[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05208133A - Steam reforming catalyst - Google Patents

Steam reforming catalyst

Info

Publication number
JPH05208133A
JPH05208133A JP3338023A JP33802391A JPH05208133A JP H05208133 A JPH05208133 A JP H05208133A JP 3338023 A JP3338023 A JP 3338023A JP 33802391 A JP33802391 A JP 33802391A JP H05208133 A JPH05208133 A JP H05208133A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
steam reforming
reforming catalyst
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3338023A
Other languages
Japanese (ja)
Inventor
Takao Hashimoto
孝雄 橋本
Yoshie Misawa
佳絵 三沢
彰 ▲さい▼合
Akira Saiai
Satoshi Sakurada
智 櫻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP3338023A priority Critical patent/JPH05208133A/en
Publication of JPH05208133A publication Critical patent/JPH05208133A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a steam reforming catalyst reduced in cost while keeping good catalytic activity by supporting a catalytically active component such as rhodium, ruthenium or palladium on a carrier composed of a naturally occurring zirconia type material. CONSTITUTION:A naturally occurring zirconia type material such as zircon from Australia or baddeleyite from South Africa is used as a carrier. A catalytically active component selected from rhodium, ruthenium, palladium and platinum is supported on this carrier. The steam reforming catalyst thus obtained has the same high activity as a catalyst using a yttria-containing stabilized zirconia carrier and is low in cost and practical.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な水蒸気改質触媒
に関するものである。さらに詳しくいえば、本発明は、
良好な触媒活性を維持したまま、イツトリア含有安定化
ジルコニアからなる担体を天然産ジルコニア系材料から
なる担体に代えて低価格化を図った実用的な水蒸気改質
触媒に関するものである。この水蒸気改質触媒は特に燃
料電池用改質触媒として有用である。
FIELD OF THE INVENTION The present invention relates to a novel steam reforming catalyst. More specifically, the present invention is
The present invention relates to a practical steam reforming catalyst in which the carrier made of stabilized zirconia containing yttria is replaced with a carrier made of a naturally-occurring zirconia-based material while maintaining a good catalytic activity to reduce the cost. This steam reforming catalyst is particularly useful as a reforming catalyst for fuel cells.

【0002】[0002]

【従来の技術】水蒸気改質は、例えば炭化水素と水蒸気
を触媒の存在下高温で反応させて水素と酸化炭素類から
なるガスを製造する方法であり、水素の製造方法として
周知である。
2. Description of the Related Art Steam reforming is a method for producing a gas consisting of hydrogen and carbon oxides by reacting, for example, hydrocarbons and steam at high temperature in the presence of a catalyst, and is well known as a method for producing hydrogen.

【0003】従来の代表的な水蒸気改質触媒としては、
アルミナ、シリカ、マグネシア、ジルコニアなどの耐熱
性無機酸化物にNi、Co、Fe等の遷移金属を触媒種
として担持させたもの、あるいはこれらにアルカリ金属
やアルカリ土類金属等の助触媒を加えたものがよく知ら
れており、特にNi担持アルミナ系のものが工業的にも
広く使用されているが、このようなNi系触媒は改質反
応により炭素を生成しやすく、この炭素が触媒表面へ沈
着し活性低下や閉塞等の原因になる。これを避けるため
には改質原料に対して水蒸気量をより多くしなければな
らないという不利があった。
As a typical conventional steam reforming catalyst,
A heat-resistant inorganic oxide such as alumina, silica, magnesia, or zirconia supported with a transition metal such as Ni, Co, or Fe as a catalyst species, or a cocatalyst such as an alkali metal or an alkaline earth metal added thereto. The catalysts are well known, and the Ni-supported alumina-based catalysts are widely used industrially. However, such a Ni-based catalyst easily produces carbon by the reforming reaction, and this carbon is deposited on the catalyst surface. It deposits and causes a decrease in activity and blockage. In order to avoid this, there is a disadvantage that the amount of steam must be increased with respect to the reforming raw material.

