconductor for electrophotography. It has been widely used in, for example, and specifically, an organic EL device using an oxadiazole derivative represented by the following general formula [2], an organic photoconductor for electrophotography, and the like have been reported.

【0003】[0003]

【化2】 [Chemical 2]

【0004】ところで上述したような有機薄膜素子にお
いては、アモルファス状態の有機薄膜を利用するのが膜
の均一性、安定性、光透過性等の点で有利であることが
知られている。例えば有機EL素子では、アモルファス
状態で薄膜化が可能なポリマーや色素を用いた方が、結
晶性の薄膜が形成される脂肪酸等を用いた場合よりも、
均一な膜特性に基づく高い動作安定性、結晶粒界の不在
に起因する優れた光透過性を達成することができる。ま
た電子写真用有機感光体においても、アモルファス状態
のポリマー中に電荷発生剤や電荷輸送剤を均一に分散あ
るいは溶解した感光層が一般に形成されている。
In the organic thin film element as described above, it is known that it is advantageous to use an organic thin film in an amorphous state in terms of film uniformity, stability and light transmission. For example, in an organic EL element, using a polymer or dye capable of forming a thin film in an amorphous state is more preferable than using a fatty acid or the like that forms a crystalline thin film.
It is possible to achieve high operational stability based on uniform film characteristics and excellent light transmission due to the absence of grain boundaries. Also in the electrophotographic organic photoreceptor, a photosensitive layer in which a charge generating agent or a charge transporting agent is uniformly dispersed or dissolved in a polymer in an amorphous state is generally formed.

【0005】しかしながら、これまで前述した一般式
[2]で示されるオキサジアゾール誘導体のような低分
子量の有機分子では、アモルファス状態の有機薄膜を形
成するのが非常に困難であった。すなわちこのような低
分子量の有機分子をアモルファス状態で薄膜化するため
には、極めて厳密に成膜条件を制御することが必要とな
る。また、たとえアモルファス状態の有機薄膜が形成で
きても、得られた有機薄膜は不安定で結晶化しやすく、
しかもガラス転移温度が低く耐熱性が乏しいことから、
素子の駆動時に伴なう発熱によりさらに劣化が加速され
るという問題があった。従って、上述したようなオキサ
ジアゾール誘導体の有機薄膜を利用した有機薄膜素子
は、動作安定性、寿命特性等が不充分であり、未だ実用
化には至っていない。
However, it has been very difficult to form an organic thin film in an amorphous state with low molecular weight organic molecules such as the oxadiazole derivative represented by the general formula [2] described above. That is, in order to make such a low-molecular-weight organic molecule into a thin film in an amorphous state, it is necessary to control the film-forming conditions extremely strictly. Even if an organic thin film in an amorphous state can be formed, the obtained organic thin film is unstable and easily crystallized,
Moreover, since the glass transition temperature is low and the heat resistance is poor,
There is a problem that the deterioration is further accelerated by the heat generated when the element is driven. Therefore, the organic thin film element using the organic thin film of the oxadiazole derivative as described above has insufficient operational stability, life characteristics, etc., and has not yet been put into practical use.

【0006】[0006]

【発明が解決しようとする課題】上述したように、従来
知られたオキサジアゾール誘導体では安定なアモルファ
ス状態の有機薄膜を形成するのが困難なため、動作安定
性、寿命特性等の良好な有機薄膜素子を実現することが
できなかった。
As described above, since it is difficult to form a stable organic thin film in an amorphous state with the conventionally known oxadiazole derivative, it is possible to obtain an organic compound having good operation stability and life characteristics. A thin film element could not be realized.

【0007】本発明は、このような問題に鑑み、アモル
ファス状態での薄膜化が容易で、安定かつ耐熱性に優れ
た有機薄膜を形成することが可能なオキサジアゾール誘
導体を提供することを目的としている。
In view of such problems, an object of the present invention is to provide an oxadiazole derivative which can be easily formed into a thin film in an amorphous state and can form an organic thin film which is stable and has excellent heat resistance. I am trying.

【0008】[0008]

【課題を解決するための手段及び作用】上記目的を達成
するためになされた本発明のオキサジアゾール誘導体
は、下記一般式[1]で示される新規なオキサジアゾー
ル誘導体である。
Means and Actions for Solving the Problems The oxadiazole derivative of the present invention, which has been made to achieve the above object, is a novel oxadiazole derivative represented by the following general formula [1].

【0009】[0009]

【化3】 (式中、R1 〜R3 は同一でも異なっていてもよく、そ
れぞれ水素原子、ハロゲン原子又は一価の基を表す。)
[Chemical 3] (In the formula, R 1 to R 3 may be the same or different and each represents a hydrogen atom, a halogen atom or a monovalent group.)

【0010】すなわち本発明のオキサジアゾール誘導体
は、放射状の分子骨格を有することを特徴とするもので
あり、これにより分子間の凝集力が小さくなり、結晶性
が低下して安定なアモルファス状態を保持することがで
きる。さらに、前記一般式[2]で示される従来のオキ
サジアゾール誘導体よりも分子量が大きいので、アモル
ファス状態でのガラス転移温度が高く、より耐熱性が優
れている。
That is, the oxadiazole derivative of the present invention is characterized by having a radial molecular skeleton, whereby the cohesive force between molecules is reduced, the crystallinity is lowered, and a stable amorphous state is obtained. Can be held. Further, since it has a larger molecular weight than the conventional oxadiazole derivative represented by the general formula [2], it has a high glass transition temperature in an amorphous state and is more excellent in heat resistance.

【0011】本発明のオキサジアゾール誘導体におい
て、上記一般式[1]中R1 〜R3 で表された一価の基
としては、炭素数1〜50の非置換又は置換アルキル基、
炭素数6〜50の非置換又は置換アリール基、非置換又は
置換ヘテロ環基、アルコキシ基、カルボニル基、アミノ
基、ニトロ基、シアノ基、スルホニル基、水酸基等が例
示される。本発明では、R1 〜R3 が特に置換フェニル
基であることが好ましく、この場合フェニル基の置換基
を選択することにより、電子物性や光学物性を制御する
ことが可能であるため、目的とする素子設計が非常に容
易となる。例えば、置換基として電子供与性の基を選択
することにより正孔輸送能を有する分子が得られ、置換
基として電子受容性の基を選択することにより電子輸送
能を有する分子が得られる。具体的にこのような置換基
としては、炭素数1〜50の非置換又は置換アルキル基、
炭素数6〜50の非置換又は置換アリール基、非置換又は
置換ヘテロ環基、アルコキシ基、カルボニル基、アミノ
基、ニトロ基、シアノ基、スルホニル基、水酸基が挙げ
られ、またハロゲン原子によりフェニル基が置換されて
いてもよい。
In the oxadiazole derivative of the present invention, the monovalent group represented by R 1 to R 3 in the above general formula [1] is an unsubstituted or substituted alkyl group having 1 to 50 carbon atoms,
Examples thereof include unsubstituted or substituted aryl groups having 6 to 50 carbon atoms, unsubstituted or substituted heterocyclic groups, alkoxy groups, carbonyl groups, amino groups, nitro groups, cyano groups, sulfonyl groups, hydroxyl groups and the like. In the present invention, R 1 to R 3 are particularly preferably a substituted phenyl group, and in this case, it is possible to control electronic properties and optical properties by selecting a substituent of the phenyl group. It becomes very easy to design the device. For example, a molecule having a hole-transporting ability can be obtained by selecting an electron-donating group as a substituent, and a molecule having an electron-transporting ability can be obtained by selecting an electron-accepting group as a substituent. Specifically, as such a substituent, an unsubstituted or substituted alkyl group having 1 to 50 carbon atoms,
Examples include unsubstituted or substituted aryl groups having 6 to 50 carbon atoms, unsubstituted or substituted heterocyclic groups, alkoxy groups, carbonyl groups, amino groups, nitro groups, cyano groups, sulfonyl groups, hydroxyl groups, and phenyl groups with halogen atoms. May be substituted.

