JPH05207978A - Instrument for measuring fluctuation in blood pressure in non-restrained training - Google Patents
Instrument for measuring fluctuation in blood pressure in non-restrained trainingInfo
- Publication number
- JPH05207978A JPH05207978A JP4010481A JP1048192A JPH05207978A JP H05207978 A JPH05207978 A JP H05207978A JP 4010481 A JP4010481 A JP 4010481A JP 1048192 A JP1048192 A JP 1048192A JP H05207978 A JPH05207978 A JP H05207978A
- Authority
- JP
- Japan
- Prior art keywords
- pulse wave
- signal
- blood pressure
- differential
- disturbance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は無拘束運動負荷時血圧変
動測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring blood pressure fluctuation during unrestrained exercise.
【0002】[0002]
【従来の技術】従来、非観血血圧測定方法としては、圧
迫帯(カフ)内の微小圧変位を利用したオシロメトリッ
ク法、光電脈波信号を利用した容積振動法及び容積補償
法、コロトコフ音を用いる聴診法等があり、これらはト
レッドミル、エルゴメータ等を利用した運動負荷測定に
用いられていた。2. Description of the Related Art Conventionally, as a non-invasive blood pressure measuring method, an oscillometric method using a minute pressure displacement in a compression zone (cuff), a volume vibration method and a volume compensation method using a photoelectric pulse wave signal, a Korotkoff sound There are auscultation methods and the like, which have been used for exercise load measurement using a treadmill, an ergometer, and the like.
【0003】[0003]
【発明が解決しようとする課題】しかし、これらの計測
方法ではトレッドミル、エルゴメータ等を利用した被験
者の動きを制限した運動負荷でのみ測定可能であり、そ
の場合、被験者の動きはかなり制限される。従って本来
の意味での運動負荷時(マラソン、球技等の運動中)に
おける血圧変動を測定することは、これらの方法が体動
による外乱に弱かったりこれらのどの方法でも測定部位
を圧迫するためにカフ、圧力源(ポンプ)等を用いらな
ければならず、センサ部や測定装置自体が大型化し無拘
束的に血圧変動を測定することは不可能であった。However, in these measuring methods, the movement of the subject using a treadmill, an ergometer, etc. can be measured only with an exercise load, and in that case, the movement of the subject is considerably limited. .. Therefore, measuring blood pressure fluctuations during exercise load in the original sense (during exercises such as marathon and ball game) is because these methods are vulnerable to disturbance due to body movements and any of these methods presses the measurement site. Since a cuff, a pressure source (pump) and the like have to be used, the sensor unit and the measuring device themselves are large in size, and it has been impossible to measure blood pressure fluctuations without restraint.
【0004】[0004]
【課題を解決するための手段】本発明の無拘束運動負荷
時血圧変動測定装置は、身体に装着され生体信号を収集
送信する携帯用のデータ送信部と、送信された前記生体
信号を受信し演算処理してその結果を表示または他の生
体信号表示モニターに伝送するインターフェース部とか
らなる無拘束運動負荷時血圧変動測定装置において、前
記データ送信部が表在動脈の脈波を光電脈波信号として
測定部位から取り出す光電素子からなる脈波センサ部
と、脈波伝播速度を得るために用いる心電信号を得るた
めの電極部と、2波長の光電脈波信号から体動による外
乱を除去する外乱除去部と、前記光電脈波信号及び心電
信号を微分し脈波伝播時間を求める演算制御部と、これ
らの各データを前記インターフェース部に順次送信する
送信部とを具備し、前記インターフェース部が一心拍毎
の脈波伝播速度を用いることにより、一心拍毎の血圧値
を推定する演算制御部を具備して構成される。An apparatus for measuring blood pressure fluctuation during unconstrained exercise according to the present invention includes a portable data transmitter mounted on the body for collecting and transmitting a biological signal, and receiving the transmitted biological signal. In an apparatus for measuring blood pressure fluctuation during unrestrained exercise, which comprises an interface section for performing arithmetic processing and displaying the result or transmitting the result to another biological signal display monitor, the data transmitting section uses the pulse wave of the superficial artery as a photoelectric pulse wave signal. As a pulse wave sensor section consisting of a photoelectric element taken out from the measurement site, an electrode section for obtaining an electrocardiographic signal used to obtain a pulse wave velocity, and a disturbance due to body movement is removed from the photoelectric pulse wave signal of two wavelengths. A disturbance removing unit, an arithmetic control unit that obtains a pulse wave transit time by differentiating the photoelectric pulse wave signal and the electrocardiographic signal, and a transmitting unit that sequentially transmits each of these data to the interface unit, By serial interface uses pulse wave velocity in each one heartbeat, and comprises a calculation control unit for estimating the blood pressure values for each one heartbeat.
