JPH05181068A - Flat plate for meniscus control - Google Patents
Flat plate for meniscus controlInfo
- Publication number
- JPH05181068A JPH05181068A JP23216191A JP23216191A JPH05181068A JP H05181068 A JPH05181068 A JP H05181068A JP 23216191 A JP23216191 A JP 23216191A JP 23216191 A JP23216191 A JP 23216191A JP H05181068 A JPH05181068 A JP H05181068A
- Authority
- JP
- Japan
- Prior art keywords
- flat plate
- solution
- culture
- container
- meniscus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Microscoopes, Condenser (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、メニスカス制御用平板
に関するものである。更に詳しくは、本発明は、生物体
組織や細胞などの検体を培養した後、これら検体を顕微
鏡観察する際に用いられるメニスカス制御用平板に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a meniscus control flat plate. More specifically, the present invention relates to a meniscus control plate used for observing a specimen such as a biological tissue or cell after culturing the specimen with a microscope.
【0002】[0002]
【従来の技術】細胞培養は、医学や生物の分野で幅広く
行われている。また、培養用の容器も数々のサイズの容
器が販売され、目的に合った容器を用い細胞培養を行う
ことができるようになった。2. Description of the Related Art Cell culture is widely used in the fields of medicine and biology. In addition, as containers for culture, containers of various sizes are sold, and it has become possible to carry out cell culture using containers suitable for the purpose.
【0003】しかし、容器の内径φ16.5mm以下、
つまり、24穴以上の細胞培養容器(例えばベクソン・
テキンソン社製、マイクロテストプレート3070・9
6穴、マルチウェルプレート3047・24穴コスター
社製、クラスターディシュ3548・48穴など)で培
養した細胞を光学顕微鏡で観察しようとすると容器中の
培養液の液面が表面張力で湾曲し、それによるレンズ効
果で、像が劣化してしまう。特に、位相差顕微鏡で観察
しようとすると図1のように照明光中にあるリング開口
81が対物レンズ83中の位相差変調板84のリングコ
ート上に投影されなければならないが、液面のレンズ効
果によってリングコート上と異なる位置、倍率で結像す
る為、適正な位相差変調を行うこうができず、かなり像
が劣化し、視野中心部しか像を見ることが出来ない。ま
た、細胞を測光しようとすると液面の湾曲によって測定
精度が低下してしまう。However, the inner diameter of the container is 16.5 mm or less,
In other words, cell culture vessels with more than 24 holes (eg Bexon
Tekkinson Micro Test Plate 3070.9
6-well, multi-well plate 3047 / 24-hole coster, cluster dish 3548/48 well etc.) When trying to observe the cells with an optical microscope, the liquid surface of the culture solution in the container is curved due to surface tension, The image is deteriorated by the lens effect due to. In particular, when observing with a phase contrast microscope, the ring opening 81 in the illumination light must be projected onto the ring coat of the phase difference modulation plate 84 in the objective lens 83 as shown in FIG. Due to the effect, the image is formed at a position and magnification different from that on the ring coat, so that proper phase difference modulation cannot be performed, the image is considerably deteriorated, and the image can be seen only in the central portion of the visual field. In addition, when attempting to measure the cells, the accuracy of the measurement deteriorates due to the curvature of the liquid surface.
【0004】[0004]
【発明の目的】そこで、このような問題を解決する方法
として特公平2−30469号に示された光学部材を溶
液に浸漬させる方法が知られている。しかし、この場
合、光学部材はレンズなどは高価な部材でできている
為、繰り返し使用しなければならない。その結果、光学
部材を溶液の入った多数の穴に挿入すると培養液中に異
物が混入(コンタミネーション)する危険性がある。
又、光学部材の洗浄も容易ではない。Therefore, as a method for solving such a problem, there is known a method of dipping an optical member in a solution as disclosed in Japanese Patent Publication No. 2-30469. However, in this case, since the optical member such as a lens is made of an expensive member, it must be repeatedly used. As a result, when the optical member is inserted into a large number of holes containing a solution, there is a risk that foreign matter may be mixed into the culture solution.
In addition, cleaning the optical member is not easy.
【0005】これとは別に、細胞培養プレートのウエル
中に疎水性円筒を挿入する方法が知られている(特開昭
62−69979)。しかし、この方法では円筒によっ
て観察できる視野を狭めてしまい、又、液量が少ないと
きには取扱いが難しい。さらに、前記円筒を培養液中に
挿入する場合、培養液液面の上昇が生じ、液全体が相当
激しく流動攪拌される。その結果、培養容器底面などに
培養されている生体組織または細胞などの検体が過大の
刺激を受け培養が阻害されたり、容器底面から離れ、培
養液中に混ざってしまったりする恐れもある。それゆ
え、前記円筒を使用して正常な培養状態の検体を正確に
観察することは困難である。Apart from this, a method of inserting a hydrophobic cylinder into the well of a cell culture plate is known (Japanese Patent Laid-Open No. 62-69979). However, this method narrows the observable field of view due to the cylinder, and is difficult to handle when the amount of liquid is small. Furthermore, when the cylinder is inserted into the culture solution, the liquid surface of the culture solution rises, and the whole solution is vigorously agitated. As a result, there is a possibility that specimens such as living tissues or cells cultured on the bottom surface of the culture container may be overstimulated to inhibit the culture, or may be separated from the bottom surface of the container and mixed in the culture solution. Therefore, it is difficult to accurately observe a specimen in a normal culture state using the cylinder.
