JPH05198309A - Fuel cell power generating system - Google Patents
Fuel cell power generating systemInfo
- Publication number
- JPH05198309A JPH05198309A JP4007054A JP705492A JPH05198309A JP H05198309 A JPH05198309 A JP H05198309A JP 4007054 A JP4007054 A JP 4007054A JP 705492 A JP705492 A JP 705492A JP H05198309 A JPH05198309 A JP H05198309A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- fuel cell
- reformer
- gas
- vaporizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、特に燃料ガスの凝縮に
よる燃料ガスの不足に起因する燃料電池出力の変動を抑
制した燃料電池発電システムに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation system which suppresses fluctuations in fuel cell output due to fuel gas shortage due to fuel gas condensation.
【0002】[0002]
【従来の技術】メタノール等の液体燃料を燃料とした燃
料電池発電システムとして、これまでに図7の系統図に
示すような気化器1,流量調節弁2,7,熱交換器3,
6,11,14,16,23,27,32,脱硫装置
5,気水分離器8,改質装置9,改質バーナ10,CO
シフトコンバータ13,凝縮器15,28,33,燃料
電池22,制御装置39,及び各種センサー4,12,
37などから構成されるシステムが提案されている。2. Description of the Related Art As a fuel cell power generation system using a liquid fuel such as methanol as a fuel, a carburetor 1, a flow control valve 2, 7, a heat exchanger 3, as shown in the system diagram of FIG.
6, 11, 14, 16, 23, 27, 32, desulfurization device 5, steam separator 8, reformer 9, reformer burner 10, CO
Shift converter 13, condensers 15, 28, 33, fuel cell 22, control device 39, and various sensors 4, 12,
A system composed of 37 or the like has been proposed.
【0003】以下に、この従来の燃料電池発電システム
の構成とともに作用について説明する。The structure and operation of this conventional fuel cell power generation system will be described below.
【0004】まず、燃料供給系において、メタノール等
の液体燃料43は、気化器1で気化され熱交換器3で昇
温された後、水素リッチなCOシフトコンバータ13出
口ガスの一部とともに脱硫装置5に送られ、硫黄分が除
去される(メタノール等の硫黄分を含んでいない燃料の
場合はこの脱硫過程は不要)。脱硫された燃料ガスは、
気水分離器8で生成された水蒸気44とともに熱交換器
6で昇温された後、燃料改質系の改質装置9に送られ
る。First, in a fuel supply system, a liquid fuel 43 such as methanol is vaporized in a vaporizer 1 and heated in a heat exchanger 3, and then a desulfurization unit together with a part of a hydrogen rich CO shift converter 13 outlet gas. 5, the sulfur content is removed (this desulfurization process is not necessary in the case of fuel containing no sulfur content such as methanol). The desulfurized fuel gas is
After the temperature is raised in the heat exchanger 6 together with the steam 44 generated in the steam separator 8, it is sent to the reformer 9 of the fuel reforming system.
【0005】燃料改質系において、改質装置9では、燃
料の改質反応が起こり、水素リッチな改質ガスが生成さ
れる。改質装置9を出た改質ガスは、熱交換器11で温
度を下げられた後、COシフトコンバータ13に送ら
れ、シフト反応により改質ガス中の一酸化炭素が二酸化
炭素にかえられる(改質反応で生成する一酸化炭素の量
が少ない燃料の場合には、COシフトコンバータ13は
不要である)。COシフトコンバータ13を出たガス
は、熱交換器14で温度が下げられた後、凝縮器15に
送られ、未反応の水蒸気が凝縮除去される。なお、CO
シフトコンバータ13を出たガスの一部は、脱硫反応に
必要な水素を脱硫装置5に供給するために、リサイクル
される。凝縮器15で分離された抽水36は気水分離器
8に送られ、再び水蒸気44として改質装置9に供給さ
れる。凝縮器15を出たガスは、熱交換器16で昇温さ
れた後、燃料電池22の燃料極19に送られ、ガス中の
水素が燃料電池22の電池反応に使われる。In the fuel reforming system, the reforming device 9 causes a reforming reaction of the fuel to produce a hydrogen-rich reformed gas. The reformed gas that has exited the reformer 9 is sent to the CO shift converter 13 after being lowered in temperature by the heat exchanger 11, and carbon monoxide in the reformed gas is changed to carbon dioxide by the shift reaction ( The CO shift converter 13 is unnecessary in the case of a fuel in which the amount of carbon monoxide generated in the reforming reaction is small). The temperature of the gas leaving the CO shift converter 13 is lowered by the heat exchanger 14 and then sent to the condenser 15, where unreacted water vapor is condensed and removed. In addition, CO
A part of the gas leaving the shift converter 13 is recycled in order to supply the hydrogen required for the desulfurization reaction to the desulfurization device 5. The extracted water 36 separated by the condenser 15 is sent to the steam separator 8 and again supplied as steam 44 to the reformer 9. The gas discharged from the condenser 15 is heated by the heat exchanger 16 and then sent to the fuel electrode 19 of the fuel cell 22, and hydrogen in the gas is used for the cell reaction of the fuel cell 22.
【0006】燃料電池22は、燃料極19,電解質2
0,及び空気極21から構成されており、電池反応で
は、燃料極19で生成した水素イオンが電解質20中を
空気極21まで移動し、酸化剤供給系から酸化剤として
供給された空気34中の酸素と反応して水が生成する。
酸化剤供給系において、空気34は、熱交換器23で昇
温された後、空気極21に送られ、燃料電池22の電池
反応に使われる。空気極排ガス31は、熱交換器32で
温度が下げられた後、凝縮器33に送られ生成水35が
凝縮除去される。凝縮器33で除去された生成水35も
気水分離器8に送られ、水蒸気44として改質装置9に
供給される。凝縮器33を出たガスは、排ガス45とし
て大気中に放出される。燃料電池22の電池反応では発
熱を伴うため、図では省略してあるが、燃料電池22と
共に周辺装置を冷却する冷却系が設けられている。The fuel cell 22 includes a fuel electrode 19 and an electrolyte 2.
In the cell reaction, hydrogen ions generated in the fuel electrode 19 move in the electrolyte 20 to the air electrode 21, and in the air 34 supplied as an oxidant from the oxidant supply system. Reacts with oxygen to produce water.
In the oxidant supply system, the air 34 is heated in the heat exchanger 23 and then sent to the air electrode 21 to be used in the cell reaction of the fuel cell 22. After the temperature of the air electrode exhaust gas 31 is lowered by the heat exchanger 32, it is sent to the condenser 33 and the produced water 35 is condensed and removed. The produced water 35 removed by the condenser 33 is also sent to the steam separator 8 and supplied to the reformer 9 as steam 44. The gas that has left the condenser 33 is discharged into the atmosphere as an exhaust gas 45. Since the cell reaction of the fuel cell 22 is accompanied by heat generation, although not shown in the figure, a cooling system for cooling the fuel cell 22 and peripheral devices is provided.
【0007】燃料電池22によって発電された直流電力
18は、インバータ29によって交流電力30に変換さ
れ、負荷38に供給される。燃料電池22の燃料極19
における水素利用率は70〜80%程度であるので、燃
料極排ガス24は未反応水素を含む。この未反応水素を
含む燃料極排ガス24は、加熱燃料40として燃焼空気
25とともに加熱用の改質バーナ10に送られ、吸熱反
応である改質反応に必要な熱量を改質装置9に供給する
ために使われる。改質バーナ10では、水素の燃焼反応
が起こる。燃料電池運転開始時のように、改質バーナ1
0の燃料となる燃料極排ガスの供給量が不足する場合に
は、脱硫装置5出口ガスの一部を補助燃料26として改
質バーナ10の燃料に使用する。改質バーナ10の燃焼
ガス17は、熱交換器27で温度が下げられた後、凝縮
器28に送られ、生成水41が凝縮除去される。凝縮器
28で除去された生成水41は気水分離器8に送られ、
水蒸気44として改質装置9に供給される。凝縮器28
を出たガスは排ガス42として大気中に放出される。The DC power 18 generated by the fuel cell 22 is converted into AC power 30 by the inverter 29 and supplied to the load 38. Fuel electrode 19 of fuel cell 22
Since the hydrogen utilization rate is about 70 to 80%, the fuel electrode exhaust gas 24 contains unreacted hydrogen. The fuel electrode exhaust gas 24 containing unreacted hydrogen is sent to the reforming burner 10 for heating as the heating fuel 40 together with the combustion air 25, and the heat quantity required for the reforming reaction which is an endothermic reaction is supplied to the reforming device 9. Used for. In the reforming burner 10, a hydrogen combustion reaction occurs. Reforming burner 1 as when starting the fuel cell
When the supply amount of the fuel electrode exhaust gas that becomes 0 fuel is insufficient, a part of the desulfurization device 5 outlet gas is used as the auxiliary fuel 26 for the fuel of the reforming burner 10. The combustion gas 17 of the reforming burner 10 is cooled by the heat exchanger 27 and then sent to the condenser 28 to condense and remove the produced water 41. The produced water 41 removed by the condenser 28 is sent to the steam separator 8.
The steam 44 is supplied to the reformer 9. Condenser 28
The gas that has exited is discharged into the atmosphere as exhaust gas 42.
【0008】このような燃料電池発電システムでは、燃
料電池22に供給する改質ガス流量の調節は、燃料流量
調節弁2で燃料43の流量を調節することによって行
う。すなわち、負荷電流検出センサー37で負荷電流を
検出し、信号aとして制御装置39に入力する。制御装
置39は信号Bを燃料流量調節弁2に送り、その燃料流
量調節弁2の開度を制御し、負荷電流に相当する水素ガ
ス量よりも多くの水素ガス量に相当する燃料43を供給
する。また、燃料43の改質に必要な水蒸気44の供給
量は、燃料流量調節弁2を通過し気化器1で気化させた
燃料43の流量を燃料流量検出センサー4で検出し、信
号cを制御装置39に送り、この制御装置39が信号A
を水蒸気流量調節弁7に送り、その水蒸気流量調節弁7
の開度を制御することによって調節する。改質装置9の
温度は温度センサー12で監視し、信号bとして制御装
置39に入力する。制御装置39は、改質装置温度に応
じて燃料流量調節弁2に送る信号Bを制御することによ
って、改質装置温度を所定の温度に保つように燃料流量
制御弁2の開度を制御し、燃料43の流量を調節する。
制御装置39は、各センサーからの信号を受けて、制御
装置39内部に記憶されている設定値と比較し、その結
果をもとに演算し、上記した各流量調節弁の開度を制御
する信号を送出している。In such a fuel cell power generation system, the flow rate of the reformed gas supplied to the fuel cell 22 is adjusted by adjusting the flow rate of the fuel 43 by the fuel flow rate control valve 2. That is, the load current detection sensor 37 detects the load current and inputs it to the control device 39 as a signal a. The control device 39 sends a signal B to the fuel flow rate control valve 2, controls the opening of the fuel flow rate control valve 2, and supplies the fuel 43 corresponding to the hydrogen gas amount larger than the hydrogen gas amount corresponding to the load current. To do. Further, the supply amount of the steam 44 necessary for reforming the fuel 43 is detected by the fuel flow rate detection sensor 4 of the flow rate of the fuel 43 which has passed through the fuel flow rate control valve 2 and vaporized by the carburetor 1, and controls the signal c. To the device 39, and this control device 39 sends the signal A
To the steam flow rate control valve 7, and the steam flow rate control valve 7
It is adjusted by controlling the opening. The temperature of the reformer 9 is monitored by the temperature sensor 12 and input to the controller 39 as a signal b. The control device 39 controls the opening of the fuel flow control valve 2 so as to maintain the reformer temperature at a predetermined temperature by controlling the signal B sent to the fuel flow control valve 2 according to the reformer temperature. , The flow rate of the fuel 43 is adjusted.
The control device 39 receives the signal from each sensor, compares it with the set value stored in the control device 39, calculates based on the result, and controls the opening degree of each flow control valve described above. Sending a signal.
【0009】なお、図8は図7の従来例の液体燃料を燃
料とした燃料電池発電システムの燃料流量と燃料電池出
力の時間変化を表わしたグラフである。FIG. 8 is a graph showing changes over time in fuel flow rate and fuel cell output in the fuel cell power generation system using the conventional liquid fuel of FIG. 7 as fuel.
【0010】また、液体燃料の予備燃料との燃料切替が
可能な燃料電池発電システムとして、これまでに図9の
系統図に示すような気化器1,熱交換器3,6,11,
14,16,23,27,32,流量調節弁2,7,脱
硫装置5,気水分離器8,改質装置9,COシフトコン
バータ13,凝縮器15,28,33,燃料電池22,
制御装置39,分流器48,燃料極排ガス用バーナ4
9,及び各種センサー4,12,37,51などから構
成されるシステムが提案されている(特願昭63−22
0004号)。この図9で示した燃料電池発電システム
の基本構成及び作用は、図7で説明した液体燃料を燃料
とした燃料電池システムと同様であり、図9に示す符号
のうち図7と同一のものは、同一部分を示している。従
って、ここでは、図7の従来例と異なるところを中心に
説明する。Further, as a fuel cell power generation system capable of switching the fuel from the liquid fuel to the spare fuel, a carburetor 1, a heat exchanger 3, 6, 11, as shown in the system diagram of FIG.
14, 16, 23, 27, 32, flow rate control valves 2, 7, desulfurization device 5, steam separator 8, reformer 9, CO shift converter 13, condensers 15, 28, 33, fuel cell 22,
Control device 39, flow divider 48, fuel electrode exhaust gas burner 4
A system including 9 and various sensors 4, 12, 37, 51, etc. has been proposed (Japanese Patent Application No. 63-22).
No. 0004). The basic configuration and operation of the fuel cell power generation system shown in FIG. 9 are the same as those of the fuel cell system using liquid fuel as the fuel described in FIG. 7, and the reference numerals shown in FIG. , The same part is shown. Therefore, here, the difference from the conventional example of FIG. 7 will be mainly described.
【0011】図9に示した燃料切替が可能な燃料電池発
電システムでは、主燃料である燃料43の供給が大地震
や事故等により不意に停止した場合には、例えば圧力あ
るいは流量の変化の形で燃料供給異常検出センサー51
でこれを検出し、信号dとして制御装置39に入力す
る。制御装置39は信号Bを制御し、燃料流量調節弁3
を閉じるとともに、信号Dを予備燃料流量調節弁47に
送出し、その予備燃料流量調節弁47を開き液体燃料で
ある予備燃料46の供給を行う。予備燃料流量調節弁4
7及び水蒸気流量調節弁7は、予め制御装置39に記憶
してあるデータを基に予備燃料46に最適な燃料流量と
水蒸気流量になるように制御される。従って、予備燃料
46に適した条件で燃料電池22による発電を継続する
ことができる。In the fuel cell power generation system capable of switching fuel shown in FIG. 9, when the supply of the fuel 43, which is the main fuel, is suddenly stopped due to a large earthquake, an accident, or the like, for example, the pressure or flow rate changes. Fuel supply abnormality detection sensor 51
This is detected and is input to the control device 39 as a signal d. The controller 39 controls the signal B, and the fuel flow rate control valve 3
And the signal D is sent to the auxiliary fuel flow rate adjusting valve 47, and the auxiliary fuel flow rate adjusting valve 47 is opened to supply the auxiliary fuel 46 which is a liquid fuel. Backup fuel flow control valve 4
7 and the steam flow rate control valve 7 are controlled so that the fuel flow rate and the steam flow rate are optimal for the auxiliary fuel 46 based on the data stored in the control device 39 in advance. Therefore, the power generation by the fuel cell 22 can be continued under the condition suitable for the reserve fuel 46.
【0012】この従来例において、燃料に都市ガス、予
備燃料にメタノールを用いた場合(同一量の水素を得る
ために必要な改質反応熱はメタノールの方が少ない)の
ように、燃料切替により改質装置温度が上昇する場合に
は、通常予備燃料流量調節弁47を絞り燃料供給量を減
少させる。しかし、予備燃料流量調節弁47を絞り燃料
供給量を減少させると燃料不足で燃料電池出力が低下す
る場合には、制御装置39から信号Cを分流器48に送
出し、加熱燃料40となる燃料極排ガス24の一部を分
流器48で分流し、燃料極排ガス用バーナ49で燃焼さ
せた後、燃焼排ガス50として大気中に放出する(特願
平2−181260号)。In this conventional example, when city gas is used as the fuel and methanol is used as the auxiliary fuel (the heat of the reforming reaction required to obtain the same amount of hydrogen is less in methanol) When the reformer temperature rises, the auxiliary fuel flow rate control valve 47 is usually throttled to reduce the fuel supply amount. However, if the fuel cell output decreases due to insufficient fuel when the fuel supply amount is reduced by squeezing the reserve fuel flow rate control valve 47, the control device 39 sends the signal C to the flow divider 48, and becomes the heating fuel 40. A part of the polar exhaust gas 24 is divided by a flow diverter 48, burned by a burner 49 for the fuel electrode exhaust gas, and then discharged into the atmosphere as a combustion exhaust gas 50 (Japanese Patent Application No. 2-181260).