【0005】[0005]
【実施例】次に本発明について図面を参照して説明す
る。The present invention will be described below with reference to the drawings.
【0006】図1は本発明の一実施例(データ送信部)
の構成を示すブロック図、図2は本発明の一実施例(イ
ンタフェース部)の構成を示すブロック図、図3は光セ
ンサの外観図、図4は外乱除去原理を示す説明図、図5
は血管内圧と脈波伝播速度との関係例を示す説明図、図
6は脈波伝播速度の求め方の一例を示す説明図である。FIG. 1 shows an embodiment of the present invention (data transmission section).
5 is a block diagram showing the configuration of an embodiment (interface unit) of the present invention, FIG. 3 is an external view of an optical sensor, FIG. 4 is an explanatory diagram showing the principle of disturbance removal, and FIG.
FIG. 6 is an explanatory diagram showing an example of the relationship between the blood vessel pressure and the pulse wave velocity, and FIG. 6 is an explanatory diagram showing an example of how to obtain the pulse wave velocity.
【0007】まず本発明の概要について述べる。First, the outline of the present invention will be described.
【0008】本発明は、脈波伝播速度が血管内圧により
変化することに着目し、光電脈波信号の微分波形と心電
波形の微分波形または前記の測定部位と異なる部位の光
電脈波信号の微分波形の時間差と、解剖学的血管長より
脈波伝播速度を求め、運動負荷事前にあらかじめ測定し
ていた血圧値と脈波伝播速度から血管内圧に変換する変
換曲線により、一心拍毎の血管内圧を推定する。The present invention pays attention to the fact that the pulse wave velocity changes depending on the intravascular pressure, and the differential waveform of the photoelectric pulse wave signal and the differential waveform of the electrocardiographic waveform or the photoelectric pulse wave signal of a portion different from the measurement site The pulse wave velocity is calculated from the time difference of the differential waveform and the anatomical blood vessel length, and the blood pressure value measured in advance in the exercise load and the conversion curve that converts the pulse wave velocity to the intravascular pressure are used to measure the blood vessel for each heartbeat. Estimate the internal pressure.
【0009】この方法により、生体に装着するセンサ類
を少なくでき、さらにデータの伝送に無線を用いれば測
定装置の装着による運動の制限を軽減することができ
る。また、光電脈波信号を得る際に光波長による生体内
への伝達特性の差異を利用し、発光素子に複数の波長を
用い、時分割測定し、生体内への伝達特性の異なる光電
脈波波形の差分をとることにより、血液量変化による光
電脈波信号成分のみを抽出でき、運動による体動外乱を
取り除くことが可能である。According to this method, it is possible to reduce the number of sensors to be attached to the living body, and further to reduce the restriction of exercise due to the attachment of the measuring device by using wireless for data transmission. In addition, when the photoelectric pulse wave signal is obtained, the difference in the transfer characteristics into the living body depending on the wavelength of light is used, multiple wavelengths are used for the light emitting element, and time-division measurement is performed. By taking the difference between the waveforms, it is possible to extract only the photoelectric pulse wave signal component due to the blood volume change, and it is possible to remove the body movement disturbance due to exercise.