【0006】そこで本発明の目的は、培養容器中の培養
液を広い視野で、精度良く、培養液への異物の混入を容
易に防止でき、かつ培養液内を攪乱することなしに、顕
微鏡観察することを可能にする培養液等の液面のメニス
カスを制御する器具を提供することである。Therefore, an object of the present invention is to observe a culture solution in a culture vessel with a wide field of view, with high precision, to easily prevent foreign matter from being mixed into the culture solution, and to observe with a microscope without disturbing the inside of the culture solution. It is an object of the present invention to provide a device for controlling the meniscus of a liquid surface such as a culture solution that enables the above.
【0007】[0007]
【発明の構成】本発明は、容器中の溶液上に浮かせる透
明な平板であって、上記溶液のメニスカスの少なくとも
一部を平坦化するに十分な平面積を有することを特徴と
するメニスカス制御用平板に関する。以下、本発明につ
いて説明する。The present invention is a transparent flat plate that floats on a solution in a container and has a plane area sufficient to flatten at least a part of the meniscus of the solution. Regarding flat plates. The present invention will be described below.
【0008】本発明において容器とは、例えば細胞培養
容器である。具体的には24、48又は96孔の円筒形
ウェルを有するマルチウェルを挙げることができる。但
し、容器内をそのまま顕微鏡観察するものであればとく
に限定はない。本発明の容器は、より具体的には、内径
約5〜25mmの生体組織や細胞培養用のプレートのウ
ェルである。容器内径の小さいものほど、メニスカスの
顕微鏡観察に与える悪影響が大きく、本発明の平板の使
用が有効である。In the present invention, the container is, for example, a cell culture container. A specific example is a multiwell having a cylindrical well of 24, 48 or 96 holes. However, there is no particular limitation as long as the inside of the container is directly observed with a microscope. More specifically, the container of the present invention is a well of a plate for culturing living tissues or cells having an inner diameter of about 5 to 25 mm. The smaller the inner diameter of the container, the greater the adverse effect on the microscopic observation of the meniscus, and the use of the flat plate of the present invention is effective.
【0009】本発明の平板は、例えばプラスチック、ガ
ラス又はセラミックス製であることができる。但し、透
明な平板であれば特に材質についての制限はない。尚、
透明性が高く、比重が小さくて溶液に浮かせる操作が簡
単なプラスチックが好ましい。プラスチックの例として
は、ポリメチルメタクリレート(PMMA)(比重:
1.08〜1.20)、ポリスチレン(比重:1.04
〜1.11)、ポリエチレン(比重:0.910〜0.
965)、ポリカーボネート(比重:1.20)、ポリ
エステル(比重:1.01〜1.46)、塩化ビニル
(比重:1.35〜1.45)等を挙げることができ
る。The flat plate of the present invention can be made of, for example, plastic, glass or ceramics. However, the material is not particularly limited as long as it is a transparent flat plate. still,
It is preferable to use a plastic that has high transparency, has a low specific gravity, and can be easily floated in a solution. An example of plastic is polymethylmethacrylate (PMMA) (specific gravity:
1.08 to 1.20), polystyrene (specific gravity: 1.04)
~ 1.11), polyethylene (specific gravity: 0.910-0.
965), polycarbonate (specific gravity: 1.20), polyester (specific gravity: 1.01 to 1.46), vinyl chloride (specific gravity: 1.35 to 1.45) and the like.
【0010】上記平板の表面の一部又は全部は疎水性で
あることが、平板を溶液に浮かせることが容易になると
いう観点から好ましい。又、表面が疎水性であることに
より、平面の上面に溶液が回り込み、上面を濡らすこと
を防止できる。平板を疎水化する方法としては、例えば
平板に疎水性物質(高分子)を塗布して被膜を形成する
方法、疎水性化合物を化学反応、プラズマ反応、電子
線、放射線又は紫外線を用いた反応で平板上に結合させ
る方法、CVD(化学蒸着)法等を挙げることができ
る。It is preferable that part or all of the surface of the flat plate is hydrophobic, from the viewpoint that the flat plate can be easily floated in the solution. Further, since the surface is hydrophobic, it is possible to prevent the solution from flowing around the upper surface of the flat surface and wetting the upper surface. Examples of the method for making a flat plate hydrophobic include a method of coating a flat plate with a hydrophobic substance (polymer) to form a film, a chemical reaction of a hydrophobic compound, a plasma reaction, a reaction using an electron beam, radiation or ultraviolet rays. The method of bonding on a flat plate, a CVD (chemical vapor deposition) method, etc. can be mentioned.