【0012】本発明のオキサジアゾール誘導体を合成す
るには、まず1,3,5−ベンゼントリカルボン酸トリ
クロライドと上記のR1 〜R3 で表された原子又は基を
有するカルボン酸ヒドラジドとを反応させる。この後、
オキシ塩化リン等により得られたトリス(ジヒドラジ
ド)の脱水反応を行なうことにより、上記一般式[1]
で示されるオキサジアゾール誘導体が合成される。な
お、上記一般式[1]中R1 ,R2 ,R3 が異なるオキ
サジアゾール誘導体を合成する場合は、例えばまずR1
で表された原子又は基を有するカルボン酸ヒドラジドに
対して大過剰の1,3,5−ベンゼントリカルボン酸ト
リクロライドを用い、1,3,5−ベンゼントリカルボ
ン酸トリクロライドのカルボン酸基1個だけを反応させ
る。次いで同様にして、1,3,5−ベンゼントリカル
ボン酸トリクロライドのカルボン酸基にR2 で表された
原子又は基を有するカルボン酸ヒドラジド,R3 で表さ
れた原子又は基を有するカルボン酸ヒドラジドを順次反
応させ、この後脱水反応を行なうことにより、上述した
ようなオキサジアゾール誘導体を容易に合成することが
できる。また、1,3,5−ベンゼントリカルボン酸ト
リクロライドと2種又は3種のカルボン酸ヒドラジドを
1度に反応させ、次いで脱水反応を行なった後クロマト
グラフにより目的のオキサジアゾール誘導体を分離して
もよい。
In order to synthesize the oxadiazole derivative of the present invention, first, 1,3,5-benzenetricarboxylic acid trichloride and carboxylic acid hydrazide having the atom or group represented by R 1 to R 3 above are prepared. React. After this,
By performing a dehydration reaction of tris (dihydrazide) obtained with phosphorus oxychloride or the like, the above general formula [1]
An oxadiazole derivative represented by is synthesized. In the case of synthesizing an oxadiazole derivative having different R 1 , R 2 and R 3 in the above general formula [1], first, for example, R 1
Using a large excess of 1,3,5-benzenetricarboxylic acid trichloride with respect to the carboxylic acid hydrazide having the atom or group represented by, only one carboxylic acid group of 1,3,5-benzenetricarboxylic acid trichloride is used. React. Then, similarly, a carboxylic acid hydrazide having an atom or a group represented by R 2 in the carboxylic acid group of 1,3,5-benzenetricarboxylic acid trichloride and a carboxylic acid hydrazide having an atom or a group represented by R 3 The oxadiazole derivative as described above can be easily synthesized by sequentially reacting with each other and then performing a dehydration reaction. Further, 1,3,5-benzenetricarboxylic acid trichloride is reacted with two or three kinds of carboxylic acid hydrazides at once, and then dehydration reaction is carried out, followed by separation of a target oxadiazole derivative by chromatography. Good.

【0013】本発明のオキサジアゾール誘導体の有機薄
膜を形成する方法としては、キャスト法、蒸着法、LB
法、水面展開法、電解法等通常の成膜法を採用すること
ができる。このうち蒸着法は簡便で、しかも有機薄膜の
積層体の形成に適しており、特に好ましい。このような
有機薄膜の膜厚は、通常作成される素子に要求される特
性に応じて設定されるが、 100〜1000A(オングストロ
ーム)の範囲内で適宜選択することができる。
The method for forming the organic thin film of the oxadiazole derivative of the present invention includes casting method, vapor deposition method and LB method.
Ordinary film-forming methods such as a method, a water surface spreading method, and an electrolysis method can be adopted. Of these, the vapor deposition method is particularly preferable because it is simple and suitable for forming a laminate of organic thin films. The film thickness of such an organic thin film is set according to the characteristics generally required for an element to be produced, but can be appropriately selected within the range of 100 to 1000 A (angstrom).

【0014】さらにこのような有機薄膜を形成する場
合、膜のアモルファス状態の安定化を目的として、有機
薄膜中にアモルファス化しやすいポリマーを添加含有せ
しめることもできる。ただしこの場合、本発明のオキサ
ジアゾール誘導体が本来有する物性を充分発揮させるた
めに、有機薄膜中の前記ポリマーの含有量を50重量%以
下とすることが好ましい。
Further, when such an organic thin film is formed, a polymer that easily becomes amorphous can be added to the organic thin film for the purpose of stabilizing the amorphous state of the film. However, in this case, in order to fully exhibit the physical properties originally possessed by the oxadiazole derivative of the present invention, the content of the polymer in the organic thin film is preferably 50% by weight or less.

【0015】本発明のオキサジアゾール誘導体を用いて
有機薄膜素子を作成する場合、基本的には上記成膜法に
より形成された有機薄膜を単層で利用できるが、様々な
機能を有する有機分子の有機薄膜を積層することによ
り、高度な複合機能を有する素子を実現することが可能
となる。以下に、本発明のオキサジアゾール誘導体を用
いて作成した各種機能を有する有機薄膜素子の構造及び
動作原理を簡単に説明する。 (1)有機EL素子
When an organic thin film element is prepared by using the oxadiazole derivative of the present invention, basically, the organic thin film formed by the above film forming method can be used as a single layer, but organic molecules having various functions can be used. By stacking these organic thin films, it is possible to realize an element having a high composite function. The structure and operation principle of the organic thin film element having various functions, which is prepared by using the oxadiazole derivative of the present invention, will be briefly described below. (1) Organic EL element

【0016】蛍光色素を含む発光層と正孔輸送層もしく
は電子輸送層の二層構造又は正孔輸送層と電子輸送層の
間に発光層を有する三層構造あるいはそれ以上の多層構
造からなる有機薄膜の積層構造を、少なくとも片方は透
明電極である二つの電極で挾んだ構造を有することを特
徴とする。いずれの場合も電子および正孔が発光層に注
入され、再結合し、発光する。電子輸送層および正孔輸
送層は注入確率を増大させる働きを有する。 (2)有機太陽電池素子
An organic compound having a two-layer structure of a light emitting layer containing a fluorescent dye and a hole transport layer or an electron transport layer, or a three-layer structure having a light emitting layer between the hole transport layer and the electron transport layer, or a multilayer structure of more layers. It is characterized in that it has a laminated structure of thin films sandwiched by two electrodes, at least one of which is a transparent electrode. In either case, electrons and holes are injected into the light emitting layer, recombine, and emit light. The electron transport layer and the hole transport layer have a function of increasing the injection probability. (2) Organic solar cell element

【0017】可視光線を吸収して、電子と正孔を生じる
色素を含む電荷発生層と正孔輸送層もしくは電子輸送層
の二層構造又は正孔輸送層と電子輸送層の間に電荷発生
層を有する三層構造あるいはそれ以上の多層構造からな
る有機薄膜の積層構造を、少なくとも片方は透明電極で
ある二つの電極で挾んだ構造を有することを特徴とす
る。いずれの場合も発生した電子および正孔が、再結合
するのを防ぎ、電荷分離を効率よく行なわせ、光電変換
効率を増大させる働きを有する。 (3)電子写真用有機感光体
A two-layer structure of a charge generation layer containing a dye which absorbs visible light to generate electrons and holes and a hole transport layer or an electron transport layer, or a charge generation layer between the hole transport layer and the electron transport layer. It is characterized in that it has a laminated structure of an organic thin film having a three-layer structure or a multi-layer structure having more than two layers, and a structure sandwiched by two electrodes, at least one of which is a transparent electrode. In any case, it has a function of preventing the generated electrons and holes from recombining, efficiently performing charge separation, and increasing photoelectric conversion efficiency. (3) Organic photoconductor for electrophotography

【0018】金属上に可視光線を吸収して、電子と正孔
を生じる色素を含む電荷発生層と正孔輸送層又は電子輸
送層を順に二層積層した有機薄膜の構造を有することを
特徴とする。
It has a structure of an organic thin film in which two layers of a charge generating layer containing a dye which absorbs visible light to generate electrons and holes and a hole transporting layer or an electron transporting layer are sequentially laminated on a metal. To do.