【0010】図1を見るに、データ送信部を示す図であ
って、光源1はたとえば660nm程度の波長の赤色光
を発光するもので、光源2はたとえば804nm程度の
波長の近赤外光を発光するものである。光源1,2から
照射された光は図示しない生体の表在血管で吸収・反射
され、各々の反射光が図3に示す共通の受光素子3によ
りそれぞれ受光される。なお、これらの光源1,2は、
所定のサイクルにて交互に交互に点灯させられる。受光
素子3は、たとえば発光素子1,2の発光波長領域にお
いて感度を有する広波長体のホトトランジスタあるいは
ホトダイオードから構成されており、その受光量に対応
した大きさの電気信号PSをマルチプレクサ5へ出力す
る。マルチプレクサ5は後で述べる点灯信号R、IRに
対応する後述の切り換え信号MPに基づいて切り換えら
れることにより、赤色光に対応する電気信号PRを可変
利得増幅器6へ、近赤外光に対応する電気信号PIRを
可変利得増幅器7へそれぞれ出力する。可変利得増幅器
6,7は前記の脈波に対応する電気信号P,PIRを増
幅し、電気信号PRD,PIRDをバンドパスフィルタ
8,9へそれぞれ出力する。バンドパスフィルタ8,9
は、入力された電気信号PRD,PIRDから低周波・
高周波成分をそれぞれ除去して脈動による反射光の変動
成分・外乱成分を有する脈波信号ΔPR,ΔPIRをそ
れぞれ取り出して、それら脈波信号ΔPR,ΔPIRを
差動増幅器10に入力する。Referring to FIG. 1, which is a diagram showing a data transmission section, a light source 1 emits red light having a wavelength of about 660 nm, and a light source 2 emits near infrared light having a wavelength of about 804 nm. It emits light. Light emitted from the light sources 1 and 2 is absorbed and reflected by a superficial blood vessel of a living body (not shown), and each reflected light is received by the common light receiving element 3 shown in FIG. In addition, these light sources 1 and 2,
It is turned on alternately in a predetermined cycle. The light-receiving element 3 is composed of, for example, a wide-wavelength phototransistor or photodiode having sensitivity in the emission wavelength range of the light-emitting elements 1 and 2, and outputs an electric signal PS having a magnitude corresponding to the amount of received light to the multiplexer 5. To do. The multiplexer 5 is switched based on a switching signal MP, which will be described later, corresponding to lighting signals R and IR, which will be described later, so that the electric signal PR corresponding to red light is supplied to the variable gain amplifier 6 and the electric signal PR corresponding to near infrared light is supplied. The signal PIR is output to each variable gain amplifier 7. The variable gain amplifiers 6 and 7 amplify the electric signals P and PIR corresponding to the pulse wave, and output the electric signals PRD and PIRD to the band pass filters 8 and 9, respectively. Band pass filter 8, 9
Is a low frequency from the input electric signals PRD, PIRD.
The pulse wave signals ΔPR and ΔPIR having the fluctuation component and the disturbance component of the reflected light due to the pulsation are removed respectively from the high frequency components, and these pulse wave signals ΔPR and ΔPIR are input to the differential amplifier 10.
【0011】差動増幅器10では、脈波信号ΔPR,Δ
PIRの差分を取り、外乱を除去した脈波信号ΔPSを
微分回路11に入力し、微分脈波信号δPSを得る。こ
の微分脈拍信号δPSはA/D変換器12を介してI/
Oポート17へ供給される。In the differential amplifier 10, the pulse wave signals ΔPR, Δ
The pulse wave signal ΔPS from which the difference of PIR is taken and the disturbance is removed is input to the differentiating circuit 11 to obtain the differential pulse wave signal δPS. This differential pulse signal δPS is passed through the A / D converter 12 to I /
It is supplied to the O port 17.
【0012】このI/Oポート17には、更に、被験者
の胸部等に装着される複数の電極13を備え、心臓の活
動にともなって発生する電気信号を検出する心電計14
が接続されている。この心電計14は、心電波形CGを
微分回路15に入力する。微分回路15より微分心電波
形δCGを得る。この微分心電波形δCGは、A/D変
換器16を介してI/Oポート17へ供給される。The I / O port 17 is further provided with a plurality of electrodes 13 mounted on the subject's chest or the like, and an electrocardiograph 14 for detecting an electrical signal generated in association with the activity of the heart.
Are connected. The electrocardiograph 14 inputs the electrocardiographic waveform CG to the differentiating circuit 15. A differential electrocardiographic waveform δCG is obtained from the differentiating circuit 15. The differential electrocardiographic waveform δCG is supplied to the I / O port 17 via the A / D converter 16.
