[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0520986B2 - - Google Patents

Info

Publication number
JPH0520986B2
JPH0520986B2 JP59180564A JP18056484A JPH0520986B2 JP H0520986 B2 JPH0520986 B2 JP H0520986B2 JP 59180564 A JP59180564 A JP 59180564A JP 18056484 A JP18056484 A JP 18056484A JP H0520986 B2 JPH0520986 B2 JP H0520986B2
Authority
JP
Japan
Prior art keywords
permanent magnet
field
magnetic flux
flux density
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59180564A
Other languages
Japanese (ja)
Other versions
JPS6162349A (en
Inventor
Toshio Tomite
Toshimi Abukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18056484A priority Critical patent/JPS6162349A/en
Publication of JPS6162349A publication Critical patent/JPS6162349A/en
Publication of JPH0520986B2 publication Critical patent/JPH0520986B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc Machiner (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は永久磁石式直流機の界磁構造に係るも
ので、特に自動車用スターテイングモータに好適
な永久磁石式直流機の界磁構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a field structure of a permanent magnet type DC machine, and particularly to a field structure of a permanent magnet type DC machine suitable for a starting motor for an automobile.

〔発明の背景〕[Background of the invention]

従来の小形モータの界磁極は特開昭48−39907
号公報に開示されている如く電機子作用の減磁界
側により大きな保磁力を、増磁界側により大きな
磁留磁束密度の永久磁石を用いることで界磁極の
減磁耐力の向上を計ることが知られている。しか
し、上記思想を取り入れて使用される界磁極はフ
エライト磁石が主流であるが、その温度係数
(%/℃)が保磁力に対してはプラス、残留磁束
密度に対してはマイナスとなつている。従つて、
低温になる程保磁力が低下し、界磁極の減磁耐力
が下がる欠点を有し、これに対処するため永久磁
石の厚さを増す等の配慮が必要となり、必然的に
固定子のの外径も大きくなりモータの小形化に限
界があつた。
The field pole of the conventional small motor was published in Japanese Patent Application Laid-Open No. 48-39907.
As disclosed in the above publication, it is known that the demagnetization resistance of the field poles can be improved by using a permanent magnet with a larger coercive force on the demagnetizing field side and a larger retentive magnetic flux density on the increasing field side of the armature action. It is being However, ferrite magnets are the mainstream field poles used based on the above idea, but their temperature coefficient (%/℃) is positive for coercive force and negative for residual magnetic flux density. . Therefore,
The lower the temperature, the lower the coercive force and the lower the demagnetization resistance of the field poles. The diameter also increased, and there was a limit to miniaturization of the motor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、低温になる程減磁耐力を向上
する永久磁石式界磁極を採用することにより、小
形で軽量の永久磁石式直流機を提供することにあ
る。
An object of the present invention is to provide a small and lightweight permanent magnet type DC machine by employing permanent magnet type field poles whose demagnetization resistance improves as the temperature decreases.

〔発明の概要〕[Summary of the invention]

継鉄2と、複合界磁極3とを有する永久磁石式
直流機の界磁構造であつて、継鉄2は、環状に形
成されてなり、複合界磁極3は、第2の永久磁石
32より保持力が大きい第1の永久磁石31と、
第1の永久磁石31より残留磁束密度の大きい第
2の永久磁石32とから構成されてなり、かつ前
記継鉄2の内周面に、電機子反作用の減磁界側に
第1の永久磁石31が位置するように接合して配
置固定され、前記第1の永久磁石31の温度係数
(%/℃)は、保持力、残留磁束密度ともマイナ
ス、第2の永久磁石32の温度係数は、保持力が
プラス、磁留磁束密度がマイナスに構成されてい
る、永久磁石式直流機の界磁構造。
This is a field structure of a permanent magnet type DC machine having a yoke 2 and a composite field pole 3, in which the yoke 2 is formed in an annular shape, and the composite field pole 3 is connected to A first permanent magnet 31 with a large holding force,
and a second permanent magnet 32 having a higher residual magnetic flux density than the first permanent magnet 31, and the first permanent magnet 31 is placed on the inner peripheral surface of the yoke 2 on the demagnetizing field side of the armature reaction. The temperature coefficient (%/°C) of the first permanent magnet 31 is negative in both holding force and residual magnetic flux density, and the temperature coefficient of the second permanent magnet 32 is negative in holding force and residual magnetic flux density. The field structure of a permanent magnet DC machine has a positive force and a negative magnetic flux density.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明す
る。1は固定子で環状の継鉄2の内周に複数の複
合界磁極3が配置固定されている。それぞれの複
合界磁極3は、第1の永久磁石31と第2の永久
磁石32の組合せからなり、第2の永久磁石32
は、BaO・nFl2O3又はSrO・nFl2O3で示される
フエライト磁石で、温度係数(%/℃)は保磁力
iHcが0.2〜0.5、残留磁束密度が−0.18〜−0.20の
性能を有し、電気子反作用の増磁界側を主にして
界磁磁極の中心を越えて減磁界側の一部まで延び
ている。又、第1の永久磁石31は減磁界側(更
には増磁界側の一部まで)には希土類元素の一種
であるネオジウムと鉄、硼素を主成分とした温度
係数が保持力bHc、残留磁束密度Br共マイナス
の性能を有し、前記第2の永久磁石と並置して固
着している。
An embodiment of the present invention will be described below with reference to FIG. 1 is a stator, and a plurality of composite field poles 3 are arranged and fixed on the inner periphery of an annular yoke 2. Each composite field pole 3 consists of a combination of a first permanent magnet 31 and a second permanent magnet 32, and the second permanent magnet 32
is a ferrite magnet represented by BaO・nFl 2 O 3 or SrO・nFl 2 O 3 , and the temperature coefficient (%/℃) is the coercive force.
It has the performance of iHc of 0.2 to 0.5 and residual magnetic flux density of -0.18 to -0.20, and extends mainly on the magnetizing field side of the armature reaction and beyond the center of the field magnetic pole to a part of the demagnetizing field side. . In addition, the first permanent magnet 31 has a coercive force bHc, a residual magnetic flux, and a temperature coefficient mainly composed of neodymium, which is a type of rare earth element, iron, and boron, on the demagnetizing field side (and even a part on the increasing field side). It has a negative density Br and is fixed in parallel with the second permanent magnet.

電動機の場合、複合界磁極3の磁束の方向が図
面第1図の矢印4の方向であり、かつ電機子導体
5の電流方向が図示の如くであると電機子は矢印
6の方向に回転し、図示の方向に電機子作用によ
る起磁力7が生じる。従つて界磁極3の左側の部
分は磁束7による減磁作用を受けるたこの部分に
高保磁力の第1の永久磁石を設け、減磁耐力を持
たせている。
In the case of an electric motor, if the direction of the magnetic flux of the composite field pole 3 is in the direction of arrow 4 in Figure 1 of the drawing, and the current direction of armature conductor 5 is as shown, the armature will rotate in the direction of arrow 6. , a magnetomotive force 7 is generated due to armature action in the direction shown. Therefore, the left side portion of the field pole 3 is provided with a first permanent magnet having a high coercive force in the portion that is subjected to the demagnetizing effect by the magnetic flux 7, so as to have a demagnetizing resistance.

ここでこの磁石式直流機をエンジン始動用電動
機として使用した場合、低温になる程起動トルク
が大きくそのためには大きなバツテリーと組合
せ、大きな電流で電動機を始動する必要があり、
電機子反作用の減磁界も大きく発生する。このた
め第2図に示す第2の永久磁石の磁気特性では一
般に減磁耐力を保つため厚い永久磁石を必要とす
るが、第3図に示す本発明に応用する第1の永久
磁石と組合せると温度が低くなる程保磁力が増
し、永久減磁耐力が向上する。更に磁留磁束密度
も増すためトルクの発生も増し、エンジンの起動
も容易となる。
When this magnetic DC motor is used as an electric motor for starting an engine, the lower the temperature, the greater the starting torque, which requires combining it with a large battery and starting the motor with a large current.
A large demagnetizing field due to armature reaction is also generated. For this reason, the magnetic properties of the second permanent magnet shown in Fig. 2 generally require a thick permanent magnet to maintain demagnetization resistance, but when combined with the first permanent magnet shown in Fig. 3 applied to the present invention. As the temperature decreases, the coercive force increases and the permanent demagnetization resistance improves. Furthermore, since the magnetic flux density increases, the generation of torque also increases, making it easier to start the engine.

尚、第1の永久磁石31は第2の永久磁石32
より磁留磁束密度、保持力共高い値を示している
が、希土類元素を使用するため高価である。そこ
で本発明の如く要部のみ第1の永久磁石31を用
い、第2の永久磁石32は高残留磁束密度のフエ
ライト磁石とする。
Note that the first permanent magnet 31 is the second permanent magnet 32.
Although it shows higher values for both magnetic flux density and coercive force, it is expensive because it uses rare earth elements. Therefore, as in the present invention, the first permanent magnet 31 is used only in the main part, and the second permanent magnet 32 is a ferrite magnet with a high residual magnetic flux density.

他の実施例を第4図〜第8図に示す。第4図は
第1の永久磁石を界磁極3の中心を越えて増磁界
側に延長して配置することで高残留磁束密度部分
の面積が増し高トルク化に対応している。
Other embodiments are shown in FIGS. 4 to 8. In FIG. 4, by arranging the first permanent magnet so as to extend beyond the center of the field pole 3 toward the increasing field side, the area of the high residual magnetic flux density portion is increased to correspond to higher torque.

また第5図のように永久磁石の両端部に向つて
厚さを漸減すれば、磁束の急激な変化を防いで音
や振動の発生を防止することもできる。
Furthermore, if the thickness is gradually reduced toward both ends of the permanent magnet as shown in FIG. 5, sudden changes in magnetic flux can be prevented, thereby preventing the generation of noise and vibration.

更に高トルク化を計るとすれば第6図のよう
に、増磁界側に永久磁石の可逆透磁率より高い透
磁率を有する第3の磁極33を設置すれば逆果的
である。
In order to further increase the torque, it would be counterproductive to install a third magnetic pole 33 having a higher magnetic permeability than the reversible magnetic permeability of the permanent magnet on the magnetic field side as shown in FIG.

高トルク化の一つとしては、第7図に示すよう
にブラシ8と8の間の磁気中性軸に対して、第1
磁石側のポールアークθ1を第2、第3磁極側のポ
ールアークθ2より小さくすることで第1の永久磁
石の減磁耐力を更に向上することができるので効
果的である。
As one way to increase the torque, as shown in FIG.
It is effective to make the pole arc θ 1 on the magnet side smaller than the pole arc θ 2 on the second and third magnetic pole sides, since it is possible to further improve the demagnetization resistance of the first permanent magnet.

高トルク、コスト低減を考慮するならば第8図
のように、第1の磁石の軸長LPを電機子反作用
の影響が及ぶ範囲とし、その両端を含む全体をコ
字状に包み込めば効果的である。
If high torque and cost reduction are considered, as shown in Fig. 8, the axial length L P of the first magnet should be the range affected by the armature reaction, and the whole including both ends should be wrapped in a U-shape. Effective.

尚第1の磁石と第2の磁石の分割点は磁石性能
によつて変るため特定できず、又、第1の磁石と
第2の磁石は焼結によつて一体的に成形すること
も可能であり、分割点の急激な磁気誘導度の変化
を防止し音、振動を低減する効果がある。
The dividing point between the first magnet and the second magnet cannot be specified because it changes depending on the magnet performance, and the first magnet and the second magnet can also be integrally formed by sintering. This has the effect of preventing sudden changes in magnetic induction at the dividing point and reducing noise and vibration.

〔発明の効果〕〔Effect of the invention〕

本発明によれば低温になる程減磁耐力を向上す
る永久磁石式界磁極を採用することにより、小形
で軽量の永久磁石式直流機を提供できる。
According to the present invention, by employing permanent magnet field poles whose demagnetization resistance improves as the temperature decreases, it is possible to provide a small and lightweight permanent magnet DC machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明磁石式直流機の構造の要部正面
図、第2図は第2の永久磁石の磁気特性図、第3
図は第1の永久磁石の磁気特性図、第4図〜第8
図はそれぞれの他の実施例を示す界磁部要部正面
図、第8図は本実施例の複合磁極の平面図であ
る。 1……固定子、2……継鉄、3……複合界磁
極、5……電機子導体、31……第1の永久磁
石、32……第二の永久磁石。
Figure 1 is a front view of the main part of the structure of the magnetic DC machine of the present invention, Figure 2 is a magnetic characteristic diagram of the second permanent magnet, and Figure 3 is a diagram of the magnetic characteristics of the second permanent magnet.
The figures are magnetic characteristic diagrams of the first permanent magnet, Figures 4 to 8.
The figures are front views of the main parts of the field parts showing other embodiments, and FIG. 8 is a plan view of the composite magnetic pole of this embodiment. DESCRIPTION OF SYMBOLS 1... Stator, 2... Yoke, 3... Composite field pole, 5... Armature conductor, 31... First permanent magnet, 32... Second permanent magnet.