【0011】平板表面を疎水化処理する以外に、表面エ
ネルギーが低く、水や溶液に濡れにくい物質(例えばテ
フロン)で平板を作成することもできる。疎水性の程度
は、平板上に水滴をたらして接触角を読み取る液滴法、
水中で空気の泡を付着させる気泡法、平板を吊り下げる
吊板法等を用いることができる。接触角としては、例え
ば液滴法の場合30°以上が好ましく、60°以上がよ
り好ましい。例えば、PMMAの場合では64°であ
る。In addition to hydrophobizing the surface of the flat plate, the flat plate can be made of a substance (for example, Teflon) having a low surface energy and difficult to be wet with water or a solution. The degree of hydrophobicity is measured by a droplet method in which a water droplet is placed on a flat plate and the contact angle is read.
A bubble method of attaching air bubbles in water, a hanging plate method of hanging a flat plate, or the like can be used. The contact angle is, for example, preferably 30 ° or more in the case of the droplet method, and more preferably 60 ° or more. For example, in the case of PMMA, it is 64 °.
【0012】平板表面は滅菌されていることが、培養液
中へのコンタミネーションを防止する観点から好まし
い。滅菌法は、平板の材質にもよるが、オートクレーブ
中で熱処理する方法、エチレンオキサイド(EO)ガス
で滅菌する方法、紫外線等の放射線を照射する方法を例
示することができる。It is preferable that the flat plate surface is sterilized from the viewpoint of preventing contamination in the culture solution. Examples of the sterilization method include a method of heat treatment in an autoclave, a method of sterilization with ethylene oxide (EO) gas, and a method of irradiating with radiation such as ultraviolet rays, depending on the material of the flat plate.
【0013】本発明の平板1は、図2に示すように容器
72中の培養液等の溶液71の表面に形成されるメニス
カス70の少なくとも一部を図3に示すように平坦化す
るものである。尚、メニスカス70は溶液71の表面エ
ネルギーと容器72の内壁73の表面エネルギーによっ
て図2に示すように凹状になる以外に、凸状にもなるこ
ともある。本発明の平板は凹状凸状どちらのメニスカス
に対しても有効である。平板によって平坦化される溶液
の液面の面積(即ち平板の平面積にほぼ相当する)は、
広ければ広いほど、顕微鏡観察の視野が広がることから
好ましい。容器(培養プレートのウェル)の内径が小さ
いものであれば、平板の平面積は容器内の水平断面積に
ほぼ等しく溶液の表面をほとんど覆うものであることが
好ましい。一方、比較的内径の大きい容器にあっては、
溶液表面の全面を覆う必要がない場合もある。一般に
は、平板の表面積は、容器内の水平断面積の50%以上
であることが広い視野を確保するという観点から適当で
ある。The flat plate 1 of the present invention flattens at least a part of the meniscus 70 formed on the surface of a solution 71 such as a culture solution in a container 72 as shown in FIG. 2 as shown in FIG. is there. The meniscus 70 may have a convex shape other than the concave shape as shown in FIG. 2 depending on the surface energy of the solution 71 and the surface energy of the inner wall 73 of the container 72. The flat plate of the present invention is effective for both concave and convex meniscuses. The area of the liquid surface of the solution flattened by the flat plate (that is, approximately equivalent to the flat area of the flat plate) is
The wider the width, the wider the visual field for microscopic observation, which is preferable. If the inner diameter of the container (well of the culture plate) is small, it is preferable that the flat area of the flat plate is almost equal to the horizontal cross-sectional area in the container and almost covers the surface of the solution. On the other hand, for a container with a relatively large inner diameter,
In some cases, it is not necessary to cover the entire surface of the solution. Generally, it is appropriate that the surface area of the flat plate is 50% or more of the horizontal cross-sectional area in the container from the viewpoint of ensuring a wide field of view.
【0014】平板の平面形状及び寸法(厚み)について
は、特に限定はない。平面形状としては、円形(真円
形、楕円形)が一般的であるが、多角形であることもで
きる。又、厚みについては、平板の機械的強度、加工
性、さらには、溶液に浮くものであること等を考慮する
と、例えば0.3〜2mm、好ましくは0.5〜1mm
とすることが適当である。There are no particular restrictions on the planar shape and dimensions (thickness) of the flat plate. As a plane shape, a circle (a perfect circle or an ellipse) is generally used, but a polygon may be used. Regarding the thickness, considering the mechanical strength of the flat plate, the workability, and the fact that it floats in a solution, for example, 0.3 to 2 mm, preferably 0.5 to 1 mm
Is appropriate.
【0015】本発明の平板を図5〜図10に基づいて説
明する。本発明のメニスカス制御用平板1の斜視図を図
5に示す。メニスカス制御用平板1は、ポリメチルメタ
クリレート(以下、PPMという。比重:1.188
〔25℃〕)からなる円板であり、その上面11と下面
12とは平行平面である。この平板1の厚さは、0.5
mmで上面11及び下面12の直径は、10.5mmで
あって、内径11mmの培養容器に対して用いて好適で
ある。The flat plate of the present invention will be described with reference to FIGS. A perspective view of the meniscus control flat plate 1 of the present invention is shown in FIG. The meniscus control flat plate 1 is made of polymethylmethacrylate (hereinafter referred to as PPM. Specific gravity: 1.188).