【0013】I/Oポート17は、データバスラインを
介してCPU18,ROM19,RAM20、送信機2
1にそれぞれ接続されている。CPU18は、RAM2
0の記憶機能を利用しつつROM19にあらかじめ定め
られたプログラムに従って信号処理を実行し、I/Oポ
ート17を介して光源1,2へ点灯信号R,IRをそれ
ぞれ供給しかつそれら点灯信号R,IRに対応してマル
チプレクサ5へ切り換え信号SWを供給するとともに、
差動増幅器10の出力脈波信号ΔPSに基づき可変利得
増幅器6,7へ外乱の影響が少なくなるような方向に利
得切り換え信号RG,IRGをそれぞれ供給する一方、
前記微分脈波信号δPS、微分心電波形δCGより所定
のアルゴリズムに従って脈波伝播時間を決定し、送信機
21より送信する。The I / O port 17 includes a CPU 18, a ROM 19, a RAM 20 and a transmitter 2 via a data bus line.
1 is connected to each. CPU18 is RAM2
The signal processing is executed according to a predetermined program in the ROM 19 while utilizing the memory function of 0, and the lighting signals R and IR are respectively supplied to the light sources 1 and 2 through the I / O port 17 and the lighting signals R and IR are supplied. The switching signal SW is supplied to the multiplexer 5 corresponding to IR, and
Based on the output pulse wave signal ΔPS of the differential amplifier 10, the gain switching signals RG and IRG are respectively supplied to the variable gain amplifiers 6 and 7 in a direction in which the influence of disturbance is reduced.
The pulse wave transit time is determined according to a predetermined algorithm from the differential pulse wave signal δPS and the differential electrocardiographic waveform δCG, and the pulse wave transit time is transmitted from the transmitter 21.
【0014】図2は、本発明のインターフェース部を示
す図である。受信機22は、送信機21よりのデータを
受取って、データバスラインを介してCPU23,RO
M24,RAM25,I/Oポート26,表示器27,
外部インターフェース28,入力装置29とそれぞれ接
続されている。CPU23は、RAM25の記憶機能を
利用しつつROM24にあらかじめ定められたプログラ
ムに従って信号処理を実行し、あらかじめ入力される被
験者の血圧値と脈波伝播速度の関係より、一義的に決定
される血圧値をI/Oポート26を介して、表示器27
に表示されるか外部インターフェース28に一心拍毎に
出力する。FIG. 2 is a diagram showing the interface unit of the present invention. The receiver 22 receives the data from the transmitter 21, and sends the data to the CPU 23 and RO via the data bus line.
M24, RAM25, I / O port 26, display 27,
The external interface 28 and the input device 29 are respectively connected. The CPU 23 executes signal processing according to a program predetermined in the ROM 24 while utilizing the storage function of the RAM 25, and the blood pressure value uniquely determined from the relationship between the blood pressure value of the subject and the pulse wave velocity that are input in advance. Via the I / O port 26
Or output to the external interface 28 for each heartbeat.
【0015】次に、かかる体動による外乱除去原理及び
脈波伝播速度より求める血圧値推定原理は次の通りであ
る。Next, the principle of removing the disturbance due to the body motion and the principle of estimating the blood pressure value obtained from the pulse wave velocity are as follows.
【0016】まず、体動による外乱除去原理について
は、図3は発光素子1,2と受光素子3からなる光セン
サの外観図である。図3の分図(A)は人体に装着され
る面から見た図であり、分図(B)は下側が人体に装着
される面である。遮蔽物4は、発光素子3からの直接光
の影響を除去するものである。発光素子1,2には波長
の異なるものを用い、それぞれの発光素子1,2と、受
光素子3の幾何学的位置関係は、同一になるように設置
する。この光センサを発光素子1,2と受光素子3によ
り表在血管を挟み込むように生体表面に粘着テープ等で
密着して固定する。なお、表在血管が存在しない箇所に
おいても光電脈波信号が観測できれば、本法による測定
は可能である。First, regarding the principle of disturbance removal by body movement, FIG. 3 is an external view of an optical sensor including light emitting elements 1 and 2 and a light receiving element 3. The partial view (A) of FIG. 3 is a view seen from the surface worn on the human body, and the partial view (B) is the surface worn on the human body on the lower side. The shield 4 removes the influence of direct light from the light emitting element 3. Light emitting elements 1 and 2 having different wavelengths are used, and the light emitting elements 1 and 2 and the light receiving element 3 are installed so that the geometrical positional relationship is the same. This optical sensor is closely fixed to the surface of the living body with an adhesive tape or the like so as to sandwich the superficial blood vessel between the light emitting elements 1 and 2 and the light receiving element 3. If the photoplethysmographic signal can be observed even in a place where there is no superficial blood vessel, the measurement by this method is possible.