【0019】まず、コロナ放電等により正孔輸送層の場
合はマイナスに表面を帯電させる。電子輸送層の場合に
はプラスに帯電させる。その後、記録光を入射すると、
光が当たった部分だけ電子と正孔が発生する。正孔輸送
層では正孔が効率よく膜表面に輸送され、マイナス電荷
を打ち消す。トナーをマイナスに予め帯電させておけ
ば、光が当たった部分にだけトナーが付着し、この後紙
にトナー像を転写することができる。電子輸送層では電
子が効率よく膜表面に輸送され、プラス電荷を打ち消
す。トナーをプラスに予め帯電させておけば、光が当た
った部分にだけトナーが付着し、この後紙にトナー像を
転写することができる。 (4)有機整流素子 正孔輸送層(P型半導体)と電子輸送層(N型半導体)
の二層構造からなる有機薄膜の積層構造を二つの電極で
挾んだ構造を有することを特徴とする。
First, in the case of the hole transport layer, the surface is negatively charged by corona discharge or the like. In the case of the electron transport layer, it is positively charged. After that, when recording light is incident,
Electrons and holes are generated only in the areas exposed to the light. In the hole transport layer, holes are efficiently transported to the film surface to cancel out negative charges. If the toner is pre-charged negatively, the toner adheres only to the portion exposed to the light, and then the toner image can be transferred to the paper. In the electron transport layer, electrons are efficiently transported to the film surface, and the positive charge is canceled. If the toner is positively charged in advance, the toner adheres only to the part exposed to the light, and then the toner image can be transferred onto the paper. (4) Organic rectifying device Hole transport layer (P-type semiconductor) and electron transport layer (N-type semiconductor)
It is characterized in that it has a structure in which the laminated structure of the organic thin film having the two-layer structure is sandwiched by two electrodes.

【0020】いずれの場合も無機半導体のPN接合と同
様、電子および正孔のみが輸送されることから整流作用
が生じる。なお、無機半導体と同様、正孔輸送層にアク
セプターを電子輸送層にドナーを少量ドーピングするこ
とにより、電流密度を増加させることができる。
In any case, as in the case of the PN junction of the inorganic semiconductor, only the electrons and holes are transported, so that the rectifying action occurs. Like the inorganic semiconductor, the hole transport layer may be doped with an acceptor and the electron transport layer may be doped with a small amount of donor to increase the current density.

【0021】[0021]

【実施例】以下本発明の実施例として、実施例1〜5に
本発明のオキサジアゾール誘導体の合成及び成膜例、実
施例6〜13にこれらのオキサジアゾール誘導体を用いて
各種の有機薄膜素子を作成した例を示す。 実施例1(合成、成膜例)
EXAMPLES As examples of the present invention, Examples 1 to 5 are examples of synthesis and film formation of the oxadiazole derivative of the present invention, and Examples 6 to 13 are various organic compounds using these oxadiazole derivatives. The example which produced the thin film element is shown. Example 1 (synthesis, film formation example)

【0022】まず、1,3,5−ベンゼントリカルボン
酸トリクロライド2gとp−t−ブチル安息香酸ヒドラ
ジド8gを無水ピリジン中で反応させた。反応混合物を
水に投入して、沈澱を濾過した。沈澱を塩酸、水で洗っ
た後、メタノール/エタノール混合溶媒で再結晶するこ
とによりトリス(ジヒドラジド)を針状結晶として得
た。
First, 2 g of 1,3,5-benzenetricarboxylic acid trichloride and 8 g of p-t-butylbenzoic acid hydrazide were reacted in anhydrous pyridine. The reaction mixture was poured into water and the precipitate was filtered. The precipitate was washed with hydrochloric acid and water, and then recrystallized with a mixed solvent of methanol / ethanol to obtain tris (dihydrazide) as needle crystals.

【0023】次に、このトリス(ジヒドラジド)1gを
オキシ塩化リン30ml中で還流反応させた。オキシ塩化リ
ンを留去させた後、反応生成物を水、メタノールでよく
洗った。次いでこれをエタノール/トルエン混合溶媒で
再結晶することにより、下記構造式[3]で示されるオ
キサジアゾール誘導体を 0.7g得た。図1に得られたオ
キサジアゾール誘導体の赤外吸収スペクトルを、図2に
プロトンNMRスペクトルを示す。示差走査型熱量分析
から、このオキサジアゾール誘導体のアモルファス状態
のガラス転移温度は 139℃であることがわかった。
Next, 1 g of this tris (dihydrazide) was refluxed in 30 ml of phosphorus oxychloride. After the phosphorus oxychloride was distilled off, the reaction product was washed well with water and methanol. Then, this was recrystallized with a mixed solvent of ethanol / toluene to obtain 0.7 g of an oxadiazole derivative represented by the following structural formula [3]. The infrared absorption spectrum of the obtained oxadiazole derivative is shown in FIG. 1, and the proton NMR spectrum is shown in FIG. From the differential scanning calorimetric analysis, it was found that the glass transition temperature of this oxadiazole derivative in the amorphous state was 139 ° C.

【0024】[0024]

【化4】 [Chemical 4]

【0025】このオキサジアゾール誘導体を10-6トール
の真空下、抵抗加熱により、石英ガラス上に厚さ 300A
蒸着した。膜厚は水晶振動子を用いて制御した。膜は均
一で透明であった。この膜を窒素気流下、室温で3ケ月
放置した後、顕微鏡観察および散乱光測定を行なった。
その結果、不均一構造は全く見られず、均一なアモルフ
ァス状態が保持されていることが確認された。
This oxadiazole derivative was resistance-heated under a vacuum of 10 −6 Torr to give a thickness of 300 A on quartz glass.
It was vapor-deposited. The film thickness was controlled using a crystal oscillator. The film was uniform and transparent. This film was left under a nitrogen stream at room temperature for 3 months, and then observed under a microscope and scattered light was measured.
As a result, it was confirmed that no non-uniform structure was observed and a uniform amorphous state was maintained.

【0026】さらに、このオキサジアゾール誘導体をク
ロロホルムに溶解した溶液及び加熱溶解した溶液を調製
し、これらの溶液をそれぞれ石英ガラス上にスピンコー
トして厚さ1000Aの薄膜を得た。また、このオキサジア
ゾール誘導体と分子量20万のポリメチルメタクリレート
を等重量クロロホルムに溶解し、石英コート上にスピン
コートして厚さ2000Aの薄膜を得た。得られた有機薄膜
について同様に窒素気流下室温で3ケ月放置した後、顕
微鏡観察および散乱光測定を行なったところ、すべて不
均一構造は全く見られず、均一なアモルファス状態が保
持されていることが確認された。 実施例2(合成、成膜例)
Further, a solution in which this oxadiazole derivative was dissolved in chloroform and a solution in which it was dissolved by heating were prepared, and each of these solutions was spin-coated on quartz glass to obtain a thin film having a thickness of 1000A. Further, this oxadiazole derivative and polymethylmethacrylate having a molecular weight of 200,000 were dissolved in equal weight chloroform and spin-coated on a quartz coat to obtain a thin film having a thickness of 2000A. When the obtained organic thin film was similarly left under a nitrogen stream at room temperature for 3 months, it was observed under a microscope and scattered light was observed, and no heterogeneous structure was observed at all, and a uniform amorphous state was maintained. Was confirmed. Example 2 (synthesis, film formation example)

【0027】実施例1と同様の合成法にて下記構造式
[4]で示されるオキサジアゾール誘導体を合成した。
図3に得られたオキサジアゾール誘導体の赤外吸収スペ
クトルを、図4にプロトンNMRスペクトルを示す。示
差走査型熱量分析から、このオキサジアゾール誘導体の
アモルファス状態のガラス転移温度は 169℃であること
がわかった。
An oxadiazole derivative represented by the following structural formula [4] was synthesized by the same synthetic method as in Example 1.
The infrared absorption spectrum of the oxadiazole derivative obtained is shown in FIG. 3, and the proton NMR spectrum is shown in FIG. From the differential scanning calorimetric analysis, it was found that the glass transition temperature of this oxadiazole derivative in the amorphous state was 169 ° C.