[25 ° C.]), and the upper surface 11 and the lower surface 12 thereof are parallel planes. The thickness of this flat plate 1 is 0.5
The upper surface 11 and the lower surface 12 have a diameter of 10.5 mm and are suitable for use in a culture container having an inner diameter of 11 mm.
【0016】図6に示すメニスカス制御用平板2は、図
5の円板の側周縁21に平板を把持具により把持するた
めの把持部を形成したものであり、本例2の把持部2
2、22' は、平板2の側周縁21より平板中心23方
向に向かう平面視半円状の直径1.5mm切込みとして
形成されている。この半円状の切り込みは、平板中心2
3に対して対称的に形成され、22及び22' の1対の
切り込みを把持具を用いて把持した場合、それらが連働
して使用者の意のままに取り扱えるようになる。この半
円状の切り込みの直径は、把持が可能であれば、検鏡視
野を広くするためにできる限り小さい方が好ましい。The meniscus control flat plate 2 shown in FIG. 6 is formed by forming a grip portion for gripping the flat plate by a gripping tool on the side edge 21 of the disc shown in FIG.
2 and 22 ′ are formed as semicircular plan view diameter 1.5 mm cuts from the side peripheral edge 21 of the flat plate 2 toward the flat plate center 23. This semi-circular cut is the center of the flat plate 2
When the pair of notches 22 and 22 ' are formed symmetrically with respect to 3 and are grasped by the grasping tool, they cooperate to allow the user to handle them at will. The diameter of this semicircular cut is preferably as small as possible in order to widen the field of view of the speculum, if gripping is possible.
【0017】なお、本例の平面視半円状の切り込みは、
半円のみならず、平面視円弧の長い方の円弧(長円弧)
状であっても、短い方の円弧(短円弧)状であってもよ
い。The semicircular notch in plan view of this example is
Not only a semicircle, but the longer arc in plan view (long arc)
It may have a shape or a shorter arc shape (short arc shape).
【0018】図7に示すメニスカス制御用平板3は、平
板3の側周縁31に平面視四角形の3辺によって切り取
られた形状に把持部32、32' を形成したものであ
り、図6の切り込みの形状を変えたものである。切り込
み部分の四角形の1辺の長さは1mmとして形成されて
いる。The meniscus control flat plate 3 shown in FIG. 7 has grip portions 32 and 32 ′ formed on the side edge 31 of the flat plate 3 in a shape cut out by three sides of a quadrangle in a plan view. The shape of is changed. The length of one side of the quadrangle of the cut portion is 1 mm.
【0019】図8に示すメニスカス制御用平板4は、平
板4の側周縁41に、平面視三角形の2辺によって切り
取られた形状に把持部42、42' を形成したものであ
り、図7の切り込みの形状を変えたものである。切り込
み部分の三角形の1辺の長さは1mmとして形成されて
いる。The meniscus control flat plate 4 shown in FIG. 8 is formed by forming gripping portions 42, 42 ′ on the side peripheral edge 41 of the flat plate 4 in a shape cut by two sides of a triangle in plan view. The shape of the cut is changed. The length of one side of the notch triangle is 1 mm.
【0020】図9に示すメニスカス制御用平板5は、円
板側周縁51における円板の中心53に関して対称な位
置を、平行な2平面により、円板の上面及び下面と垂直
な方向へ平面視弦状に切り取られた形状の把持部52、
52' を形成したものである。前記の側周縁を切り取る
平面は、平面視円板側周縁から1mm円板中心方向の位
置とされている。In the meniscus control flat plate 5 shown in FIG. 9, a symmetrical position with respect to the center 53 of the disc on the disc-side peripheral edge 51 is viewed in a plane perpendicular to the upper and lower faces of the disc by two parallel planes. A grip portion 52 having a chordal shape,
52 ' is formed. The plane from which the side edge is cut is located at a position 1 mm from the disk side edge in the plan view in the center direction of the disk.
【0021】図10にはメニスカス制御用平板6の側面
図を示す。平板6は、一方の面に、平板6の移動の際に
把持するための突起62を有する。突起62は、平板6
の平面の中心部よりは周辺に近い所に設けることが、視
野を妨げることがないという観点から好ましい。FIG. 10 shows a side view of the meniscus control flat plate 6. The flat plate 6 has a protrusion 62 on one surface for holding the flat plate 6 when the flat plate 6 moves. The protrusion 62 is the flat plate 6
It is preferable to provide it at a position closer to the periphery than the central part of the plane from the viewpoint of not hindering the visual field.
【0022】本発明の平板は、予め製造した丸棒を所定
の厚みに切断する方法、原料(溶液)を型に入れて成型
する方法あるいはさらにこれらの方法で得られた平板の
表面を研磨する方法等により得ることができる。The flat plate of the present invention is obtained by cutting a round bar manufactured in advance to a predetermined thickness, molding a raw material (solution) into a mold, or polishing the surface of the flat plate obtained by these methods. It can be obtained by a method or the like.