Claims (1)

【特許請求の範囲】 1 継鉄2と、複合界磁極3とを有する永久磁石
式直流機の界磁構造であつて、 継鉄2は、環状に形成されてなり、 複合界磁極3は、第2の永久磁石32より保持
力が大きい第1の永久磁石31と、第1の永久磁
石31より残留磁束密度の大きい第2の永久磁石
32とから構成されてなり、かつ前記継鉄2の内
周面に、電機子反作用の減磁界側に第1の永久磁
石31が位置するように接合して配置固定され、 前記第1の永久磁石31の温度係数(%/℃)
は、保持力、残留磁束密度ともマイナス、第2の
永久磁石32の温度係数は、保持力がプラス、磁
留磁束密度がマイナスに構成されている。 永久磁石式直流機の界磁構造。 2 第1の永久磁石31は、界磁極3の中心を越
えて増磁界側に延びていることを特徴とした特許
請求の範囲第1項記載の永久磁石式直流機の界磁
構造。
[Claims] 1. A field structure of a permanent magnet DC machine having a yoke 2 and a composite field pole 3, wherein the yoke 2 is formed into an annular shape, and the composite field pole 3 is It is composed of a first permanent magnet 31 having a larger holding force than the second permanent magnet 32, and a second permanent magnet 32 having a larger residual magnetic flux density than the first permanent magnet 31, and A first permanent magnet 31 is bonded and fixed to the inner peripheral surface so that it is located on the demagnetizing field side of the armature reaction, and the temperature coefficient (%/°C) of the first permanent magnet 31 is fixed.
has a negative coercive force and a residual magnetic flux density, and the temperature coefficient of the second permanent magnet 32 has a positive coercive force and a negative residual magnetic flux density. Field structure of permanent magnet DC machine. 2. The field structure of a permanent magnet type DC machine according to claim 1, wherein the first permanent magnet 31 extends beyond the center of the field pole 3 toward the increasing field side.
JP18056484A 1984-08-31 1984-08-31 Field structure of permanent magnet dc machine Granted JPS6162349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18056484A JPS6162349A (en) 1984-08-31 1984-08-31 Field structure of permanent magnet dc machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18056484A JPS6162349A (en) 1984-08-31 1984-08-31 Field structure of permanent magnet dc machine

Publications (2)

Publication Number Publication Date
JPS6162349A JPS6162349A (en) 1986-03-31
JPH0520986B2 true JPH0520986B2 (en) 1993-03-23

Family

ID=16085480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18056484A Granted JPS6162349A (en) 1984-08-31 1984-08-31 Field structure of permanent magnet dc machine

Country Status (1)

Country Link
JP (1) JPS6162349A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462448B1 (en) 2000-07-05 2002-10-08 Black & Decker Inc. Flux ring for an electric motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523199A (en) * 1975-06-20 1977-01-11 Bosch Gmbh Robert Segment magnet and method of manufacture thereof
JPS57148566A (en) * 1981-03-09 1982-09-13 Hitachi Metals Ltd Composite permanent magnet for magnetic field
JPS5934490B2 (en) * 1981-12-15 1984-08-23 石川島播磨重工業株式会社 Blow molding method and pre-pinch device for blow molding machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189274U (en) * 1981-05-25 1982-12-01
JPS5934490U (en) * 1982-08-26 1984-03-03 三菱電機株式会社 Magnetic starter motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523199A (en) * 1975-06-20 1977-01-11 Bosch Gmbh Robert Segment magnet and method of manufacture thereof
JPS57148566A (en) * 1981-03-09 1982-09-13 Hitachi Metals Ltd Composite permanent magnet for magnetic field
JPS5934490B2 (en) * 1981-12-15 1984-08-23 石川島播磨重工業株式会社 Blow molding method and pre-pinch device for blow molding machine

Also Published As

Publication number Publication date
JPS6162349A (en) 1986-03-31

Similar Documents

Publication Publication Date Title
JP3152405B2 (en) Electric motor
AU611835B2 (en) Direct current dynamoelectric machines utilizing high strength permanent magnets
US4794291A (en) Permanent magnet field DC machine
JPS627767B2 (en)
JPH04244773A (en) Flat yoke type dc machine
JPH0116102B2 (en)
US3567979A (en) Permanent magnet motors having split pole structures
JPH0757082B2 (en) Permanent magnet field type motor
JP3167535B2 (en) Permanent magnet type rotating electric machine
EP0173917A1 (en) Direct-current machine having permanent magnet field system
JPH0787685B2 (en) Permanent magnet field type DC rotating electric machine
JPS6360629B2 (en)
JP3333359B2 (en) Permanent magnet type motor
JPH0520986B2 (en)
JPH0767274A (en) Permanent magnet rotor
CN114157066A (en) Rotating electrical machine
JP3467963B2 (en) Permanent magnet field type rotating electric machine
CN112968554A (en) Rotor assembly and self-starting permanent magnet synchronous reluctance motor
JPH0810981B2 (en) Permanent magnet type DC rotating electric machine
JPS6212741B2 (en)
CA1266502A (en) Permanent magnet field dc machine
JPS6341825Y2 (en)
JPH0789731B2 (en) Permanent magnet type DC machine with auxiliary pole
JPS6252547B2 (en)
JPS5858858A (en) Permanent magnet field type starting motor