【0028】[0028]

【化5】 [Chemical 5]

【0029】このオキサジアゾール誘導体を10-6トール
の真空下、抵抗加熱により、石英ガラス上に厚さ 300A
蒸着した。膜厚は水晶振動子を用いて制御した。膜は均
一で透明であった。この膜を窒素気流下、室温で3ケ月
放置した後、顕微鏡観察および散乱光測定を行なった。
その結果、不均一構造は全く見られず、均一なアモルフ
ァス状態が保持されていることが確認された。 実施例3(合成、成膜例)
This oxadiazole derivative was resistance-heated under a vacuum of 10 -6 torr to a thickness of 300 A on quartz glass.
It was vapor-deposited. The film thickness was controlled using a crystal oscillator. The film was uniform and transparent. This film was left under a nitrogen stream at room temperature for 3 months, and then observed under a microscope and scattered light was measured.
As a result, it was confirmed that no non-uniform structure was observed and a uniform amorphous state was maintained. Example 3 (synthesis, film formation example)

【0030】実施例1と同様の合成法にて下記構造式
[5]で示されるオキサジアゾール誘導体を合成した。
図5に得られたオキサジアゾール誘導体の赤外吸収スペ
クトルを、図6にプロトンNMRスペクトルを示す。示
差走査型熱量分析から、このオキサジアゾール誘導体の
アモルファス状態のガラス転移温度は 147℃であること
がわかった。
An oxadiazole derivative represented by the following structural formula [5] was synthesized by the same synthetic method as in Example 1.
The infrared absorption spectrum of the oxadiazole derivative obtained is shown in FIG. 5, and the proton NMR spectrum is shown in FIG. From the differential scanning calorimetric analysis, it was found that the glass transition temperature of this oxadiazole derivative in the amorphous state was 147 ° C.

【0031】[0031]

【化6】 [Chemical 6]

【0032】このオキサジアゾール誘導体を10-6トール
の真空下、抵抗加熱により、石英ガラス上に厚さ 300A
蒸着した。膜厚は水晶振動子を用いて制御した。膜は均
一で透明であった。この膜を窒素気流下、室温で3ケ月
放置した後、顕微鏡観察および散乱光測定を行なった。
その結果、不均一構造は全く見られず、均一なアモルフ
ァス状態が保持されていることが確認された。 実施例4(合成、成膜例)
This oxadiazole derivative was resistance-heated under a vacuum of 10 -6 torr to a thickness of 300 A on quartz glass.
It was vapor-deposited. The film thickness was controlled using a crystal oscillator. The film was uniform and transparent. This film was left under a nitrogen stream at room temperature for 3 months, and then observed under a microscope and scattered light was measured.
As a result, it was confirmed that no non-uniform structure was observed and a uniform amorphous state was maintained. Example 4 (synthesis, film formation example)

【0033】実施例1と同様の合成法にて下記構造式
[6]で示されるオキサジアゾール誘導体を合成した。
図7に得られたオキサジアゾール誘導体の赤外吸収スペ
クトルを示す。示差走査型熱量分析から、このオキサジ
アゾール誘導体のアモルファス状態のガラス転移温度は
140℃であることがわかった。
An oxadiazole derivative represented by the following structural formula [6] was synthesized by the same synthetic method as in Example 1.
FIG. 7 shows the infrared absorption spectrum of the oxadiazole derivative obtained. From the differential scanning calorimetry, the glass transition temperature of this oxadiazole derivative in the amorphous state is
It was found to be 140 ° C.

【0034】[0034]

【化7】 [Chemical 7]

【0035】このオキサジアゾール誘導体を10-6トール
の真空下、抵抗加熱により、石英ガラス上に厚さ 300A
蒸着した。膜厚は水晶振動子を用いて制御した。膜は均
一で透明であった。この膜を窒素気流下、室温で3ケ月
放置した後、顕微鏡観察および散乱光測定を行なった。
その結果、不均一構造は全く見られず、均一なアモルフ
ァス状態が保持されていることが確認された。 実施例5(合成、成膜例)
This oxadiazole derivative was resistance-heated under a vacuum of 10 −6 Torr to a thickness of 300 A on quartz glass.
It was vapor-deposited. The film thickness was controlled using a crystal oscillator. The film was uniform and transparent. This film was left under a nitrogen stream at room temperature for 3 months, and then observed under a microscope and scattered light was measured.
As a result, it was confirmed that no non-uniform structure was observed and a uniform amorphous state was maintained. Example 5 (synthesis, film formation example)

【0036】実施例1と同様の合成法にて下記構造式
[7]で示されるオキサジアゾール誘導体を合成した。
図8に得られたオキサジアゾール誘導体の赤外吸収スペ
クトルを、図9にプロトンNMRスペクトルを示す。示
差走査型熱量分析から、このオキサジアゾール誘導体の
アモルファス状態のガラス転移温度は 108℃であること
がわかった。
An oxadiazole derivative represented by the following structural formula [7] was synthesized by the same synthetic method as in Example 1.
The infrared absorption spectrum of the obtained oxadiazole derivative is shown in FIG. 8, and the proton NMR spectrum is shown in FIG. From the differential scanning calorimetric analysis, it was found that the glass transition temperature of this oxadiazole derivative in the amorphous state was 108 ° C.

【0037】[0037]

【化8】 [Chemical 8]

【0038】このオキサジアゾール誘導体を10-6トール
の真空下、抵抗加熱により、石英ガラス上に厚さ 300A
蒸着した。膜厚は水晶振動子を用いて制御した。膜は均
一で透明であった。この膜を窒素気流下、室温で3ケ月
放置した後、顕微鏡観察および散乱光測定を行なった。
その結果、不均一構造は全く見られず、均一なアモルフ
ァス状態が保持されていることが確認された。 比較例1
This oxadiazole derivative was resistance-heated under a vacuum of 10 −6 Torr to give a thickness of 300 A on quartz glass.
It was vapor-deposited. The film thickness was controlled using a crystal oscillator. The film was uniform and transparent. This film was left under a nitrogen stream at room temperature for 3 months, and then observed under a microscope and scattered light was measured.
As a result, it was confirmed that no non-uniform structure was observed and a uniform amorphous state was maintained. Comparative Example 1

【0039】下記構造式[8]で示される線状のオキサ
ジアゾール誘導体を10-6トールの真空下、抵抗加熱によ
り、石英ガラス上に厚さ 300A蒸着した。膜厚は水晶振
動子を用いて制御した。膜は均一で透明であった。この
膜を窒素気流下、室温で1ケ月放置した後、顕微鏡観察
および散乱光測定を行なった。その結果、散乱光が増加
し、また顕微鏡においても結晶粒らしい構造が観察さ
れ、膜が不均一になっていることが確認された。
A linear oxadiazole derivative represented by the following structural formula [8] was vapor-deposited on quartz glass at a thickness of 300 A by resistance heating under a vacuum of 10 -6 torr. The film thickness was controlled using a crystal oscillator. The film was uniform and transparent. After leaving this film for 1 month at room temperature under a nitrogen stream, it was observed under a microscope and scattered light was measured. As a result, it was confirmed that the scattered light increased and a structure like a crystal grain was observed even under a microscope, and the film was non-uniform.