【0023】平板は、吸引スポイトを用いるか、又はピ
ンセットを用いて溶液面に浮かせる。尚、ピンセットを
用いて操作する場合には切り欠きを入れた平板が(例え
ば図6〜9参照)好ましい。The flat plate is floated on the solution surface by using a suction dropper or tweezers. In the case of using tweezers, a flat plate with a cutout is preferable (see, for example, FIGS. 6 to 9).
【0024】また、培養用のウェルで用いる観点から、
使用前に予めオートクレーブやエチレンオキサイドガス
による処理あるいは放射線照射による処理で滅菌をして
おくことが好ましい。その場合、これらいずれかの処理
に耐える材質を用いて平板を作成する。In addition, from the viewpoint of use in wells for culture,
Prior to use, it is preferable to sterilize in advance by treatment with an autoclave, ethylene oxide gas, or radiation. In that case, a flat plate is created using a material that can withstand any of these treatments.
【0025】以下本発明のメニスカス制御用平板の作用
について説明する。通常、図2に示すように容器72に
入れた溶液71の表面は、平坦にならずメニスカス70
を形成する。倒立位相差顕微鏡で溶液中を観察する場
合、図1に示すようにメニスカス70が存在すると、コ
ンデンサー側の位相差リング開口81からコンデンサー
レンズ82を介して溶液71中を透過した光90は、対
物レンズ83を介しても適正な位相差変調を行うことが
できず、位相差変調板84上に結像せず、変調板84か
らずれた位置にコンデンサー開口像91が結像してしま
う。その結果、像がかなり劣化して観察が困難になる。The operation of the meniscus controlling flat plate of the present invention will be described below. Normally, as shown in FIG. 2, the surface of the solution 71 placed in the container 72 is not flat and the meniscus 70 is not flat.
To form. When observing the inside of the solution with an inverted phase contrast microscope, if the meniscus 70 exists as shown in FIG. 1, the light 90 transmitted through the solution 71 from the phase difference ring opening 81 on the condenser side through the condenser lens 82 is the objective. Proper phase difference modulation cannot be performed even through the lens 83, and an image is not formed on the phase difference modulating plate 84, so that the condenser aperture image 91 is formed at a position displaced from the modulating plate 84. As a result, the image deteriorates considerably and becomes difficult to observe.
【0026】一方、本発明の平板を用いると、図3に示
すように容器72中の溶液71のメニスカス70は平板
1によって、平板1と容器内壁73間の限られた部分を
除いて平坦化される。その結果、図4に示すように、コ
ンデンサー開口像92は、位相差変調板84上に結像す
る。On the other hand, when the flat plate of the present invention is used, the meniscus 70 of the solution 71 in the container 72 is flattened by the flat plate 1 except for the limited portion between the flat plate 1 and the inner wall 73 of the container, as shown in FIG. To be done. As a result, as shown in FIG. 4, the condenser aperture image 92 is formed on the phase difference modulation plate 84.
【0027】通常例えば、内径15mmの円筒状ウェル
中では、本発明の平板を使用しないと円筒断面積の約3
0%しか視野が得られないのに対して、例えば直径13
mm(円筒断面積に対する平板平面積は95%)の平板
を用いた場合は、約85%以上の視野を得ることができ
る。Usually, for example, in a cylindrical well having an inner diameter of 15 mm, the cylindrical cross-sectional area of about 3 is obtained without using the flat plate of the present invention.
For example, the diameter is 13 while the field of view is only 0%.
When a flat plate having a size of mm (the flat area of the flat plate is 95% of the cylindrical cross-sectional area) is used, a visual field of about 85% or more can be obtained.
【0028】[0028]
【発明の効果】本発明のメニスカス制御用平板によれ
ば、培養プレートのウェル内で培養されている生体組織
や細胞を顕微鏡観察する際にウェル中の培養液表面に形
成されるメニスカスに起因する検鏡視野の狭窄を改善す
ることの出来るとともに、正常な培養状態の生体組織や
細胞を正確に視察することが出来るため、きわめて有用
である。According to the meniscus controlling flat plate of the present invention, it is caused by the meniscus formed on the surface of the culture solution in the well when microscopically observing living tissues and cells cultured in the well of the culture plate. This is extremely useful because it can improve the narrowing of the microscopic field and allows accurate observation of living tissue and cells in a normal culture state.
【0029】さらに、従来技術の特開昭62−6997
9号公報の器具の場合、水溶液中に出し入れする際、液
面の上昇下降が生じ、それにともなって水溶液全体が相
当厳しく流動攪拌される。これに対し、本発明のメニス
カス制御用平板は、ほとんど液面の変化はなく、液全体
は静置状態とほとんど変わりない状態に保たれるため、
培養細胞に何ら悪影響を与えないという利点もある。Furthermore, the prior art Japanese Patent Laid-Open No. 62-6997.
In the case of the device disclosed in Japanese Patent No. 9, when the liquid is moved in and out of the aqueous solution, the liquid level rises and falls, and accordingly, the entire aqueous solution is fluidly stirred. On the other hand, the meniscus control flat plate of the present invention has almost no change in the liquid surface, and the whole liquid is maintained in a state in which it is almost unchanged from the stationary state,
It also has the advantage that it has no adverse effect on the cultured cells.