【0017】図4は、体動による外乱除去原理を示した
ものである。光の生体内への伝達特性が、波長により大
きく異なることが知られている。従って、生体内への伝
達特性の異なる複数の波長を用いて測定を行い、測定対
象のみを分離するように演算を行えばよい、例えば、2
波長で測定で測定する場合では、血流の変調を大きく受
けない波長λ2により、相対的位置変動による体動外乱
を検出し、血流による散乱・吸収などによる変調の影響
と体動による外乱とを含む波長λ1による検出情報との
差をとることにより体動による外乱の影響を除去するこ
とが可能である。なお、体動による外乱除去のための可
変利得増幅器6,7の利得係数は、体動による外乱の影
響が最も小さくなるように随時、所定のプログラムによ
り計算された利得切り換信号RG,IRGにより設定さ
れる。FIG. 4 shows the principle of disturbance removal by body movement. It is known that the transfer characteristics of light into a living body greatly differ depending on the wavelength. Therefore, it suffices to perform measurement using a plurality of wavelengths having different transmission characteristics into the living body and perform an operation so as to separate only the measurement target, for example, 2
When measuring by wavelength, the wavelength λ2, which is not greatly affected by blood flow modulation, detects body movement disturbance due to relative position fluctuations, and the influence of modulation due to scattering and absorption by blood flow and the disturbance due to body movement. It is possible to remove the influence of the disturbance due to the body movement by taking the difference from the detection information by the wavelength λ1 including the. It should be noted that the gain coefficients of the variable gain amplifiers 6 and 7 for removing the disturbance due to the body movement are changed by the gain switching signals RG and IRG calculated by a predetermined program at any time so that the influence of the disturbance due to the body movement is minimized. Is set.
【0018】次に、脈波伝播速度より求める血圧値推定
原理については、次の通りである。図5は脈波伝播速度
と欠陥内圧の関係を示したものである。同図に示されて
いるように脈波伝播速度は、血管内圧が低いときには遅
く、高い場合には早くなる。但し、血管壁の性状によっ
ても脈波伝播速度は影響を受け、各個人によってその曲
線が異なるため、予めなん点かの血圧値での脈波伝播速
度を測定しておき、各個人毎に変換曲線を得ておく必要
がある。この変換曲線を用いれば、脈波伝播速度から血
管内圧を推定できる。さらに、これを一心拍毎に行え
ば、一心拍毎の血圧変動に追従できる。図6は微分脈波
信号δPSと微分心電波形δCGとから脈波伝播速度を
求める説明図である。各々原波形を用いず、微分波形を
用いるのは心電図のQ波及び光電脈波の立ち上がり点を
明瞭にするために用いている。さらに、脈波の立ち上が
り点以外での外乱による波形の誤認識を防止するため
に、一般的にQ波のあと約50〜300ms後に脈波が
出現するので、この区間のみゲートを開くようにし、こ
の区間でのみ微分脈波の立ち上がり点を探すことにす
る。このようにしてQ波と脈波の立ち上がり点の時間差
を求め、これと予め推定される正中線と光電脈波測定箇
所間の解剖学的血管長で除算を行い、脈波伝播速度を求
める。なお、微分心電波形の代わりに、前述の測定部位
と異なる部位で同時測定された微分脈波を用いることに
よっても同様な方法により脈波伝播速度を求めることが
可能で、それにより血圧値を推定できる。The blood pressure value estimation principle obtained from the pulse wave velocity is as follows. FIG. 5 shows the relationship between pulse wave velocity and defect internal pressure. As shown in the figure, the pulse wave velocity is slow when the intravascular pressure is low, and is high when the intravascular pressure is high. However, the pulse wave velocity is also affected by the properties of the blood vessel wall, and the curve differs for each individual, so measure the pulse wave velocity at some blood pressure value in advance and convert it for each individual. You need to know the curve. By using this conversion curve, the intravascular pressure can be estimated from the pulse wave velocity. Further, if this is performed for each heartbeat, it is possible to follow the blood pressure fluctuation for each heartbeat. FIG. 6 is an explanatory diagram for obtaining the pulse wave velocity from the differential pulse wave signal δPS and the differential electrocardiographic waveform δCG. The use of the differential waveform instead of the original waveform is used to clarify the rising points of the Q wave and the photoelectric pulse wave of the electrocardiogram. Furthermore, in order to prevent erroneous recognition of the waveform due to disturbances other than the rising point of the pulse wave, the pulse wave generally appears about 50 to 300 ms after the Q wave, so the gate is opened only in this section. Only in this section, the rising point of the differential pulse wave will be searched. In this way, the time difference between the rising points of the Q wave and the pulse wave is obtained, and division is performed by this and the anatomical blood vessel length between the median line and the photoelectric pulse wave measurement point estimated in advance to obtain the pulse wave propagation velocity. Incidentally, instead of the differential electrocardiographic waveform, it is possible to obtain the pulse wave velocity by a similar method by using the differential pulse wave simultaneously measured at a site different from the above-mentioned measurement site, and thereby the blood pressure value can be obtained. Can be estimated.