【0040】[0040]

【化9】 比較例2[Chemical 9] Comparative example 2

【0041】下記構造式[9]で示される線状のオキサ
ジアゾール誘導体を10-6トールの真空下、抵抗加熱によ
り、石英ガラス上に厚さ 300A蒸着した。膜厚は水晶振
動子を用いて制御した。膜は均一で透明であった。この
膜を窒素気流下、室温で1ケ月放置した後、顕微鏡観察
および散乱光測定を行なった。その結果、散乱光が増加
し、また顕微鏡においても結晶粒らしい構造が観察さ
れ、膜が不均一になっていることが確認された。また示
差走査型熱量分析から、このオキサジアゾール誘導体の
アモルファス状態のガラス転移温度は77℃と低いことが
わかった。
A linear oxadiazole derivative represented by the following structural formula [9] was vapor-deposited on quartz glass at a thickness of 300 A by resistance heating under a vacuum of 10 −6 Torr. The film thickness was controlled using a crystal oscillator. The film was uniform and transparent. After leaving this film for 1 month at room temperature under a nitrogen stream, it was observed under a microscope and scattered light was measured. As a result, it was confirmed that the scattered light increased and a structure like a crystal grain was observed even under a microscope, and the film was non-uniform. Also, differential scanning calorimetry analysis revealed that the glass transition temperature of the oxadiazole derivative in the amorphous state was as low as 77 ° C.

【0042】[0042]

【化10】 実施例6(有機EL素子)[Chemical 10] Example 6 (organic EL device)

【0043】ITOガラス上に、正孔輸送層として下記
構造式[10]で示されるトリフェニルアミン誘導体、発
光層としてペンタフェニルシクロブタジエン、電子輸送
層として前記構造式[3]で示されるオキサジアゾール
誘導体をそれぞれ 500A, 300A, 500A蒸着して三層
構造からなる有機薄膜を形成した。この後有機薄膜上
に、マグネシウムと銀の合金(原子比10:1)よりなる
面積 0.2cm2 の電極を6個形成して、本実施例の有機E
L素子を作成した。
On the ITO glass, a triphenylamine derivative represented by the following structural formula [10] as a hole transport layer, pentaphenylcyclobutadiene as a light emitting layer, and an oxadiene represented by the structural formula [3] as an electron transport layer. An azole derivative was vapor-deposited at 500 A, 300 A, and 500 A, respectively, to form an organic thin film having a three-layer structure. After this, an area of 0.2 cm 2 composed of an alloy of magnesium and silver (atomic ratio 10: 1) was formed on the organic thin film. 6 electrodes are formed to form the organic E of the present embodiment.
An L element was created.

【0044】この有機EL素子について、作成後直ちに
真空下10Vの直流電圧で初期輝度を測定したところ、測
定した3電極とも1000cd/m2 の輝度を示した。さら
に、この有機EL素子を窒素気流下室温で1ケ月放置し
た後、残る3電極の初期輝度を同様に測定したところ、
いずれも1000cd/m2 の輝度が得られ、保存による素子
特性の劣化は認められなかった。
Immediately after the production of this organic EL device, the initial luminance was measured under a vacuum at a direct current voltage of 10 V, and 1000 cd / m 2 was measured for all three electrodes. The brightness of Further, after the organic EL device was left under a nitrogen stream at room temperature for 1 month, the initial luminance of the remaining 3 electrodes was measured in the same manner.
Both are 1000 cd / m 2 Brightness was obtained, and deterioration of device characteristics due to storage was not observed.

【0045】[0045]

【化11】 実施例7(有機EL素子)[Chemical 11] Example 7 (organic EL device)

【0046】構造式[3]で示されるオキサジアゾール
誘導体の代わりに前記構造式[5]で示されるオキサジ
アゾール誘導体を用いることを除いては、実施例6と同
様の方法にて有機EL素子を作成した。この有機EL素
子について、作成後直ちに真空下10Vの直流電圧で初期
輝度を測定したところ、測定した3電極とも1000cd/m
2 の輝度を示した。さらに、この有機EL素子を窒素気
流下室温で1カ月放置した後、残る3電極の初期輝度を
同様に測定したところ、いずれも1000cd/m2 の輝度が
得られ、保存による素子特性の劣化は認められなかっ
た。 実施例8(有機EL素子)
Oxadiazole represented by the structural formula [3]
Oxazide represented by the above structural formula [5] instead of the derivative
Same as Example 6 except that the azole derivative is used.
An organic EL device was prepared by the same method. This organic EL element
Immediately after creation, the child is initially set to a DC voltage of 10 V under vacuum.
When the brightness was measured, the measured three electrodes were 1000 cd / m
2 The brightness of Furthermore, this organic EL element is
After leaving at room temperature for 1 month, the initial brightness of the remaining 3 electrodes
When measured in the same manner, both are 1000 cd / m2 The brightness of
Obtained, no deterioration in device characteristics due to storage
It was Example 8 (organic EL device)

【0047】ペンタフェニルシクロブタジエンの代わり
に前記構造式[4]で示されるオキサジアゾール誘導体
を用いることを除いては、実施例6と同様の方法にて有
機EL素子を作成した。この有機EL素子について、作
成後直ちに真空下10Vの直流電圧で初期輝度を同様に測
定したところ、測定した3電極とも1000cd/m2 の輝度
を示した。さらに、この有機EL素子を窒素気流下室温
で1カ月放置した後、残る3電極の初期輝度を測定した
ところ、いずれも1000cd/m2 の輝度が得られ、保存に
よる素子特性の劣化は認められなかった。 実施例9(有機EL素子)
An organic EL device was prepared in the same manner as in Example 6 except that the oxadiazole derivative represented by the above structural formula [4] was used in place of pentaphenylcyclobutadiene. Immediately after the production, the initial luminance of this organic EL device was similarly measured at a direct current voltage of 10 V, and 1000 cd / m 2 was measured for all three electrodes. The brightness of Furthermore, after leaving this organic EL device under a nitrogen stream at room temperature for one month, the initial luminance of the remaining three electrodes was measured and found to be 1000 cd / m 2. Brightness was obtained, and deterioration of device characteristics due to storage was not observed. Example 9 (organic EL device)

【0048】ペンタフェニルシクロブタジエンの代わり
に前記構造式[7]で示されるオキサジアゾール誘導体
を用いることを除いては、実施例6と同様の方法にて有
機EL素子を作成した。この有機EL素子について、作
成後直ちに真空下10Vの直流電圧で初期輝度を同様に測
定したところ、測定した3電極とも1000cd/m2 の輝度
を示した。さらに、この素子を窒素気流下室温で1カ月
放置した後、残る3電極の初期輝度を同様に測定したと
ころ、いずれも1000cd/m2 の輝度が得られ、保存によ
る素子特性の劣化は認められなかった。 実施例10(有機太陽電池素子)
An organic EL device was prepared in the same manner as in Example 6 except that the oxadiazole derivative represented by the above structural formula [7] was used in place of pentaphenylcyclobutadiene. Immediately after the production, the initial luminance of this organic EL device was similarly measured at a direct current voltage of 10 V, and 1000 cd / m 2 was measured for all three electrodes. The brightness of Furthermore, after leaving this element for 1 month at room temperature under a nitrogen stream, the initial luminance of the remaining 3 electrodes was measured in the same manner, and all were 1000 cd / m 2. Brightness was obtained, and deterioration of device characteristics due to storage was not observed. Example 10 (organic solar cell element)

【0049】ITOガラス上に、正孔輸送層として前記
構造式[10]で示されるトリフェニルアミン誘導体、電
荷発生層として銅フタロシアニン、電子輸送層として前
記構造式[6]で示されるオキサジアゾール誘導体をそ
れぞれ 500Aずつ蒸着して三層構造からなる有機薄膜を
形成した。この後有機薄膜上に面積 0.2cm2 のアルミニ
ウム電極を6個形成して、本実施例の有機太陽電池素子
を作成した。
On the ITO glass, a triphenylamine derivative represented by the above structural formula [10] as a hole transport layer, copper phthalocyanine as a charge generation layer, and an oxadiazole represented by the above structural formula [6] as an electron transport layer. Each of the derivatives was vapor-deposited at 500 A to form an organic thin film having a three-layer structure. After this, the area on the organic thin film 0.2 cm 2 Six aluminum electrodes of No. 3 were formed to prepare an organic solar cell element of this example.