【0004】そこで、本発明者らは先に高活性であり、
炭素の生成を抑制する効果の高い、特に燃料電池用原料
の改質触媒として有用なRh、Ru、Pt又はPd等の
貴金属担持ジルコニア系触媒を提案した(特開平3−8
0937号公報)。しかしながら、この改良触媒は担体
に化学合成による高価なイツトリア含有安定化ジルコニ
アを使用するため、触媒活性成分も高価な貴金属系のも
のであることも相俟って触媒コストがかかり過ぎるとい
う欠点を有する。
Therefore, the present inventors previously found that they are highly active,
We proposed a noble metal-supported zirconia-based catalyst such as Rh, Ru, Pt, or Pd, which has a high effect of suppressing the generation of carbon and is particularly useful as a reforming catalyst for a raw material for fuel cells (JP-A-3-8
0937). However, since this improved catalyst uses expensive yttria-containing stabilized zirconia obtained by chemical synthesis as a carrier, it also has a drawback that the cost of the catalyst is too high in combination with the fact that the catalytically active component is also an expensive precious metal type. .

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
従来の水蒸気改質触媒のもつ欠点を克服し、良好な触媒
活性を維持したまま、コスト低減を図りうる実用的な水
蒸気改質触媒を提供することを目的としてなされたもの
である。
DISCLOSURE OF THE INVENTION The present invention overcomes the drawbacks of the conventional steam reforming catalysts, and is a practical steam reforming catalyst capable of achieving cost reduction while maintaining good catalytic activity. It is made for the purpose of providing.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記の好
ましい特徴を有する水蒸気改質触媒を開発するために種
々研究を重ねた結果、担体材料として天然産ジルコニア
系材料を用いることにより、その目的を達成しうること
を見出し、この知見に基づいて本発明を完成するに至っ
た。
The inventors of the present invention have conducted various studies to develop a steam reforming catalyst having the above-mentioned preferable characteristics, and as a result, by using a naturally occurring zirconia-based material as a carrier material, It has been found that the object can be achieved, and the present invention has been completed based on this finding.

【0007】すなわち、本発明は、ロジウム、ルテニウ
ム、パラジウム及び白金の中から選ばれた少なくとも1
種の触媒活性成分を天然産ジルコニア系材料からなる担
体に担持させて成る水蒸気改質触媒を提供するものであ
る。
That is, the present invention provides at least one selected from rhodium, ruthenium, palladium and platinum.
The present invention provides a steam reforming catalyst in which various catalytically active components are supported on a carrier made of a naturally occurring zirconia-based material.

【0008】本発明の触媒においては、担体として、天
然に産出するジルコニア系材料からなるものを用いるこ
とが必要である。この天然産のジルコニア系材料として
は、例えばオーストラリア産のジルコン、南アフリカ産
のバデライトなどが挙げられる。
In the catalyst of the present invention, it is necessary to use, as the carrier, one composed of a naturally-produced zirconia-based material. Examples of the naturally occurring zirconia-based material include zircon from Australia and baddelite from South Africa.

【0009】また、担体は、このようなジルコニア系材
料に水蒸気改質触媒に通常用いられる担体材料を少量加
えた混合材料からなるものでもよい。このような担体材
料としては、例えばアルミナ系物質、シリカ、マグネシ
ア、その他ジルコニア系物質などが挙げられ、その担体
成分に占める割合は好ましくは30重量%以下、より好
ましくは20重量%以下である。
Further, the carrier may be made of a mixed material obtained by adding a small amount of a carrier material usually used for a steam reforming catalyst to such a zirconia-based material. Examples of such carrier materials include alumina-based substances, silica, magnesia, and other zirconia-based substances, and their proportion in the carrier component is preferably 30% by weight or less, more preferably 20% by weight or less.

【0010】アルミナ系物質としては、アルミナ又はア
ルミナに金属元素又は半金属元素の酸化物の中から選ば
れた少なくとも1種を配合したものが用いられる。上記
金属元素としては、Li、Kなどのアルカリ金属、M
g、Ca、Baなどのアルカリ土類金属、その他Ti、
Cr、Mn、Fe等が挙げられ、また半金属元素として
は、Si、B、P等が挙げられる。アルミナセメントは
アルミナ、酸化カルシウムを主成分とし、その他酸化ケ
イ素及び少量の酸化鉄を含有するものであるが、好まし
い物質の1つである。
As the alumina-based substance, alumina or a mixture of alumina and at least one selected from oxides of metal elements or semi-metal elements is used. Examples of the metal element include alkali metals such as Li and K, and M
g, Ca, Ba and other alkaline earth metals, other Ti,
Cr, Mn, Fe and the like can be mentioned, and Si, B, P and the like can be mentioned as the semi-metal element. Alumina cement, which contains alumina and calcium oxide as main components, and also contains silicon oxide and a small amount of iron oxide, is one of the preferable substances.