【0019】[0019]
【発明の効果】以上説明したように本発明による無拘束
運動負荷時血圧変動測定装置は、血圧変動を求めるため
に、脈波伝播速度を用いることにより一心拍毎の変動が
測定可能で、また圧迫用のカフ,ポンプ等を使用してい
ないため、センサ部及び携帯用の装置の小型化が容易
で、被験者の動きを制限しない装置の製作が可能となる
という効果を有する。As described above, the apparatus for measuring blood pressure fluctuation during unrestrained exercise according to the present invention can measure the fluctuation for each heartbeat by using the pulse wave velocity in order to obtain the blood pressure fluctuation. Since the cuff for compression and the pump are not used, it is easy to downsize the sensor unit and the portable device, and it is possible to manufacture a device that does not restrict the movement of the subject.
【0020】さらに、生体内への伝達特性の異なる複数
の波長を用いるために体動による外乱を除去した光電脈
波波形が得られ、運動中でも安定に測定可能で、マラソ
ン・球技等の本来の意味での運動負荷中の一心拍毎の血
圧変動を無拘束的に測定でき、運動負荷の効果測定ある
いは運動負荷を課した心疾患検査が可能となるという効
果を有する。Furthermore, since a plurality of wavelengths having different transmission characteristics into the living body are used, a photoelectric pulse wave waveform free of disturbance caused by body movement can be obtained, and stable measurement is possible even during exercise. In this sense, the blood pressure fluctuation for each heartbeat during the exercise load can be measured without restraint, and the effect of the exercise load or the heart disease test under the exercise load can be performed.
【図1】本発明の一実施例(データ送信部)構成を示す
ブロック図FIG. 1 is a block diagram showing the configuration of an embodiment (data transmission unit) of the present invention.
【図2】本発明の一実施例(インターフェース部)の構
成を示すブロック図FIG. 2 is a block diagram showing the configuration of an embodiment (interface unit) of the present invention.
【図3】光センサの外観図[Figure 3] External view of the optical sensor
【図4】外乱除去原理を示す説明図FIG. 4 is an explanatory diagram showing the principle of disturbance removal.
【図5】血管内圧と脈波伝播速度との関係例を示す説明
図FIG. 5 is an explanatory diagram showing an example of the relationship between intravascular pressure and pulse wave velocity.
【図6】脈波伝播速度の求め方の一例を示す説明図FIG. 6 is an explanatory diagram showing an example of how to obtain a pulse wave velocity.
1,2 発光素子 3 受光素子 6,7 可変利得増幅器 8,9 バンドパスフィルタ 10 差動増幅器 11,15 微分器 21 送信機 1, 2 Light emitting element 3 Light receiving element 6,7 Variable gain amplifier 8,9 Band pass filter 10 Differential amplifier 11,15 Differentiator 21 Transmitter
Claims (2)
携帯用のデータ送信部と、送信された前記生体信号を受
信し演算処理してその結果を表示または他の生体信号表
示モニターに伝送するインターフェース部とからなる無
拘束運動負荷時血圧変動測定装置において、前記データ
送信部が表在動脈の脈波を光電脈波信号として測定部位
から取り出す光電素子からなる脈波センサ部と、脈波伝
播速度を得るために用いる心電信号を得るための電極部
と、2波長の光電脈波信号から体動による外乱を除去す
る外乱除去部と、前記光電脈波信号及び心電信号を微分
し脈波伝播時間を求める演算制御部と、これらの各デー
タを前記インターフェース部に順次送信する送信部とを
具備し、前記インターフェース部が一心拍毎の脈波伝播
速度を用いることにより、一心拍毎の血圧値を推定する
演算制御部を具備して成ることを特徴とする無拘束運動
負荷時血圧変動測定装置。1. A portable data transmitter mounted on the body for collecting and transmitting a biological signal, and receiving the transmitted biological signal to perform arithmetic processing to display the result or transmit it to another biological signal display monitor. In an apparatus for measuring blood pressure fluctuation during unrestrained exercise, which comprises an interface section, the data transmission section includes a pulse wave sensor section including a photoelectric element that extracts a pulse wave of a superficial artery as a photoelectric pulse wave signal from a measurement site, and pulse wave propagation. An electrode section for obtaining an electrocardiographic signal used to obtain a velocity, a disturbance removing section for removing a disturbance due to body movement from a photoelectric pulse wave signal of two wavelengths, and a pulse by differentiating the photoelectric pulse wave signal and the electrocardiographic signal. A calculation control unit for obtaining a wave propagation time and a transmission unit for sequentially transmitting each of these data to the interface unit, wherein the interface unit uses the pulse wave velocity for each heartbeat According to another aspect of the present invention, there is provided an arithmetic control unit for estimating a blood pressure value for each heartbeat, which is an apparatus for measuring blood pressure fluctuation during unrestrained exercise load.
信号のQ波を検出し、その出力にあるゲートを開きあら
かじめ定められた時間経過した後にそのゲートを閉じて
成ることを特徴とする請求項1記載の無拘束運動負荷時
血圧変動測定装置。2. The electrocardiographic signal is differentiated to detect the Q wave of the electrocardiographic signal from the differential, and the gate at the output is opened and the gate is closed after a predetermined time has elapsed. The blood pressure fluctuation measuring device under unrestrained exercise load according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4010481A JPH05207978A (en) | 1992-01-24 | 1992-01-24 | Instrument for measuring fluctuation in blood pressure in non-restrained training |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4010481A JPH05207978A (en) | 1992-01-24 | 1992-01-24 | Instrument for measuring fluctuation in blood pressure in non-restrained training |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05207978A true JPH05207978A (en) | 1993-08-20 |
Family
ID=11751358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4010481A Withdrawn JPH05207978A (en) | 1992-01-24 | 1992-01-24 | Instrument for measuring fluctuation in blood pressure in non-restrained training |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05207978A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998025516A1 (en) * | 1996-10-11 | 1998-06-18 | Dxtek, Inc. | Non-invasive cuffless determination of blood pressure |
JP2000037360A (en) * | 1998-07-22 | 2000-02-08 | Seiko Instruments Inc | Pulse wave detector |
US6620104B2 (en) | 1999-12-27 | 2003-09-16 | Denso Corporation | Vital signal detecting apparatus and noninvasive blood pressure meter |
JP2008220723A (en) * | 2007-03-14 | 2008-09-25 | Seiko Epson Corp | Pulse measuring apparatus and its controlling method |
JP2011104124A (en) * | 2009-11-17 | 2011-06-02 | Seiko Epson Corp | Pulse measuring apparatus |
EP2815696A1 (en) | 2013-06-21 | 2014-12-24 | Takunori Shimazaki | Pulsation detector |
WO2016017579A1 (en) * | 2014-07-28 | 2016-02-04 | シナノケンシ株式会社 | Biological information reading device |
JP6213943B1 (en) * | 2016-05-19 | 2017-10-18 | パナソニックIpマネジメント株式会社 | Blood pressure estimation device, blood pressure estimation method, and computer program |
WO2017199631A1 (en) * | 2016-05-19 | 2017-11-23 | パナソニックIpマネジメント株式会社 | Blood pressure estimating device, blood pressure estimating method, and computer program |
US10390716B2 (en) | 2014-04-14 | 2019-08-27 | Murata Manufacturing Co., Ltd. | Pulse transmission time measuring apparatus and biological state estimating apparatus |
US11006899B2 (en) | 2015-11-06 | 2021-05-18 | Lifeq Global Limited | Energy efficient system and method for physiological monitoring |
-
1992
- 1992-01-24 JP JP4010481A patent/JPH05207978A/en not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998025516A1 (en) * | 1996-10-11 | 1998-06-18 | Dxtek, Inc. | Non-invasive cuffless determination of blood pressure |
JP2000037360A (en) * | 1998-07-22 | 2000-02-08 | Seiko Instruments Inc | Pulse wave detector |
US6620104B2 (en) | 1999-12-27 | 2003-09-16 | Denso Corporation | Vital signal detecting apparatus and noninvasive blood pressure meter |
JP2008220723A (en) * | 2007-03-14 | 2008-09-25 | Seiko Epson Corp | Pulse measuring apparatus and its controlling method |
JP2011104124A (en) * | 2009-11-17 | 2011-06-02 | Seiko Epson Corp | Pulse measuring apparatus |
US10039458B2 (en) | 2013-06-21 | 2018-08-07 | Takunori Shimazaki | Pulsation detector |
EP2815696A1 (en) | 2013-06-21 | 2014-12-24 | Takunori Shimazaki | Pulsation detector |
US10390716B2 (en) | 2014-04-14 | 2019-08-27 | Murata Manufacturing Co., Ltd. | Pulse transmission time measuring apparatus and biological state estimating apparatus |
WO2016017579A1 (en) * | 2014-07-28 | 2016-02-04 | シナノケンシ株式会社 | Biological information reading device |
JP2016032631A (en) * | 2014-07-28 | 2016-03-10 | シナノケンシ株式会社 | Biological information reading device |
US11006899B2 (en) | 2015-11-06 | 2021-05-18 | Lifeq Global Limited | Energy efficient system and method for physiological monitoring |
WO2017199631A1 (en) * | 2016-05-19 | 2017-11-23 | パナソニックIpマネジメント株式会社 | Blood pressure estimating device, blood pressure estimating method, and computer program |
JP6213943B1 (en) * | 2016-05-19 | 2017-10-18 | パナソニックIpマネジメント株式会社 | Blood pressure estimation device, blood pressure estimation method, and computer program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9538927B2 (en) | Optical measurement device and a method for an optical measurement | |
KR101286402B1 (en) | Mobile Diagnosis Device | |
CN103596492B (en) | Ear wearable vital sign monitor | |
US5791347A (en) | Motion insensitive pulse detector | |
US20100113948A1 (en) | Heart rate measurement | |
CN108937957B (en) | Detection method, device and detection equipment | |
US20150182132A1 (en) | Mobile device system for measurement of cardiovascular health | |
CN106413534A (en) | Blood-pressure continuous-measurement device, measurement model establishment method, and system | |
CN101828908A (en) | Cuff-free portable device for monitoring human physiological parameters and method | |
CN107233087A (en) | A kind of Woundless blood pressure measuring device based on photoplethysmographic feature | |
CN104873186A (en) | Wearable artery detection device and data processing method thereof | |
JPH11192217A (en) | Method and device for reducing artifact signal level in physiological signal | |
JP2018508273A (en) | Method and apparatus for deriving mean arterial pressure in a subject | |
JPH05506802A (en) | pulse sensing device | |
CN204708828U (en) | A kind of wearable noinvasive arterial health checkout gear | |
US10117598B1 (en) | Non-invasive wearable respiration rate monitoring system | |
CN106572804A (en) | Method and apparatus for measuring blood pressure using an acoustic signal | |
JPH05207978A (en) | Instrument for measuring fluctuation in blood pressure in non-restrained training | |
Johnson et al. | Performance measures on blood pressure and heart rate measurement from PPG signal for biomedical applications | |
CN115500800A (en) | Wearable physiological parameter detection system | |
JP2011212364A (en) | Cardiac sound measuring device | |
CN110881967A (en) | Non-invasive multi-segment peripheral arterial vessel elastic function detection method and instrument thereof | |
Peltokangas et al. | Monitoring arterial pulse waves with synchronous body sensor network | |
CN104739394A (en) | Portable human body physiological signal monitoring and alarming system | |
JP4415466B2 (en) | Biological signal detection device and non-invasive blood pressure monitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990408 |