【0050】この有機太陽電池素子について、作成後直
ちに真空下400nm 以下の紫外光をカットしたタングステ
ンランプ光をITOガラス側から照射し、初期光電変換
効率を測定したところ、測定した3電極とも 1.2〜 1.5
%であった。さらに、この有機太陽電池素子を窒素気流
下室温で3ケ月放置した後、残る3電極の初期光電変換
効率を同様に測定したところ、いずれも 1.3〜 1.5%と
保存による素子特性の劣化は認められなかった。 実施例11(有機太陽電池素子)
Immediately after production of this organic solar cell element, a tungsten lamp light, which was cut off ultraviolet light having a wavelength of 400 nm or less, was irradiated from the ITO glass side, and the initial photoelectric conversion efficiency was measured. 1.5
%Met. Furthermore, after leaving this organic solar cell element under nitrogen flow at room temperature for 3 months, the initial photoelectric conversion efficiency of the remaining 3 electrodes was measured in the same manner, and it was found that the deterioration of element characteristics due to storage was 1.3 to 1.5%. There wasn't. Example 11 (organic solar cell element)

【0051】構造式[6]で示されるオキサジアゾール
誘導体の代わりに前記構造式[3]で示されるオキサジ
アゾール誘導体を用いることを除いては、実施例10と同
様の方法にて有機太陽電池素子を作成した。この有機太
陽電池素子について、作成後直ちに真空下400nm 以下の
紫外光をカットしたタングステンランプ光をITOガラ
ス側から照射し、初期光電変換効率を測定したところ、
測定した3電極とも 1.0〜 1.2%であった。さらに、こ
の有機太陽電池素子を窒素気流下室温で3ケ月放置した
後、残る3電極の初期光電変換効率を同様に測定したと
ころ、いずれも1.0〜 1.1%と保存による素子特性の劣
化は認められなかった。 実施例12(電子写真用有機感光体)
An organic solar cell was prepared in the same manner as in Example 10, except that the oxadiazole derivative represented by the structural formula [3] was used in place of the oxadiazole derivative represented by the structural formula [6]. A battery element was created. Immediately after the production of this organic solar cell element, a tungsten lamp light that cut off ultraviolet light having a wavelength of 400 nm or less was irradiated from the ITO glass side to measure the initial photoelectric conversion efficiency.
The measured three electrodes were 1.0 to 1.2%. Furthermore, when this organic solar cell element was left under a nitrogen stream at room temperature for 3 months and the initial photoelectric conversion efficiency of the remaining 3 electrodes was measured in the same manner, deterioration of the element characteristics due to storage was confirmed to be 1.0 to 1.1%. There wasn't. Example 12 (organic photoconductor for electrophotography)

【0052】まずガラス表面に蒸着したアルミニウム電
極上に、電荷発生層として銅ナフタロシアニンを分散し
た厚さ2μmのポリカーボネート膜をキャスト法により
形成した。次いでこの上に、キャリア輸送層として前記
構造式[10]で示されるトリフェニルアミン誘導体と前
記構造式[6]で示されるオキサジアゾール誘導体をそ
れぞれ20wt%,30wt%溶解したポリカーボネートの厚さ
2μmの塗膜を形成し、本実施例の電子写真用有機感光
体を作成した。なおこのキャリア輸送層においては、ト
リフェニルアミン誘導体が正孔輸送能を、オキサジアゾ
ール誘導体が電子輸送能をそれぞれ有している。
First, a polycarbonate film having a thickness of 2 μm in which copper naphthalocyanine was dispersed was formed as a charge generation layer on the aluminum electrode deposited on the glass surface by a casting method. Then, on this, as a carrier transport layer, a triphenylamine derivative represented by the above structural formula [10] and an oxadiazole derivative represented by the above structural formula [6] were dissolved in 20 wt% and 30 wt% respectively of a polycarbonate having a thickness of 2 μm. To form an electrophotographic organic photoconductor of this example. In this carrier transport layer, the triphenylamine derivative has a hole transport ability and the oxadiazole derivative has an electron transport ability.

【0053】この電子写真用有機感光体について、作成
後直ちに630nm の単色光を照射した( 0.4μW/cm2
時の表面帯電電位の減衰を測定したところ、正負いずれ
の帯電に対しても約2cm2 /μJの感度を示した。さら
に、この電子写真用有機感光体を窒素気流下室温で3ケ
月放置した後、同様に感度の測定を行なったところ、保
存による素子特性の劣化は認められなかった。 実施例13(有機整流素子)
This organic photoconductor for electrophotography was immediately irradiated with monochromatic light of 630 nm (0.4 μW / cm 2). )
When the decay of the surface charge potential was measured, it was about 2 cm 2 for both positive and negative charges. The sensitivity was / μJ. Further, after the organic photoreceptor for electrophotography was left under a nitrogen stream at room temperature for 3 months, the sensitivity was measured in the same manner. As a result, deterioration of element characteristics due to storage was not observed. Example 13 (organic rectifier)

【0054】ガラス表面に蒸着されたアルミニウム電極
上に、正孔輸送層として前記構造式[10]で示されるト
リフェニルアミン誘導体、電荷輸送層として前記構造式
[6]で示されるオキサジアゾール誘導体をそれぞれ 2
00Aずつ蒸着して二層構造からなる有機薄膜を形成し
た。この後有機薄膜上に面積 0.2cm2 のアルミニウム上
部電極を6個形成して、本実施例の有機整流素子を作成
した。
On the aluminum electrode deposited on the glass surface, the triphenylamine derivative represented by the above structural formula [10] as a hole transport layer and the oxadiazole derivative represented by the above structural formula [6] as a charge transport layer. 2 each
An organic thin film having a two-layer structure was formed by vapor deposition of 00A each. After this, the area on the organic thin film 0.2 cm 2 Six aluminum upper electrodes of No. 3 were formed to prepare an organic rectifying device of this example.

【0055】この有機整流素子について、作成後直ちに
真空下で光を遮断して電流−電圧特性を測定した。この
結果、アルミニウム上部電極を負電極とした場合に電流
が流れる整流特性を有し、測定した6電極ともほぼ同じ
電流−電圧特性を示した。さらに、この有機整流素子を
窒素気流下室温で3ケ月放置した後、6電極の電流−電
圧特性を測定したところ、いずれも変化は見られず保存
による素子特性の劣化は認められなかった。
Immediately after the organic rectifying device was manufactured, the current-voltage characteristics were measured by cutting off the light under vacuum. As a result, when the aluminum upper electrode was used as a negative electrode, it had a rectifying characteristic in which a current flowed, and the measured six electrodes showed almost the same current-voltage characteristic. Further, the organic rectifier was left for 3 months at room temperature under a nitrogen stream, and then the current-voltage characteristics of 6 electrodes were measured. No change was observed in any of them, and deterioration of the element characteristics due to storage was not observed.