【0030】また、本発明のメニスカス制御用平板は安
価であり、特にウェル孔全てを使わずたとえ1孔しか用
いない観察においても1枚で対応することが出来、きわ
めて経済的である。さらに、ディスポーザブル平板とし
て使用することが出来るため、使用者にとってきわめて
有用である。Further, the meniscus control flat plate of the present invention is inexpensive, and it is very economical because it can be used with one plate even when observing only one hole without using all the well holes. Furthermore, since it can be used as a disposable flat plate, it is extremely useful for users.
【0031】[0031]
【実施例】以下本発明を実施例により説明する。 実施例1 ポリメチルメタクリレート製の平板を切削及び研磨し
て、厚さ0.5mm、平面の直径が10.5mmの本発
明のメニスカス制御用平板を得、これをEO滅菌した。EXAMPLES The present invention will be described below with reference to examples. Example 1 A flat plate made of polymethylmethacrylate was cut and polished to obtain a meniscus control flat plate of the present invention having a thickness of 0.5 mm and a flat surface diameter of 10.5 mm, which was EO sterilized.
【0032】これとは別に細胞培養用48孔マルチウェ
ルを用い白内障手術時に得られた前嚢片付きヒト水晶体
上皮細胞を、10%牛胎児血清添加MEM溶液0.5m
lをウェルに加えて37度C、5%炭酸ガスと95%空
気の雰囲気で3週間静置培養した。常法に従って倒立位
相差顕微鏡(オリンパスIMT−2)で観察を行った。
その結果を図12の写真に示す。中心部のみ(全視野の
約25%)が写り、視野全体を観察することができな
い。その培養液にウェルの内径11mmより僅かに小さ
い前述のPMMA製平板を浮かせ同一部分の観察を行っ
た。その結果を図13の写真に示す。両方の写真におけ
る特徴的細胞に注目すれば図13の写真は全視野(ほぼ
100%)で明瞭な映像を撮らえられた。Separately from this, human lens epithelial cells with anterior capsule pieces obtained at the time of cataract surgery were prepared using a 48-well multiwell for cell culture and 0.5 m of MEM solution containing 10% fetal bovine serum.
1 was added to the well, and static culture was carried out at 37 ° C. in an atmosphere of 5% carbon dioxide and 95% air for 3 weeks. Observation was performed with an inverted phase contrast microscope (Olympus IMT-2) according to a conventional method.
The result is shown in the photograph of FIG. Only the central part (about 25% of the total field of view) is visible, and the entire field of view cannot be observed. The above-mentioned PMMA flat plate slightly smaller than the inner diameter of the well of 11 mm was floated in the culture solution and the same portion was observed. The result is shown in the photograph of FIG. Focusing on the characteristic cells in both photographs, the photograph of FIG. 13 showed a clear image in the entire visual field (nearly 100%).
【0033】実施例2 実施例1と同様の操作を直径10.5mmの代わりに7
mmの平板を作成し、これを用いたときの結果を図14
の写真に示す。平板の下では明瞭に細胞が観察されるが
平板外ではほとんど観察することができず、平板を用い
ることにより明瞭な観察ができることがわかる。Example 2 The same operation as in Example 1 was repeated except that the diameter was 10.5 mm.
Fig. 14 shows the result when a flat plate of mm was created and used.
Shown in the photo. It can be seen that cells can be clearly observed under the flat plate, but they can hardly be observed outside the flat plate, and that clear observation can be made by using the flat plate.
【0034】実施例3 実施例1と同様の10.5mmの平板を用い、同様の操
作を行って、20倍対物レンズによる観察を行った。そ
の結果を図15の写真に示す。きわめて明瞭な映像が得
られ、細胞の詳細な形態観察が可能となった。この写真
から細胞は前嚢片上、前嚢下及びウェル底上に存在しそ
れぞれ特徴的形態を示すことが見いだされた。Example 3 The same 10.5 mm flat plate as in Example 1 was used, and the same operation was performed to observe with a 20 × objective lens. The result is shown in the photograph of FIG. An extremely clear image was obtained, enabling detailed morphological observation of cells. From this photograph, it was found that the cells were present on the anterior capsule, the anterior capsule and the bottom of the well, and each exhibited a characteristic morphology.
【0035】実施例4 実施例1と同様の操作により15.5mm、厚さ1mm
の平板を作成し、これを24孔マルチウェル(内径1
6.5mm)に浮かせた。これにより実施例1と同様に
明瞭な視野を得ることができた。Example 4 By the same operation as in Example 1, 15.5 mm and thickness 1 mm
Make a flat plate of this and use this for 24-well multiwell (inside diameter 1
6.5 mm). As a result, a clear visual field could be obtained as in Example 1.
【0036】実施例5 倒立位相差顕微鏡の代りに正立型顕微鏡を用いた他は実
施例1と同様にして観察を行った。Example 5 Observation was carried out in the same manner as in Example 1 except that an upright microscope was used instead of the inverted phase contrast microscope.