【0013】なお、図10は図9の従来例の液体燃料の
予備燃料との燃料切替が可能な燃料電池システムの燃料
切替時における燃料流量と燃料電池出力の時間変化を表
わすグラフである。FIG. 10 is a graph showing the change over time in fuel flow rate and fuel cell output at the time of fuel switching of the fuel cell system in FIG. 9 in which the liquid fuel can be switched to the reserve fuel.
【0014】[0014]
【発明が解決しようとする課題】しかしながら、上記従
来の技術による燃料電池発電システムでは、それぞれ次
のような解決すべき問題点があった。However, the above-mentioned conventional fuel cell power generation systems have the following problems to be solved.
【0015】まず、図7の液体燃料を燃料とした燃料電
池発電システムでは、高温排熱を利用して液体燃料を気
化させる方式が確立されておらず、SUS等の耐熱性の
低い材料からつくられた気化器1を高温の改質装置9か
ら距離を離して設置し100℃程度の低温で電気及び温
水を利用して気化させるので、気化器1で気化してから
改質装置9に送られるまでの間に、特に燃料供給開始時
に、配管等で燃料ガスの凝縮が起こり、図8に示したよ
うに燃料供給量が脈動することによって所定量のF1か
ら変化し、それにともない燃料電池出力も脈動し所定量
のW1から変化するという問題点があった。First, in the fuel cell power generation system using liquid fuel as a fuel of FIG. 7, a method of vaporizing the liquid fuel by utilizing high temperature exhaust heat has not been established, and it is made of a material having low heat resistance such as SUS. The vaporizer 1 is installed at a distance from the high temperature reformer 9 and is vaporized by electricity and hot water at a low temperature of about 100 ° C. Therefore, the vaporizer 1 is vaporized and then sent to the reformer 9. By the time the fuel supply is started, the fuel gas is condensed in the piping and the like, and the fuel supply amount pulsates as shown in FIG. 8 to change from the predetermined amount F 1 and accordingly the fuel cell. There is a problem that the output also pulsates and changes from a predetermined amount of W 1 .
【0016】次に、図9の液体燃料の予備燃料との燃料
切替が可能な燃料電池発電システムでも、高温排熱を利
用して液体燃料を気化させる方式が確立されておらず、
SUS等の耐熱性の低い材料からつくられた気化器1を
高温の改質装置9から距離を離して設置し100℃程度
の低温で電気及び温水を利用して気化させるので、燃料
切替時に予備燃料が気化器1で気化してから改質装置9
に送られるまでの間に配管等で凝縮し、図10に示した
ように予備燃料供給量が脈動し、所定量のF4に到達す
るまでにT1の時間を要する。これにともなって燃料電
池出力も所定量のW2からT1の時間だけ一時的に低下す
るとともに、T1時間経過後も予備燃料供給量の脈動の
影響で燃料電池出力も脈動するという問題点があった。Next, even in the fuel cell power generation system capable of switching the fuel from the liquid fuel to the reserve fuel in FIG. 9, a method of vaporizing the liquid fuel using high temperature exhaust heat has not been established.
The carburetor 1 made of a material having low heat resistance such as SUS is installed at a distance from the high temperature reformer 9 and is vaporized by using electricity and hot water at a low temperature of about 100 ° C. After the fuel is vaporized by the vaporizer 1, the reformer 9
Is condensed in a pipe or the like before being sent to the fuel cell, and the preliminary fuel supply amount pulsates as shown in FIG. 10, and it takes T 1 time to reach a predetermined amount F 4 . Along with this, the fuel cell output also temporarily decreases from a predetermined amount of W 2 for a time of T 1 , and the fuel cell output also pulsates after the lapse of T 1 time due to the pulsation of the preliminary fuel supply amount. was there.
【0017】本発明は、上記問題点を解決するためにな
されたものであり、その目的は、液体燃料を気化させた
燃料ガスを改質するに際して燃料ガスの凝縮を防止し、
燃料電池出力の変動を抑制する燃料電池発電システムを
提供することにある。The present invention has been made to solve the above-mentioned problems, and an object thereof is to prevent condensation of fuel gas when reforming fuel gas obtained by vaporizing liquid fuel,
An object of the present invention is to provide a fuel cell power generation system that suppresses fluctuations in fuel cell output.
【0018】[0018]
【課題を解決するための手段】上記の目的を達成するた
め、本発明の燃料電池発電システムにおいては、燃料電
池本体、液体燃料を気化する気化器を有し該燃料電池本
体への燃料を供給する燃料供給系、改質装置を有し該燃
料の改質を行い電池反応に必要な水素リッチガスをつく
る燃料改質系、該燃料電池本体に酸化剤を供給する酸化
剤供給系、該燃料電池本体および周辺装置の冷却を行う
冷却系、および付属装置からなる燃料電池発電システム
において、液体燃料を気化させるための前記気化器を前
記改質装置と一体化し、該液体燃料の気化のために該改
質装置の排熱を用いることを特徴としている。To achieve the above object, in a fuel cell power generation system of the present invention, a fuel cell main body and a vaporizer for vaporizing liquid fuel are provided, and fuel is supplied to the fuel cell main body. A fuel reforming system for reforming the fuel to produce a hydrogen-rich gas necessary for a cell reaction, an oxidant feeding system for feeding an oxidant to the fuel cell body, and the fuel cell In a fuel cell power generation system including a cooling system for cooling a main body and peripheral devices, and an auxiliary device, the vaporizer for vaporizing liquid fuel is integrated with the reforming device, and the vaporizer for vaporizing the liquid fuel is integrated with the vaporizer. The feature is that the exhaust heat of the reformer is used.
【0019】[0019]
【作用】本発明の燃料電池発電システムでは、液体燃料
の気化器と改質装置を一体化し、改質装置の排熱を利用
し液体燃料の気化を行い、長い距離を配管で引き回すこ
となくそのまま改質装置に供給できるようにし、改質装
置により水蒸気改質を行う。これにより、気化した燃料
ガスの凝縮を防止し、その凝縮による燃料ガス不足に起
因する燃料電池出力の変動を抑制する。In the fuel cell power generation system of the present invention, the vaporizer of liquid fuel and the reformer are integrated, the liquid fuel is vaporized by utilizing the exhaust heat of the reformer, and the long distance is maintained without the need for piping. It can be supplied to the reformer, and steam reforming is performed by the reformer. This prevents the vaporized fuel gas from condensing and suppresses the fluctuation of the fuel cell output due to the fuel gas shortage due to the condensation.
【0020】[0020]
【実施例】以下、本発明の実施例を、図面を参照して詳
細に説明する。Embodiments of the present invention will now be described in detail with reference to the drawings.
【0021】図1は本発明を適用した第1の実施例の構
成を示す系統図である。本実施例は、液体燃料を燃料と
した燃料電池発電システムの例であり、本実施例におけ
る燃料電池発電システムの基本構成と作用は、図7で説
明した従来例と同様であって、図1に示す符号のうち図
7の符号と同一のものは、同一部分を示している。従っ
てここでは、図7の従来例と異なる点を中心に説明す
る。図7の従来例とは、気化器1を改質装置9と一体化
し改質装置9の排熱で液体燃料である燃料43を気化さ
せること、及び脱硫装置5を気化器1即ち改質装置9の
近傍に配置することが大きく異なる。なお、図2は本発
明を適用した液体燃料を燃料とした燃料電池発電システ
ムの一実施例の燃料流量と燃料電池出力の時間変化を表
わすグラフである。FIG. 1 is a system diagram showing the configuration of the first embodiment to which the present invention is applied. This embodiment is an example of a fuel cell power generation system using liquid fuel as a fuel, and the basic configuration and operation of the fuel cell power generation system in this embodiment are the same as those of the conventional example described in FIG. The same symbols as those in FIG. 7 among the symbols shown in FIG. Therefore, here, the points different from the conventional example of FIG. 7 will be mainly described. In the conventional example of FIG. 7, the vaporizer 1 is integrated with the reformer 9 and the exhaust heat of the reformer 9 vaporizes the fuel 43, which is a liquid fuel, and the desulfurizer 5 is replaced with the vaporizer 1, that is, the reformer. The arrangement in the vicinity of 9 is very different. Note that FIG. 2 is a graph showing changes over time in fuel flow rate and fuel cell output in an embodiment of a fuel cell power generation system using a liquid fuel as a fuel to which the present invention is applied.
【0022】本実施例では、気化器1と改質装置9を一
体化し、気化器1で気化させた燃料ガスを気化器1に隣
接させた脱硫装置5を経て改質装置9にそのまま供給す
ることによって、燃料ガスの凝縮を防止することが可能
で、その結果、図2に示したように、燃料供給量の所定
量のF1に一定に維持し、燃料電池出力も所定量のW1に
一定に維持することができる。なお、メタノールのよう
な硫黄を含んでいない液体燃料の場合には、気化器1で
気化した燃料ガスをそのまま改質装置9に供給すること
ができるので、気化と改質は同一の装置で行うことがで
きる。また、本発明による実施例では、改質装置9の排
熱を燃料ガスの気化に利用することができるので、エネ
ルギーの面でも経済的である。In this embodiment, the vaporizer 1 and the reformer 9 are integrated, and the fuel gas vaporized by the vaporizer 1 is directly supplied to the reformer 9 via the desulfurization device 5 adjacent to the vaporizer 1. As a result, it is possible to prevent the fuel gas from condensing, and as a result, as shown in FIG. 2, the fuel supply amount is maintained at a predetermined amount F 1 and the fuel cell output is also a predetermined amount W 1. Can be kept constant. In the case of a liquid fuel containing no sulfur such as methanol, the fuel gas vaporized by the vaporizer 1 can be directly supplied to the reforming device 9, so vaporization and reforming are performed by the same device. be able to. Further, in the embodiment according to the present invention, the exhaust heat of the reformer 9 can be utilized for vaporizing the fuel gas, which is economical in terms of energy.
【0023】次に、本発明を適用した第2の実施例を説
明する。図3は、その構成を示す系統図である。本実施
例は液体燃料の予備燃料との燃料切替が可能な燃料電池
発電システムの例であって、本実施例における燃料電池
発電システムの基本構成と作用は、図9で説明した従来
例と同様であり、図3に示す符号のうち図9の符号と同
一のものは、同一部分を示している。従って、ここでは
従来例と異なる点を中心に説明する。図9の従来例と
は、気化器1を改質装置9と一体化し改質装置9の排熱
で液体燃料の予備燃料46を気化させること、及び脱硫
装置5を気化器1の近傍に配置することが大きく異な
る。図3の構成では、予備燃料46を独立に気化器1へ
導く構成としているため、熱交換器52と予備燃料流量
検出センサー53とを設けているが、図9のように熱交
換器3,燃料流量検出センサー4を兼用すれば不要であ
る。なお、図4は本発明を適用した液体燃料の予備燃料
との燃料切替が可能な燃料電池発電システムの一実施例
の燃料切替時における燃料流量と燃料電池出力の時間変
化を表わすグラフである。Next, a second embodiment to which the present invention is applied will be described. FIG. 3 is a system diagram showing the configuration. This embodiment is an example of a fuel cell power generation system capable of switching fuel from liquid fuel to auxiliary fuel, and the basic configuration and operation of the fuel cell power generation system in this embodiment are the same as those of the conventional example described in FIG. The same symbols as those in FIG. 9 among the symbols shown in FIG. 3 indicate the same parts. Therefore, the points different from the conventional example will be mainly described here. 9 is different from the conventional example of FIG. 9 in that the vaporizer 1 is integrated with the reformer 9 to vaporize the preliminary fuel 46 of liquid fuel by the exhaust heat of the reformer 9, and the desulfurizer 5 is arranged in the vicinity of the vaporizer 1. What you do is very different. In the configuration of FIG. 3, since the auxiliary fuel 46 is independently guided to the carburetor 1, the heat exchanger 52 and the auxiliary fuel flow rate detection sensor 53 are provided, but as shown in FIG. It is unnecessary if the fuel flow rate detection sensor 4 is also used. 4. FIG. 4 is a graph showing the change over time in fuel flow rate and fuel cell output at the time of fuel switching in an embodiment of a fuel cell power generation system capable of fuel switching from a liquid fuel to a backup fuel to which the present invention is applied.
【0024】本実施例においても、気化器1と改質装置
9を一体化し、気化器1で気化させた燃料ガスを気化器
1に隣接させた脱硫装置5を経て改質装置9に供給する
ことによって、燃料ガスの凝縮を防止することが可能と
なる。その結果、図4に示したように、燃料切替時に予
備燃料供給量を所定量のF4に図10のT1より短いT2
の時間ですみやかに到達させ、また予備燃料供給量をF
4に一定に維持することが可能で、燃料切替時の燃料不
足による燃料電池出力の低下が抑制され、燃料電池出力
を所定量のW2に一定に維持することができる。Also in this embodiment, the vaporizer 1 and the reformer 9 are integrated, and the fuel gas vaporized by the vaporizer 1 is supplied to the reformer 9 through the desulfurizer 5 adjacent to the vaporizer 1. This makes it possible to prevent the fuel gas from condensing. As a result, as shown in FIG. 4, when the fuel is switched, the preliminary fuel supply amount is set to a predetermined amount of F 4 by T 2 shorter than T 1 of FIG.
Quickly, and the reserve fuel supply is F
The fuel cell output can be kept constant at 4 , the decrease in fuel cell output due to the fuel shortage at the time of fuel switching can be suppressed, and the fuel cell output can be kept constant at a predetermined amount W 2 .
【0025】次に、上記各実施例で用いられる改質装置
と一体化した気化器の一例を図5に示す。気化器54
は、700℃程度の高温に耐えるように鉄製とする。気
化器54は高温の改質装置燃焼排ガス57で全体が加熱
されるように配置され、液体燃料55はノズル59から
改質装置燃料排ガス57で加熱された気化器54内の管
壁に吹き付けられて気化される。気化された燃料ガス
は、改質装置58に送られる(燃料ガス56が硫黄分を
含んでいる場合には脱硫装置を経て改質装置58に送ら
れる)。Next, FIG. 5 shows an example of a vaporizer integrated with the reforming apparatus used in each of the above embodiments. Vaporizer 54
Is made of iron to withstand a high temperature of about 700 ° C. The vaporizer 54 is arranged so as to be entirely heated by the high temperature reformer combustion exhaust gas 57, and the liquid fuel 55 is sprayed from the nozzle 59 to the pipe wall inside the vaporizer 54 heated by the reformer fuel exhaust gas 57. Is vaporized. The vaporized fuel gas is sent to the reformer 58 (if the fuel gas 56 contains a sulfur content, it is sent to the reformer 58 via a desulfurization device).
【0026】また、図6に改質装置と一体化した気化器
の別の一例を示す。図6に示す符号のうち図5の符号と
同一のものは、同一部分を示している。気化器54は7
00℃程度の高温に耐えるように鉄製とする。この例で
は気化器54全体を改質装置燃焼排ガス57で加熱し、
気化器54内部に液体燃料55を供給し、これを改質装
置58の排熱で気化させる。気化された燃料ガス56は
そのまま改質装置58に送られる(燃料ガス56が硫黄
分を含んでいる場合には脱硫装置を経て改質装置58に
送られる)。FIG. 6 shows another example of the vaporizer integrated with the reformer. 6 that are the same as those in FIG. 5 indicate the same parts. Vaporizer 54 is 7
It is made of iron to withstand a high temperature of about 00 ° C. In this example, the entire vaporizer 54 is heated by the reformer combustion exhaust gas 57,
The liquid fuel 55 is supplied to the inside of the vaporizer 54 and is vaporized by the exhaust heat of the reformer 58. The vaporized fuel gas 56 is sent to the reformer 58 as it is (when the fuel gas 56 contains sulfur, it is sent to the reformer 58 via a desulfurization device).
【0027】なお、本発明は、種々の型式の燃料電池発
電システムに適用できることは言うまでもない。このよ
うに本発明は、その主旨に沿って種々に応用され、種々
の実施態様を取る得るものである。Needless to say, the present invention can be applied to various types of fuel cell power generation systems. As described above, the present invention can be applied in various ways in accordance with the gist thereof and can take various embodiments.
【0028】[0028]
【発明の効果】以上説明したように、本発明の燃料電池
発電システムによれば、液体燃料の気化器を改質装置と
一体化し、改質装置の排熱で気化を行って、そのまま改
質装置へ燃料ガスを供給できるようにしたので、燃料ガ
スの凝縮を防止することが可能となり、燃料ガスの凝縮
による燃料ガスの不足に起因する燃料電池出力の変動を
防ぐことができる。As described above, according to the fuel cell power generation system of the present invention, the vaporizer of the liquid fuel is integrated with the reformer, and the exhaust heat of the reformer is used to vaporize the reformer as it is. Since the fuel gas can be supplied to the device, it is possible to prevent the fuel gas from condensing, and it is possible to prevent the fuel cell output from varying due to the fuel gas shortage due to the fuel gas condensing.
【図1】本発明を適用した液体燃料を燃料とした燃料電
池発電システムの第1の実施例を示す系統図FIG. 1 is a system diagram showing a first embodiment of a fuel cell power generation system using a liquid fuel as a fuel to which the present invention is applied.
【図2】液体燃料を燃料とした燃料電池発電システムの
上記第1の実施例の燃料流量と燃料電池出力の時間変化
を表わすグラフFIG. 2 is a graph showing changes over time in fuel flow rate and fuel cell output in the first embodiment of the fuel cell power generation system using liquid fuel as fuel.
【図3】本発明を適用した液体燃料の予備燃料との燃料
切替が可能な燃料電池発電システムの第2の実施例を示
す系統図FIG. 3 is a system diagram showing a second embodiment of a fuel cell power generation system capable of switching fuel from liquid fuel to backup fuel to which the present invention is applied.
【図4】液体燃料の予備燃料との燃料切替が可能な燃料
電池発電システムの上記第2の実施例の燃料切替時にお
ける燃料流量と燃料電池出力の時間変化を表わすグラフFIG. 4 is a graph showing changes over time in fuel flow rate and fuel cell output during fuel switching in the second embodiment of the fuel cell power generation system capable of switching fuel from liquid fuel to backup fuel.
【図5】上記各実施例で用いられる改質装置と一体化し
た気化器の一例を示す構成図FIG. 5 is a configuration diagram showing an example of a vaporizer integrated with a reformer used in each of the above-described embodiments.
【図6】上記各実施例で用いられる改質装置と一体化し
た気化器の別な一例を示す構成図FIG. 6 is a configuration diagram showing another example of a vaporizer integrated with a reformer used in each of the above-described embodiments.
【図7】液体燃料を燃料とした従来例を示す燃料電池発
電システムの系統図FIG. 7 is a system diagram of a fuel cell power generation system showing a conventional example using liquid fuel as fuel.
【図8】液体燃料を燃料とした上記燃料電池発電システ
ムの燃料流量と燃料電池出力の時間変化を表わすグラフFIG. 8 is a graph showing changes over time in fuel flow rate and fuel cell output of the above fuel cell power generation system using liquid fuel as fuel.
【図9】液体燃料の予備燃料との燃料切替が可能な別な
従来例を示す燃料電池発電システムの系統図FIG. 9 is a system diagram of a fuel cell power generation system showing another conventional example in which fuel can be switched from liquid fuel to backup fuel.
【図10】液体燃料の予備燃料との燃料切替が可能な上
記別な従来例の燃料電池発電システムの燃料切替時にお
ける燃料流量と燃料電池出力の時間変化を表わすグラフFIG. 10 is a graph showing a change over time in fuel flow rate and fuel cell output at the time of fuel switching of the fuel cell power generation system of another conventional example in which the fuel can be switched from the liquid fuel to the backup fuel.
1…気化器、2…燃料流量調節弁、3…熱交換器、4…
燃料流量検出センサー、5…脱硫装置、6…熱交換器、
7…水蒸気流量調節弁、8…気水分離器、9…改質装
置、10…改質バーナ、11…熱交換器、12…温度セ
ンサー、13…COシフトコンバータ、14…熱交換
器、15…凝縮器、16…熱交換器、17…燃焼ガス、
18…直流電力、19…燃料極、20…電解質、21…
空気極、22…燃料電池、23…熱交換器、24…燃料
極排ガス、25…燃焼空気、26…補助燃料、27…熱
交換器、28…凝縮器、29…インバータ、30…交流
電力、31…空気極排ガス、32…熱交換器、33…凝
縮器、34…空気、35…生成水、36…抽水、37…
負荷電流検出センサー、38…負荷、39…制御装置、
40…加熱燃料、41…生成水、42…排ガス、43…
燃料、44…水蒸気、45…排ガス、46…予備燃料、
47…予備燃料流量調節弁、48…分流器、49…燃料
極排ガス用バーナ、50…燃焼排ガス、51…燃料供給
異常検出センサー、52…熱交換器、53…予備燃料流
量検出センサー、54…気化器、55…液体燃料、56
…燃料ガス、57…改質装置燃焼排ガス、58…改質装
置、59…ノズル。1 ... Vaporizer, 2 ... Fuel flow rate control valve, 3 ... Heat exchanger, 4 ...
Fuel flow rate detection sensor, 5 ... desulfurization device, 6 ... heat exchanger,
7 ... Steam flow rate control valve, 8 ... Steam separator, 9 ... Reforming device, 10 ... Reforming burner, 11 ... Heat exchanger, 12 ... Temperature sensor, 13 ... CO shift converter, 14 ... Heat exchanger, 15 … Condenser, 16… Heat exchanger, 17… Combustion gas,
18 ... DC power, 19 ... Fuel electrode, 20 ... Electrolyte, 21 ...
Air electrode, 22 ... Fuel cell, 23 ... Heat exchanger, 24 ... Fuel electrode exhaust gas, 25 ... Combustion air, 26 ... Auxiliary fuel, 27 ... Heat exchanger, 28 ... Condenser, 29 ... Inverter, 30 ... AC power, 31 ... Air electrode exhaust gas, 32 ... Heat exchanger, 33 ... Condenser, 34 ... Air, 35 ... Generated water, 36 ... Water extraction, 37 ...
Load current detection sensor, 38 ... Load, 39 ... Control device,
40 ... Heating fuel, 41 ... Generated water, 42 ... Exhaust gas, 43 ...
Fuel, 44 ... Steam, 45 ... Exhaust gas, 46 ... Spare fuel,
47 ... Reserve fuel flow rate control valve, 48 ... Flow divider, 49 ... Fuel electrode exhaust gas burner, 50 ... Combustion exhaust gas, 51 ... Fuel supply abnormality detection sensor, 52 ... Heat exchanger, 53 ... Preparatory fuel flow rate detection sensor, 54 ... Vaporizer, 55 ... Liquid fuel, 56
... fuel gas, 57 ... reformer combustion exhaust gas, 58 ... reformer, 59 ... nozzle.
Claims (1)
器を有し該燃料電池本体への燃料を供給する燃料供給
系、改質装置を有し該燃料の改質を行い電池反応に必要
な水素リッチガスをつくる燃料改質系、該燃料電池本体
に酸化剤を供給する酸化剤供給系、該燃料電池本体およ
び周辺装置の冷却を行う冷却系、および付属装置からな
る燃料電池発電システムにおいて、 液体燃料を気化させるための前記気化器を前記改質装置
と一体化し、該液体燃料の気化のために該改質装置の排
熱を用いることを特徴とする燃料電池発電システム。1. A fuel cell main body, a vaporizer for vaporizing a liquid fuel, a fuel supply system for supplying fuel to the fuel cell main body, and a reformer, which reforms the fuel and is necessary for cell reaction. In a fuel cell power generation system comprising a fuel reforming system for producing a hydrogen-rich gas, an oxidant supply system for supplying an oxidant to the fuel cell body, a cooling system for cooling the fuel cell body and peripheral devices, and an accessory device, A fuel cell power generation system, characterized in that the vaporizer for vaporizing liquid fuel is integrated with the reformer, and exhaust heat of the reformer is used for vaporizing the liquid fuel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4007054A JPH05198309A (en) | 1992-01-20 | 1992-01-20 | Fuel cell power generating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4007054A JPH05198309A (en) | 1992-01-20 | 1992-01-20 | Fuel cell power generating system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05198309A true JPH05198309A (en) | 1993-08-06 |
Family
ID=11655351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4007054A Pending JPH05198309A (en) | 1992-01-20 | 1992-01-20 | Fuel cell power generating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05198309A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6316134B1 (en) | 1999-09-13 | 2001-11-13 | Ballard Generation Systems, Inc. | Fuel cell electric power generation system |
JP2005348528A (en) * | 2004-06-03 | 2005-12-15 | Railway Technical Res Inst | Motor controller |
JP2008123864A (en) * | 2006-11-13 | 2008-05-29 | Idemitsu Kosan Co Ltd | Fuel cell system and its operation control method |
JP2008123865A (en) * | 2006-11-13 | 2008-05-29 | Idemitsu Kosan Co Ltd | Fuel cell system |
-
1992
- 1992-01-20 JP JP4007054A patent/JPH05198309A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6316134B1 (en) | 1999-09-13 | 2001-11-13 | Ballard Generation Systems, Inc. | Fuel cell electric power generation system |
WO2001020702A3 (en) * | 1999-09-13 | 2002-07-18 | Ballard Generation Systems Inc | Fuel cell electric power generation system |
US6645652B2 (en) | 1999-09-13 | 2003-11-11 | Ballard Generation Systems Inc. | Fuel cell electric power generation system |
JP2005348528A (en) * | 2004-06-03 | 2005-12-15 | Railway Technical Res Inst | Motor controller |
JP4533671B2 (en) * | 2004-06-03 | 2010-09-01 | 財団法人鉄道総合技術研究所 | Electric motor control device and vehicle |
JP2008123864A (en) * | 2006-11-13 | 2008-05-29 | Idemitsu Kosan Co Ltd | Fuel cell system and its operation control method |
JP2008123865A (en) * | 2006-11-13 | 2008-05-29 | Idemitsu Kosan Co Ltd | Fuel cell system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7052787B2 (en) | Solid high polymer type fuel cell power generating device | |
EP1276163B1 (en) | Solid polymer fuel cell | |
US6866953B2 (en) | Fuel cell power plant | |
JPH05198309A (en) | Fuel cell power generating system | |
JPH05234611A (en) | Fuel cell power generation system | |
JPH09161832A (en) | Fuel cell generating device, and its operation method and operation control method | |
JPH0888015A (en) | Fuel switching type fuel cell power generating system | |
JPH0676847A (en) | Starting method for fuel cell and device thereof | |
JPH09199153A (en) | Fuel cell power generating apparatus and deterioration detecting method for its reforming device | |
JP3585249B2 (en) | Fuel cell power generator | |
JPH09298065A (en) | Fuel cell generating device | |
JPH0547401A (en) | Fuel changeover method of fuel cell and its apparatus | |
JP4887561B2 (en) | Fuel cell system | |
JPH0773896A (en) | Fuel cell power generator | |
JPH08293314A (en) | Fuel cell generating device | |
JP2615790B2 (en) | Phosphoric acid fuel cell power generation system | |
JPH0547399A (en) | Temperature control method and device for reforming device of fuel cell power generating system | |
JP7422007B2 (en) | Solid oxide fuel cell system | |
JP3432973B2 (en) | Raw fuel switching device for fuel cell power plant | |
JP2002134140A (en) | Fuel cell system | |
JP7455710B2 (en) | Fuel cell system and fuel cell system operating method | |
JPH0773897A (en) | Fuel cell power generator | |
JP2005268190A (en) | Fuel cell system | |
JP2006342047A (en) | Reformer, method for controlling pump in fuel cell system, and control unit | |
JPH07249422A (en) | Fuel cell power generating device |