【0011】担体に担持させる触媒活性成分としての貴
金属(以下、触媒金属という)には、ロジウム、ルテニ
ウム、パラジウム、白金が用いられ、特にロジウム、ル
テニウムが好ましい。この触媒金属の割合は特に限定さ
れないが、触媒全量すなわち触媒金属と上記担体の合計
量に対して通常0.01〜10重量%、好ましくは0.
1〜3重量%の範囲で選ばれる。この割合が少なすぎる
と触媒活性が低く改質効果が十分ではないし、また多す
ぎても使用量に見合う改質効果が得られないので不経済
である。
Rhodium, ruthenium, palladium and platinum are used as a noble metal (hereinafter referred to as a catalyst metal) as a catalytically active component supported on a carrier, and rhodium and ruthenium are particularly preferable. The ratio of the catalyst metal is not particularly limited, but is usually 0.01 to 10% by weight, preferably 0.1% to the total amount of the catalyst, that is, the total amount of the catalyst metal and the carrier.
It is selected in the range of 1 to 3% by weight. If this proportion is too small, the catalytic activity will be low and the reforming effect will not be sufficient. If it is too large, the reforming effect commensurate with the amount used will not be obtained, which is uneconomical.

【0012】本発明の触媒は、ニッケル系金属、アルカ
リ金属、アルカリ土類金属を含有させたものであっても
よい。これら貴金属以外の成分の割合は好ましくは30
重量%以下、より好ましくは20重量%以下である。
The catalyst of the present invention may contain a nickel-based metal, an alkali metal or an alkaline earth metal. The ratio of components other than these precious metals is preferably 30.
It is not more than 20% by weight, more preferably not more than 20% by weight.

【0013】本発明の触媒を調製するには、触媒金属を
担体に担持させる慣用の方法が用いられるが、通常は含
浸法でよい。担体の使用形態は特に制限されず、円柱
状、リング状、粒子状、繊維状、ハニカム状などの三次
元構造体の他、他の担体との複合構造物でもよい。本発
明の触媒を燃料電池用改質触媒として用いる場合には、
粒径の小さい粒状の担体が好ましい。
To prepare the catalyst of the present invention, a conventional method of supporting a catalyst metal on a carrier is used, but an impregnation method is usually used. The use form of the carrier is not particularly limited, and may be a three-dimensional structure such as a columnar shape, a ring shape, a particle shape, a fibrous shape, or a honeycomb shape, or a composite structure with another carrier. When the catalyst of the present invention is used as a fuel cell reforming catalyst,
Granular carriers with a small particle size are preferred.

【0014】触媒の調製法としては、その他、触媒金属
と上記担体材料とを粉粒状でよく混合したのち、圧縮成
形などにより成形し、次いで焼成する方法も用いられ
る。焼成法における混合には慣用の方法が用いられる
が、通常は円筒型、傾斜円筒型、V型等の二子円筒型、
二重円錐型などの容器回転型混合機、スクリューやリボ
ンなどを回転させる固定型混合機の他、小規模には乳鉢
が用いられる。また、混合後の成形時の成形圧は通常5
00〜2000kg/cm、焼成処理は通常700〜
800℃で1〜2時間加熱処理するのがよい。
As a method for preparing the catalyst, there is also used a method in which the catalyst metal and the above-mentioned carrier material are well mixed in the form of powder, which is then molded by compression molding or the like and then calcined. Although a conventional method is used for mixing in the firing method, it is usually a twin type, such as a cylinder type, an inclined cylinder type, a V type, or the like.
In addition to a container rotary type mixer such as a double cone type, a fixed type mixer that rotates a screw or a ribbon, a mortar is used on a small scale. The molding pressure during molding after mixing is usually 5
00-2000 kg / cm 2 , firing treatment is usually 700-
It is preferable to perform heat treatment at 800 ° C. for 1 to 2 hours.

【0015】本発明の触媒を用いた水蒸気改質反応の代
表例として、水素、一酸化炭素、二酸化炭素、メタンな
どを生成するための炭化水素類の改質反応について以下
説明する。水蒸気改質反応は通常300〜1000℃の
温度範囲で行われるが、本発明の触媒は700℃以下で
もコーキングを生じにくく、高活性を有するので、燃料
電池、特に約650℃で運転される溶融炭酸塩型燃料電
池の改質触媒として好適である。
As a typical example of the steam reforming reaction using the catalyst of the present invention, a hydrocarbon reforming reaction for producing hydrogen, carbon monoxide, carbon dioxide, methane and the like will be described below. The steam reforming reaction is usually carried out in the temperature range of 300 to 1000 ° C., but the catalyst of the present invention hardly causes coking even at 700 ° C. or lower and has high activity. It is suitable as a reforming catalyst for carbonate fuel cells.

【0016】また、反応圧力は、通常0.01〜50k
g/cmG、好ましくは0.1〜30kg/cm
である。水蒸気と炭化水素類中の炭素とのモル比(以
下、S/Cという)は反応にできるだけ余分の水蒸気を
用いないのが経済的に有利なので小さい方が好ましい
が、一方S/Cを小さくしすぎるとコーキングを生じや
すくなるので、S/Cはコーキングの問題のない1.2
以上、特に1.5以上とするのが好ましい。
The reaction pressure is usually 0.01 to 50 k.
g / cm 2 G, preferably 0.1 to 30 kg / cm 2 G
Is. The molar ratio of water vapor to carbon in hydrocarbons (hereinafter referred to as S / C) is preferably small because it is economically advantageous not to use excess water vapor for the reaction, but it is preferable to reduce S / C. If it is too much, coking tends to occur, so the S / C does not have a problem of caulking.
Above all, it is particularly preferable to be 1.5 or more.

【0017】炭化水素類は特に限定されないが、炭化水
素のみのものが好ましく、また微量の異種成分を含有し
ていてもよく、このようなものとしては、例えばLN
G、LPGのような軽質炭化水素含有ガス、ナフサや灯
油のような石油留分や、石炭液化油など炭化水素、特に
分子量のあまり大きくない炭化水素(C〜C20
度)を主とするものなどが挙げられる。
The hydrocarbons are not particularly limited, but hydrocarbons only are preferable, and they may contain a trace amount of different components. Examples of such hydrocarbons include LN.
Mainly gas containing light hydrocarbons such as G and LPG, petroleum fractions such as naphtha and kerosene, and hydrocarbons such as coal liquefied oil, especially hydrocarbons having a relatively low molecular weight (C 1 to C 20 ). Things are included.

【0018】炭化水素類は有利には比重は0.80以
下、好ましくは0.75以下で、C/H重量比は6.5
以下、好ましくは6.0以下のものである。
The hydrocarbons advantageously have a specific gravity of 0.80 or less, preferably 0.75 or less and a C / H weight ratio of 6.5.
The following are preferred, and those of 6.0 or less are preferred.

【0019】上記異種成分がイオウ化合物の場合には、
触媒劣化の原因になるため水素化脱硫などによりあらか
じめ好ましくは1ppm以下、より好ましくは0.5p
pm以下に除去した後使用するのが望ましい。
When the different component is a sulfur compound,
Since it causes catalyst deterioration, it is preferably 1 ppm or less, more preferably 0.5 p or less in advance due to hydrodesulfurization.
It is desirable to use after removing to pm or less.

【0020】本発明の水蒸気改質触媒は、燃料電池の改
質触媒に用いると、改質効率が高く、しかも炭素付着
(コーキング)を抑制できるので有利である。
The steam reforming catalyst of the present invention is advantageous when used as a reforming catalyst for a fuel cell because it has high reforming efficiency and can suppress carbon deposition (coking).

【0021】[0021]

【発明の効果】本発明の水蒸気改質触媒は、反応効率に
優れ、水素生成効率が高く、低いS/Cや1000℃ま
での高温(例えば600〜700℃)下でも炭素生成が
抑制されるなど、良好な触媒活性を保持でき、かつコス
トの大幅な低減が図れるという利点を有し、特に燃料電
池用改質触媒として有用である。
EFFECTS OF THE INVENTION The steam reforming catalyst of the present invention has excellent reaction efficiency, high hydrogen production efficiency, and low S / C and carbon production even under high temperatures up to 1000 ° C. (for example, 600 to 700 ° C.). As described above, it has the advantages that good catalytic activity can be maintained and the cost can be significantly reduced, and is particularly useful as a reforming catalyst for fuel cells.

【0022】[0022]

【実施例】次に実施例によって本発明をさらに詳細に説
明する。
The present invention will be described in more detail with reference to Examples.

【0023】実施例1〜2、比較例 オーストラリア産ジルコン(ZrO58重量%、Si
39重量%、その他少量のAl、Fe、Hfの酸化
物を含む)及び南アフリカ産バデライト(ZrO96
重量%、その他少量のSi、Fe、Hfの酸化物を含
む)の各粉末を1mmφの球状に成形したのち、100
0℃で3時間焼成することにより、それぞれ所望の担体
試料No.1及びNo.2を作成した。
Examples 1 and 2 and Comparative Example Australian zircon (58% by weight of ZrO 2 , Si
O 2 39% by weight and other small amounts of Al, Fe and Hf oxides) and South African baddelite (ZrO 2 96
% By weight, and a small amount of other oxides of Si, Fe, and Hf) are formed into spherical particles of 1 mmφ, and then 100
By firing at 0 ° C. for 3 hours, desired carrier sample Nos. 1 and No. 1 Created 2.

【0024】また、比較のために3モル%イットリア含
有部分安定化ジルコニア(以下、3YSZという)粉末
を同様に成形、焼成して従来型の担体試料No.3を作
成した。これらの担体の表面積をBET法により測定し
た。その結果を表1に示す。
For comparison, a partially stabilized zirconia (hereinafter referred to as 3YSZ) powder containing 3 mol% yttria was similarly shaped and fired to obtain a conventional carrier sample No. Created 3. The surface area of these carriers was measured by the BET method. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】これより、いずれの担体試料の場合も従来
のジルコニア系担体と同じオーダーの表面積をもち、十
分な触媒担持能を示すことが予測しえる。
From the above, it can be predicted that any of the carrier samples has the same surface area as that of the conventional zirconia-based carrier and exhibits sufficient catalyst supporting ability.

【0027】このようにして得られた各担体試料に0.
5重量%のルテニウムを担持させるように塩化ルテニウ
ム溶液による含浸処理を施し、100℃で3時間乾燥
し、担体試料No.1〜2より本発明の実施例としての
水蒸気改質触媒及び担体試料No.3より比較のための
水蒸気改質触媒を調製した。この触媒を4インチφの反
応管に0.25cc充填し、還元処理を行ったのち、プ
ロパンを炭化水素原料として650℃(反応管出口温
度)、常圧下でスチーム/カーボン比(S/C)3.0
及び原料供給空間速度(GHSV)を48000h−1
として反応を行い、プロパン転化率を測定した。その結
果を表2に示す。
Each carrier sample thus obtained had a density of 0.
Impregnation treatment with a ruthenium chloride solution was carried out so that 5% by weight of ruthenium was supported, followed by drying at 100 ° C. for 3 hours. 1 to 2, the steam reforming catalyst and the carrier sample No. 1 as examples of the present invention. From 3 was prepared a steam reforming catalyst for comparison. After 0.25 cc of a 4-inch diameter reaction tube was filled with this catalyst and reduction treatment was performed, propane was used as a hydrocarbon raw material at 650 ° C. (reaction tube outlet temperature) at a steam / carbon ratio (S / C) under normal pressure. 3.0
And raw material supply space velocity (GHSV) of 48000 h −1
And the propane conversion was measured. The results are shown in Table 2.

【0028】[0028]

【表2】 [Table 2]

【0029】これより、天然産のジルコニア系材料から
なる担体を用いた触媒でも、従来の化学的に合成される
イツトリア含有安定化ジルコニア担体を用いた触媒と比
較してほぼ同様の高活性を示すことが分る。
As a result, even a catalyst using a carrier made of a naturally-occurring zirconia-based material exhibits substantially the same high activity as a conventional catalyst using a chemically synthesized yttria-containing stabilized zirconia carrier. I understand.

【0030】実施例3 実施例1〜2の反応条件の原料供給空間速度を2000
0h−1としたこと以外は実施例1〜2と同様の触媒を
用い実施例1〜2と同様にして反応を行ったところ、プ
ロパン転化率はいずれも100%であり、特に燃料電池
の実用的な運転条件下において本発明の触媒が従来の触
媒と全く同等に使用しうることが分った。
Example 3 The raw material supply space velocity under the reaction conditions of Examples 1 and 2 was 2000.
When the reaction was carried out in the same manner as in Examples 1 to 2 using the same catalysts as those in Examples 1 to 2 except that 0h −1 was used, the propane conversion was 100% in all, and particularly in practical use in fuel cells. It has been found that under normal operating conditions the catalyst of the invention can be used exactly as a conventional catalyst.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲さい▼合 彰 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 (72)発明者 櫻田 智 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Sai ▼ Akira Nishitsurugaoka 1-3-1 Oi-cho, Iruma-gun, Saitama Tonen Co., Ltd. Research Institute (72) Satoshi Sakurada Oi-cho, Iruma-gun, Saitama Nishitsurugaoka 1-3-1, Tonen Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ロジウム、ルテニウム、パラジウム及び
白金の中から選ばれた少なくとも1種の触媒活性成分を
天然産ジルコニア系材料からなる担体に担持させて成る
水蒸気改質触媒。
1. A steam reforming catalyst comprising at least one catalytically active component selected from rhodium, ruthenium, palladium and platinum supported on a carrier made of a naturally occurring zirconia-based material.
JP3338023A 1991-11-28 1991-11-28 Steam reforming catalyst Pending JPH05208133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3338023A JPH05208133A (en) 1991-11-28 1991-11-28 Steam reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3338023A JPH05208133A (en) 1991-11-28 1991-11-28 Steam reforming catalyst

Publications (1)

Publication Number Publication Date
JPH05208133A true JPH05208133A (en) 1993-08-20

Family

ID=18314211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3338023A Pending JPH05208133A (en) 1991-11-28 1991-11-28 Steam reforming catalyst

Country Status (1)

Country Link
JP (1) JPH05208133A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270704A (en) * 2000-03-28 2001-10-02 Matsushita Electric Ind Co Ltd Hydrogen generator
EP1894622A1 (en) 2001-03-29 2008-03-05 Idemitsu Kosan Co., Ltd. Catalytic processes for reforming a hydrocarbon
US7419733B2 (en) 2001-12-19 2008-09-02 Sanyo Electric Co., Ltd. Fuel cell system having a burner with a flame detection rod therein

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270704A (en) * 2000-03-28 2001-10-02 Matsushita Electric Ind Co Ltd Hydrogen generator
EP1894622A1 (en) 2001-03-29 2008-03-05 Idemitsu Kosan Co., Ltd. Catalytic processes for reforming a hydrocarbon
US7419733B2 (en) 2001-12-19 2008-09-02 Sanyo Electric Co., Ltd. Fuel cell system having a burner with a flame detection rod therein
US7651800B2 (en) 2001-12-19 2010-01-26 Sanyo Electric Co., Ltd. Fuel cell system

Similar Documents

Publication Publication Date Title
US4743576A (en) Catalyst for the production of synthesis gas or hydrogen and process for the production of the catalyst
CA1036577A (en) Compositions and methods for high temperature stable catalysts
JP2002519182A (en) Catalytic partial oxidation using rhodium-iridium alloy catalyst
US20050096215A1 (en) Process for producing synthesis gas using stabilized composite catalyst
JPH06182201A (en) Catalyst stable at high temperature, its preparation, and method for effecting chemical reaction using this catalyst
JPS6138627A (en) Catalyst stable at high temperature, process for preparing the catalyst, and process for carrying out chemical reaction using the catalyst
KR20010101612A (en) Catalyst Carrier Carrying Nickel Ruthenium and Lanthanum
KR101480801B1 (en) Monolith type reforming catalyst, preparation method thereof and process for syn gas
JPH05168924A (en) Steam reforming catalyst
JPH0615172A (en) Steam reforming catalyst and its production
JPH05208133A (en) Steam reforming catalyst
JP2017029970A (en) Method for producing hydrocarbon reforming catalyst, and method for reforming light hydrocarbon
WO2023277187A1 (en) Catalyst for synthesizing liquefied petroleum gas and method for producing liquefied petroleum gas
KR100336968B1 (en) Modified Zirconia-supported nickel reforming catalysts and its use for producing synthesis gas from natural gas
JP2625170B2 (en) Steam reforming catalyst for fuel cells
JPH0435220B2 (en)
WO2023277188A1 (en) Catalyst for liquefied petroleum gas synthesis and method for producing liquefied petroleum gas
JP2001146406A (en) Method for producing hydrogen
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
KR100390774B1 (en) The preparation method of synthesis gas from natural gas by oxygen or steam-oxygen mixed reforming
JPS6150640A (en) Catalyst for preparing methane-containing gas
JP2008161868A (en) Method of producing catalyst for reforming hydrocarbon
JP2733784B2 (en) Hydrocarbon steam reforming reactor
JPH05245379A (en) Cyclic gasification catalyst and production thereof
JPH0440063B2 (en)