【0037】従来、培養容器を下部から照明し、容器上
部から観察できる正立型顕微鏡で観察する場合、培養液
面の湾曲によって観察が不可能であった。しかし、本発
明の平板を用いて、培養容器中の溶液のメニスカスを平
板化することで、正立型顕微鏡による明視野、位相差、
ノマルスキー等についても観察が可能になった。図11
に示すように、本発明の平板1を溶液71に浮かべるこ
とで、コンデンサー開口像92は、位相差変調板84上
に結像させることができる。Conventionally, when the culture container was illuminated from the bottom and observed with an upright microscope which can be observed from the top of the container, it was impossible to observe due to the curved surface of the culture solution. However, using the flat plate of the present invention, by flattening the meniscus of the solution in the culture vessel, a bright field by an upright microscope, phase difference,
It became possible to observe Nomarski and others. 11
As shown in FIG. 6, by floating the flat plate 1 of the present invention in the solution 71, the condenser aperture image 92 can be formed on the phase difference modulation plate 84.
【図1】倒立位相差顕微鏡で容器中の溶液を観察する場
合の説明図である。FIG. 1 is an explanatory diagram for observing a solution in a container with an inverted phase contrast microscope.
【図2】容器中の溶液のメニスカスを示す断面図であ
る。FIG. 2 is a cross-sectional view showing a meniscus of a solution in a container.
【図3】容器中の溶液に本発明の平板1を浮かべて平坦
化したところを示す断面図である。FIG. 3 is a cross-sectional view showing a flat plate 1 of the present invention floated on a solution in a container to be flattened.
【図4】倒立位相差顕微鏡で本発明の平板1を浮かべた
溶液を観察する場合の説明図である。FIG. 4 is an explanatory diagram for observing a solution in which the flat plate 1 of the present invention is floated with an inverted phase contrast microscope.
【図5】本発明の平板1の斜視図である。FIG. 5 is a perspective view of the flat plate 1 of the present invention.
【図6】本発明の平板2の平面図である。FIG. 6 is a plan view of the flat plate 2 of the present invention.
【図7】本発明の平板3の平面図である。FIG. 7 is a plan view of the flat plate 3 of the present invention.
【図8】本発明の平板4の平面図である。FIG. 8 is a plan view of the flat plate 4 of the present invention.
【図9】本発明の平板5の平面図である。FIG. 9 is a plan view of the flat plate 5 of the present invention.
【図10】本発明の平板6の側面図である。FIG. 10 is a side view of the flat plate 6 of the present invention.
【図11】正立型顕微鏡で、本発明の平板1を浮かべた
溶液を観察する場合の説明図である。FIG. 11 is an explanatory diagram for observing a solution in which the flat plate 1 of the present invention is floated with an upright microscope.
【図12】生物の形態を示す図面に代る写真である。FIG. 12 is a photograph instead of a drawing showing the morphology of living things.
【図13】生物の形態を示す図面に代る写真である。FIG. 13 is a photograph instead of a drawing showing the morphology of living things.
【図14】生物の形態を示す図面に代る写真である。FIG. 14 is a photograph instead of a drawing showing the morphology of living things.
【図15】生物の形態を示す図面に代る写真である。FIG. 15 is a photograph instead of a drawing, which shows the morphology of organisms.
1、2、3、4、5、6:本発明のメニスカス制御用平
板 70:メニスカス1, 2, 3, 4, 5, 6, 6: Meniscus control flat plate of the present invention 70: Meniscus
フロントページの続き (72)発明者 河野 芳弘 東京都渋谷区幡ケ谷2丁目43番2号 オリ ンパス光学工業株式会社内Front page continued (72) Inventor Yoshihiro Kono 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd.
Claims (6)
あって、上記溶液のメニスカスの少なくとも一部を平坦
化するに十分な平面積を有することを特徴とするメニス
カス制御用平板。1. A flat plate for meniscus control, which is a transparent flat plate floatable on a solution in a container and has a flat area sufficient to flatten at least a part of the meniscus of the solution.
請求項1記載の平板。2. The flat plate according to claim 1, wherein a part or all of the flat plate surface is hydrophobic.
の平板。3. The plate according to claim 1, wherein the container is a cell culture container.
0%以上である請求項1記載の平板。4. The flat area of the flat plate is 5 of the horizontal sectional area in the container.
The flat plate according to claim 1, which is 0% or more.
ックス製である請求項1記載の平板。5. The flat plate according to claim 1, which is made of plastic, glass or ceramics.