【0056】[0056]

【発明の効果】以上詳述したように、本発明のオキサジ
アゾール誘導体によればアモルファス状態での薄膜化が
容易で、安定かつ耐熱性に優れた有機薄膜を形成するこ
とができる。従って本発明のオキサジアゾール誘導体を
用いれば、動作安定性、寿命特性等に優れた有機薄膜素
子の実現が可能となり、その工業的価値は大なるものが
ある。
As described in detail above, according to the oxadiazole derivative of the present invention, it is possible to easily form a thin film in an amorphous state and form an organic thin film which is stable and has excellent heat resistance. Therefore, by using the oxadiazole derivative of the present invention, it is possible to realize an organic thin film element having excellent operational stability and life characteristics, and its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で合成された構造式[3]で示され
るオキサジアゾール誘導体の赤外吸収スペクトルを示す
図。
FIG. 1 is a diagram showing an infrared absorption spectrum of an oxadiazole derivative represented by a structural formula [3] synthesized in Example 1.

【図2】 実施例1で合成された構造式[3]で示され
るオキサジアゾール誘導体のプロトンNMRスペクトル
を示す図。
FIG. 2 is a diagram showing a proton NMR spectrum of an oxadiazole derivative represented by the structural formula [3] synthesized in Example 1.

【図3】 実施例2で合成された構造式[4]で示され
るオキサジアゾール誘導体の赤外吸収スペクトルを示す
図。
FIG. 3 shows an infrared absorption spectrum of an oxadiazole derivative represented by Structural Formula [4], which was synthesized in Example 2.

【図4】 実施例2で合成された構造式[4]で示され
るオキサジアゾール誘導体のプロトンNMRスペクトル
を示す図。
FIG. 4 is a diagram showing a proton NMR spectrum of an oxadiazole derivative represented by the structural formula [4] synthesized in Example 2.

【図5】 実施例3で合成された構造式[5]で示され
るオキサジアゾール誘導体の赤外吸収スペクトルを示す
図。
5 is a diagram showing an infrared absorption spectrum of an oxadiazole derivative represented by Structural Formula [5], which was synthesized in Example 3. FIG.

【図6】 実施例3で合成された構造式[5]で示され
るオキサジアゾール誘導体のプロトンNMRスペクトル
を示す図。
FIG. 6 is a diagram showing a proton NMR spectrum of an oxadiazole derivative represented by the structural formula [5], which was synthesized in Example 3.

【図7】 実施例4で合成された構造式[6]で示され
るオキサジアゾール誘導体の赤外吸収スペクトルを示す
図。
7 is a diagram showing an infrared absorption spectrum of an oxadiazole derivative represented by Structural Formula [6], which was synthesized in Example 4. FIG.

【図8】 実施例5で合成された構造式[7]で示され
るオキサジアゾール誘導体の赤外吸収スペクトルを示す
図。
FIG. 8 shows an infrared absorption spectrum of an oxadiazole derivative represented by Structural Formula [7], which was synthesized in Example 5.

【図9】 実施例5で合成された構造式[7]で示され
るオキサジアゾール誘導体のプロトンNMRスペクトル
を示す図。
9 is a diagram showing a proton NMR spectrum of the oxadiazole derivative represented by the structural formula [7] synthesized in Example 5. FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/04 H05B 33/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 31/04 H05B 33/14

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式[1]で示されることを特徴
とするオキサジアゾール誘導体。 【化1】 (式中、R1 〜R3 は同一でも異なっていてもよく、そ
れぞれ水素原子、ハロゲン原子又は一価の基を表す。)
1. An oxadiazole derivative represented by the following general formula [1]: [Chemical 1] (In the formula, R 1 to R 3 may be the same or different and each represents a hydrogen atom, a halogen atom or a monovalent group.)
JP4011562A 1992-01-27 1992-01-27 Oxadiazole derivative Pending JPH05202011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4011562A JPH05202011A (en) 1992-01-27 1992-01-27 Oxadiazole derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4011562A JPH05202011A (en) 1992-01-27 1992-01-27 Oxadiazole derivative

Publications (1)

Publication Number Publication Date
JPH05202011A true JPH05202011A (en) 1993-08-10

Family

ID=11781378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4011562A Pending JPH05202011A (en) 1992-01-27 1992-01-27 Oxadiazole derivative

Country Status (1)

Country Link
JP (1) JPH05202011A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707779A (en) * 1993-07-27 1998-01-13 Kabushiki Kaisha Toshiba Amorphous organic thin-film device, amorphous organic polymer composition, and amorphous inorganic composition
US5986121A (en) * 1995-07-17 1999-11-16 Chisso Corporation Silacyclopentadiene derivatives and an organic electroluminescent element obtained by using the silacyclopentadiene derivative
US6013384A (en) * 1997-01-27 2000-01-11 Junji Kido Organic electroluminescent devices
US6396209B1 (en) 1998-12-16 2002-05-28 International Manufacturing And Engineering Services Co., Ltd. Organic electroluminescent device
US6423429B2 (en) 1998-03-02 2002-07-23 Junji Kido Organic electroluminescent devices
US6459199B1 (en) 1996-05-15 2002-10-01 Chemipro Kasei Kaisha, Limited Multicolor organic EL element having plurality of organic dyes, method of manufacturing the same, and display using the same
US6589673B1 (en) 1999-09-29 2003-07-08 Junji Kido Organic electroluminescent device, group of organic electroluminescent devices
US6696182B2 (en) 2000-09-07 2004-02-24 Chisso Corporation Organic electroluminescent device comprising dipyridylthiophene derivative
WO2004096948A1 (en) * 2003-04-15 2004-11-11 3M Innovative Properties Company Electron transport agents for organic electronic devices
JP2006248967A (en) * 2005-03-10 2006-09-21 Fuji Photo Film Co Ltd Compound, composition, optical element, and retardation plate
US7192657B2 (en) 2003-04-15 2007-03-20 3M Innovative Properties Company Ethynyl containing electron transport dyes and compositions
US7282275B2 (en) 2002-04-19 2007-10-16 3M Innovative Properties Company Materials for organic electronic devices
US7326473B2 (en) 1998-02-17 2008-02-05 Junji Kido Organic electroluminescent devices
EP2258804A2 (en) 1994-12-28 2010-12-08 Cambridge Display Technology Limited Polymers for use in optical devices
JP2011064720A (en) * 2009-09-15 2011-03-31 Ricoh Co Ltd Electrophotographic pohotoreceptor, and image forming method, image forming apparatus, and process cartridge for image forming apparatus using the same
JP2012056953A (en) * 2004-03-25 2012-03-22 Hodogaya Chem Co Ltd Compound having oxadiazole ring structure substituted with pyridyl group and organic electroluminescent device
WO2013058505A2 (en) 2011-10-17 2013-04-25 주식회사 엘지화학 Substrate for organic electronic device
WO2013141678A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Substrate for organic electronic device
WO2013141674A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Organic light-emitting element
WO2013141675A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Organic light-emitting element
WO2013147573A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147572A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147570A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147571A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2014021644A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014021642A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014021643A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014084699A1 (en) 2012-11-30 2014-06-05 주식회사 엘지화학 Substrate for organic electronic element
WO2014084701A1 (en) 2012-11-30 2014-06-05 주식회사 엘지화학 Substrate for organic electronic element
WO2015047036A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic devices and production method therefor
WO2015047049A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Organic electronic device
WO2015047044A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for manufacturing organic electronic device
WO2015047055A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
WO2015047041A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
WO2015047053A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for manufacturing organic electronic device
WO2015047037A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device and method for manufacturing same
WO2015084073A1 (en) 2013-12-04 2015-06-11 주식회사 엘지화학 Method for manufacturing substrate for organic electronic device
US9203046B2 (en) 2003-10-17 2015-12-01 Junji Kido Organic electroluminescent device and production process thereof

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707779A (en) * 1993-07-27 1998-01-13 Kabushiki Kaisha Toshiba Amorphous organic thin-film device, amorphous organic polymer composition, and amorphous inorganic composition
EP2258804A2 (en) 1994-12-28 2010-12-08 Cambridge Display Technology Limited Polymers for use in optical devices
US5986121A (en) * 1995-07-17 1999-11-16 Chisso Corporation Silacyclopentadiene derivatives and an organic electroluminescent element obtained by using the silacyclopentadiene derivative
US6051319A (en) * 1995-07-17 2000-04-18 Chisso Corporation Silacyclopentadiene derivatives and an organic electroluminescent element obtained by using the silacyclopentadiene derivative
US6459199B1 (en) 1996-05-15 2002-10-01 Chemipro Kasei Kaisha, Limited Multicolor organic EL element having plurality of organic dyes, method of manufacturing the same, and display using the same
US6013384A (en) * 1997-01-27 2000-01-11 Junji Kido Organic electroluminescent devices
US7326473B2 (en) 1998-02-17 2008-02-05 Junji Kido Organic electroluminescent devices
US6423429B2 (en) 1998-03-02 2002-07-23 Junji Kido Organic electroluminescent devices
US6396209B1 (en) 1998-12-16 2002-05-28 International Manufacturing And Engineering Services Co., Ltd. Organic electroluminescent device
US6589673B1 (en) 1999-09-29 2003-07-08 Junji Kido Organic electroluminescent device, group of organic electroluminescent devices
US6696182B2 (en) 2000-09-07 2004-02-24 Chisso Corporation Organic electroluminescent device comprising dipyridylthiophene derivative
US7282275B2 (en) 2002-04-19 2007-10-16 3M Innovative Properties Company Materials for organic electronic devices
US7271406B2 (en) 2003-04-15 2007-09-18 3M Innovative Properties Company Electron transport agents for organic electronic devices
WO2004096948A1 (en) * 2003-04-15 2004-11-11 3M Innovative Properties Company Electron transport agents for organic electronic devices
US7192657B2 (en) 2003-04-15 2007-03-20 3M Innovative Properties Company Ethynyl containing electron transport dyes and compositions
US9203046B2 (en) 2003-10-17 2015-12-01 Junji Kido Organic electroluminescent device and production process thereof
JP2012056953A (en) * 2004-03-25 2012-03-22 Hodogaya Chem Co Ltd Compound having oxadiazole ring structure substituted with pyridyl group and organic electroluminescent device
JP2006248967A (en) * 2005-03-10 2006-09-21 Fuji Photo Film Co Ltd Compound, composition, optical element, and retardation plate
JP2011064720A (en) * 2009-09-15 2011-03-31 Ricoh Co Ltd Electrophotographic pohotoreceptor, and image forming method, image forming apparatus, and process cartridge for image forming apparatus using the same
WO2013058505A2 (en) 2011-10-17 2013-04-25 주식회사 엘지화학 Substrate for organic electronic device
WO2013141678A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Substrate for organic electronic device
WO2013141677A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Substrate for organic electronic device
WO2013141676A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Substrate for organic electronic device
WO2013141674A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Organic light-emitting element
WO2013141675A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Organic light-emitting element
WO2013141679A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Substrate for organic electronic device
WO2013141673A1 (en) 2012-03-23 2013-09-26 주식회사 엘지화학 Method for producing a substrate for organic electronic devices
WO2013147573A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147570A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147571A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2013147572A1 (en) 2012-03-30 2013-10-03 주식회사 엘지화학 Substrate for organic electronic device
WO2014021644A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014021642A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
WO2014021643A1 (en) 2012-07-31 2014-02-06 주식회사 엘지화학 Substrate for organic electronic device
US9391301B2 (en) 2012-07-31 2016-07-12 Lg Chem, Ltd. Substrate for organic electronic device
US9373820B2 (en) 2012-07-31 2016-06-21 Lg Chem, Ltd. Substrate for organic electronic device
WO2014084699A1 (en) 2012-11-30 2014-06-05 주식회사 엘지화학 Substrate for organic electronic element
WO2014084701A1 (en) 2012-11-30 2014-06-05 주식회사 엘지화학 Substrate for organic electronic element
US9768398B2 (en) 2012-11-30 2017-09-19 Lg Chem, Ltd. Substrate for organic electronic device
WO2015047053A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for manufacturing organic electronic device
WO2015047041A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
WO2015047037A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device and method for manufacturing same
WO2015047055A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic device
WO2015047044A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Method for manufacturing organic electronic device
WO2015047049A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Organic electronic device
US9570705B2 (en) 2013-09-30 2017-02-14 Lg Display Co., Ltd. Method of manufacturing organic electronic device
US9755188B2 (en) 2013-09-30 2017-09-05 Lg Display Co., Ltd. Organic electronic device
US9761832B2 (en) 2013-09-30 2017-09-12 Lg Display Co., Ltd. Substrate for organic electronic device
WO2015047036A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Substrate for organic electronic devices and production method therefor
US10079351B2 (en) 2013-09-30 2018-09-18 Lg Display Co., Ltd. Method of preparing organic electronic device
US10950808B2 (en) 2013-09-30 2021-03-16 Lg Display Co., Ltd. Method of preparing organic electronic device
WO2015084073A1 (en) 2013-12-04 2015-06-11 주식회사 엘지화학 Method for manufacturing substrate for organic electronic device

Similar Documents

Publication Publication Date Title
JPH05202011A (en) Oxadiazole derivative
Lucenti et al. Cyclic triimidazole derivatives: intriguing examples of multiple emissions and ultralong phosphorescence at room temperature
US5891587A (en) Electroluminescent devices
KR100861434B1 (en) Novel compound and organic electronic device using such compound
JP4734333B2 (en) Carbazole derivative and organic light emitting device using the same
US5707779A (en) Amorphous organic thin-film device, amorphous organic polymer composition, and amorphous inorganic composition
EP2261301A1 (en) Organometallic complexes, organic electroluminescent devices and organic electroluminescent displays
Braukyla et al. Inexpensive Hole‐Transporting Materials Derived from Tröger's Base Afford Efficient and Stable Perovskite Solar Cells
JP3463358B2 (en) Hole transport material and its use
Pfeifer et al. Synthesis, Electronic Properties and OLED Devices of Chromophores Based on λ5‐Phosphinines
WO2012121398A1 (en) Polycyclic aromatic compound
JP2002100476A (en) Light-emitting element and azole compound
JPH0840997A (en) New triphenylamine derivative, its production and use
JPH07228579A (en) Oxadiazole compound and its production
Leopold et al. Changing the Emission Properties of Phosphorescent C^ C*‐Cyclometalated Thiazol‐2‐ylidene Platinum (II) Complexes by Variation of the β‐Diketonate Ligands
JP3150330B2 (en) Organic thin film element
JPH1135688A (en) Silicon-containing compound, production of the same silicon-containing compound and luminous element using the same silicon-containing compound
JP3296147B2 (en) Triphenylamine polymer, its production method and use
JP3157589B2 (en) Tetraaryldiamine compound
JPWO2003050201A1 (en) Organic electroluminescence element material
JP3709637B2 (en) Hole transport material and use thereof
WO2015115116A1 (en) Organic light emitting element
JP2002080570A (en) Electric charge-transferring polymeric material, its production method and electroluminescence element by using the same
TWI291487B (en) Red-emitting organic electroluminescent compound
CN114902438A (en) Photoelectric conversion element, imaging element, and optical sensor