請求項1記載の平板。6. The flat plate according to claim 1, wherein the flat plate has a planar shape of a circle or a polygon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03232161A JP3133786B2 (en) | 1991-08-20 | 1991-08-20 | How to observe with a microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03232161A JP3133786B2 (en) | 1991-08-20 | 1991-08-20 | How to observe with a microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05181068A true JPH05181068A (en) | 1993-07-23 |
JP3133786B2 JP3133786B2 (en) | 2001-02-13 |
Family
ID=16934955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03232161A Expired - Fee Related JP3133786B2 (en) | 1991-08-20 | 1991-08-20 | How to observe with a microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3133786B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6238911B1 (en) | 1998-06-29 | 2001-05-29 | Olympus Optical Co., Ltd. | Culture vessel and microscope for observing sample in culture vessel |
WO2007084704A1 (en) * | 2006-01-20 | 2007-07-26 | Blueshift Biotechnologies, Inc. | Method and apparatus for reducing noise in scatterometry measurements |
JP2010119370A (en) * | 2008-11-21 | 2010-06-03 | Dainippon Printing Co Ltd | Device for pattern cell culture |
JP2013165662A (en) * | 2012-02-15 | 2013-08-29 | Shimadzu Corp | Cell culture device |
WO2015198866A1 (en) * | 2014-06-24 | 2015-12-30 | 日本写真印刷株式会社 | Culture container |
WO2016047751A1 (en) * | 2014-09-25 | 2016-03-31 | 住友ベークライト株式会社 | Culture vessel |
DE102015111426B3 (en) * | 2015-07-14 | 2016-10-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for phase contrast microscopy and phase contrast microscope |
EP3263219A1 (en) | 2016-06-30 | 2018-01-03 | SCREEN Holdings Co., Ltd. | Well plate and method of using the same |
US10793818B2 (en) | 2015-08-20 | 2020-10-06 | Tocalo Co., Ltd. | Culture container and cell culturing method and cell observation method using culture container |
-
1991
- 1991-08-20 JP JP03232161A patent/JP3133786B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6238911B1 (en) | 1998-06-29 | 2001-05-29 | Olympus Optical Co., Ltd. | Culture vessel and microscope for observing sample in culture vessel |
WO2007084704A1 (en) * | 2006-01-20 | 2007-07-26 | Blueshift Biotechnologies, Inc. | Method and apparatus for reducing noise in scatterometry measurements |
JP2009524061A (en) * | 2006-01-20 | 2009-06-25 | ブルーシフト・バイオテクノロジーズ・インコーポレーテッド | Method and apparatus for noise reduction in scatter measurements |
US7643146B2 (en) | 2006-01-20 | 2010-01-05 | Blueshift Biotechnologies, Inc. | Methods and apparatus for reducing noise in scatterometry measurements |
JP2010119370A (en) * | 2008-11-21 | 2010-06-03 | Dainippon Printing Co Ltd | Device for pattern cell culture |
JP2013165662A (en) * | 2012-02-15 | 2013-08-29 | Shimadzu Corp | Cell culture device |
WO2015198866A1 (en) * | 2014-06-24 | 2015-12-30 | 日本写真印刷株式会社 | Culture container |
KR20170020739A (en) | 2014-06-24 | 2017-02-24 | 니혼샤신 인사츠 가부시키가이샤 | Culture container |
US10138454B2 (en) | 2014-06-24 | 2018-11-27 | Nissha Printing Co., Ltd. | Culture container |
WO2016047751A1 (en) * | 2014-09-25 | 2016-03-31 | 住友ベークライト株式会社 | Culture vessel |
DE102015111426B3 (en) * | 2015-07-14 | 2016-10-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for phase contrast microscopy and phase contrast microscope |
US10793818B2 (en) | 2015-08-20 | 2020-10-06 | Tocalo Co., Ltd. | Culture container and cell culturing method and cell observation method using culture container |
EP3263219A1 (en) | 2016-06-30 | 2018-01-03 | SCREEN Holdings Co., Ltd. | Well plate and method of using the same |
Also Published As
Publication number | Publication date |
---|---|
JP3133786B2 (en) | 2001-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8822209B2 (en) | Disposable spinner flask | |
JP6855508B2 (en) | Containers and spinner flasks for cell culture with reduced impeller wobble | |
JPH06237758A (en) | Culture container | |
US4670396A (en) | Vertical culture system with removable culture unit | |
US7666259B2 (en) | Screening and crystallization plates for manual and high-throughput protein crystal growth | |
JP2016525228A (en) | Equipment for optical sheet microscopy | |
JP3133786B2 (en) | How to observe with a microscope | |
KR102230694B1 (en) | Culture container | |
US20240034968A1 (en) | Cell Culture Plate, Assembly And Methods Of Use | |
WO1996021851A2 (en) | Biological analysis device having improved contamination prevention | |
WO2013003308A1 (en) | Systems and methods for detecting an analyte of interest in a sample using microstructured surfaces | |
US20080020455A1 (en) | Specimen Carrier for the Study of Cell Growth | |
EP3711859A1 (en) | Specimen slide chamber | |
WO2016052078A1 (en) | Plastic container | |
JP4731847B2 (en) | Petri dish, chamber apparatus, optical microscope observation method and sample analysis method | |
JP3869259B2 (en) | Biological specimen observation method | |
JP2653721B2 (en) | Plastic slide for optical microscope | |
JP4716646B2 (en) | Petri dishes that can be used upside down | |
EP3263219B1 (en) | Well plate and method of using the same | |
US7915033B2 (en) | Incubation container system | |
WO2017057126A1 (en) | Cell mass culture container | |
JP7251867B1 (en) | Vessel and cell transport device | |
JPS6269979A (en) | Meniscus controlling apparatus and light transmitting type testing device equipped therewith | |
JP2006518534A (en) | Sample enclosure for a scanning electron microscope and its use | |
WO2015101702A1 (en) | Sample holder, cell culture system and mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20000516 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001114 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081124 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091124 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091124 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |