JPH05186287A - Coated ceramic member and its production - Google Patents
Coated ceramic member and its productionInfo
- Publication number
- JPH05186287A JPH05186287A JP4022057A JP2205792A JPH05186287A JP H05186287 A JPH05186287 A JP H05186287A JP 4022057 A JP4022057 A JP 4022057A JP 2205792 A JP2205792 A JP 2205792A JP H05186287 A JPH05186287 A JP H05186287A
- Authority
- JP
- Japan
- Prior art keywords
- amorphous
- intermediate layer
- film
- carbon film
- hard carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、耐摩耗性及び耐摺動性
に優れた被覆セラミック部材、及びその製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated ceramic member having excellent wear resistance and sliding resistance, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】セラミックは、耐摩耗性、耐食性、耐熱
性などの点で、金属では到底達成できない優れた特性を
有することから、機械部品や高温で使用される部材への
実用化研究が精力的に進められている。2. Description of the Related Art Ceramics have excellent properties that cannot be achieved by metals in terms of wear resistance, corrosion resistance, heat resistance, etc., so research into practical applications for mechanical parts and parts used at high temperatures is an active task. Is being promoted.
【0003】特に最近では、電子機器や機械部品におい
て、無潤滑状態で高速摺動する部分にセラミックを使用
する試みがなされている。しかし、セラミックは極めて
硬度が高いので、使用方法を間違えると相手材を傷付け
たり摩耗させたりする欠点がある。又、セラミック自身
の摩擦係数(μ)が非常に高いため、摩擦熱が発生して
摺動部の温度が上昇し、温度上昇によりセラミック部材
の摩擦係数が益々上昇するといった不都合が存在する。In recent years, in particular, attempts have been made to use ceramics in parts of electronic equipment and mechanical parts that slide at high speed in a non-lubricated state. However, since the hardness of ceramics is extremely high, there is a drawback that the mating material may be damaged or worn if the usage method is mistaken. Further, since the coefficient of friction (μ) of the ceramic itself is extremely high, frictional heat is generated to raise the temperature of the sliding portion, and there is a disadvantage that the coefficient of friction of the ceramic member is further increased due to the temperature rise.
【0004】この問題を解決するため、セラミックの表
面を改質し、セラミックの硬さを損ねることなく摩擦係
数を低減させる試みがなされている。例えば、高硬度で
且つ摺動時の摩擦係数が小さいダイヤモンドや硬質炭素
膜でセラミック部材の表面を被覆する方法が提案されて
いる。しかし、ダイヤモンドに関しては、被覆膜の表面
粗さが大きいため、一般的には摺動部分への使用は難し
いと報告されている。一方、硬質炭素膜はその特性がダ
イヤモンドと良く似ていること、並びに表面粗さが極め
て小さい膜が比較的簡単に得られること等から、摺動部
品への応用はダイヤモンドよりも注目を集めている。In order to solve this problem, attempts have been made to modify the surface of the ceramic and reduce the friction coefficient without impairing the hardness of the ceramic. For example, there has been proposed a method of coating the surface of a ceramic member with diamond or a hard carbon film having high hardness and a small friction coefficient during sliding. However, it has been reported that it is generally difficult to use diamond for a sliding portion because the coating film has a large surface roughness. On the other hand, hard carbon film has characteristics similar to that of diamond, and because a film with extremely small surface roughness can be obtained relatively easily, its application to sliding parts has attracted more attention than diamond. There is.
【0005】硬質炭素膜は、ダイヤモンド状炭素又はア
イ・カーボン(i−Carbon)とも呼ばれ、ダイヤ
モンドに類似の特性を有する非晶質の炭素膜である。特
に硬度が高く(ビッカース硬度で5000〜800
0)、摺動時の摩擦係数が小さい材料である。かかる非
晶質の硬質炭素膜の成膜方法に関しては種々の報告がな
されているが、一般に硬質炭素膜は基材との密着性が悪
いため、これを被覆した摺動部品は実用化に至ったもの
が少ない現状である。The hard carbon film, which is also called diamond-like carbon or i-carbon, is an amorphous carbon film having characteristics similar to diamond. Particularly high hardness (Vickers hardness of 5000-800
0), a material having a small friction coefficient when sliding. Although various reports have been made on the method of forming such an amorphous hard carbon film, since the hard carbon film generally has poor adhesion to the substrate, sliding parts coated with this have not been put to practical use. The situation is that there are few things.
【0006】そこで、基材との密着性を改善するため、
例えば特開昭63−9543号公報や特開昭63−95
55号公報などに開示されるごとく、シリコン、ゲルマ
ニウム、チタン、クロムのような金属中間層を導入する
試みがなされている。しかしながら、このような方法で
は金属系統の基材に対しては密着強度が幾分向上するも
ののセラミック系の基材に対しては密着強度の改善向上
が不十分であり、又非晶質の硬質炭素膜との密着強度も
十分とは言えず、優れた摺動特性の被覆セラミック部材
を提供することはできなかった。Therefore, in order to improve the adhesion to the substrate,
For example, JP-A-63-9543 and JP-A-63-95
As disclosed in Japanese Patent Publication No. 55, etc., attempts have been made to introduce a metal intermediate layer such as silicon, germanium, titanium and chromium. However, in such a method, although the adhesion strength to the metal-based substrate is somewhat improved, the improvement of the adhesion strength to the ceramic-based substrate is insufficient and the amorphous hard Adhesion strength with the carbon film was not sufficient, and a coated ceramic member having excellent sliding characteristics could not be provided.
【0007】[0007]
【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、被覆層として高硬度で摩擦係数の小さい非
晶質の硬質炭素膜を使用し、この被覆層とセラミック基
材との中間層の材質並びに成膜方法を最適化することに
より、耐摩耗性や摺動特性に優れた被覆セラミック部材
及びその製造方法を提供することを目的とする。In view of the above-mentioned conventional circumstances, the present invention uses an amorphous hard carbon film having a high hardness and a small friction coefficient as a coating layer, and the intermediate layer between the coating layer and the ceramic substrate is used. An object of the present invention is to provide a coated ceramic member having excellent wear resistance and sliding characteristics by optimizing the material of the layer and the film forming method, and a method for manufacturing the same.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、本発明の被覆セラミック部材においては、セラミッ
ク基材と、セラミック基材の表面上に直接設けられた膜
厚50〜5000Åの非晶質のシリコン中間層と、シリ
コン中間層の上に設けられた1000Å〜3μmの非晶
質の硬質炭素膜とからなることを特徴とする。In order to achieve the above object, in the coated ceramic member of the present invention, a ceramic base material and an amorphous material having a film thickness of 50 to 5000 Å provided directly on the surface of the ceramic base material. And an amorphous hard carbon film of 1000 Å to 3 μm provided on the silicon intermediate layer.
【0009】又、本発明の被覆セラミック部材の製造方
法は、セラミック基材の表面上にイオン注入蒸着法によ
り膜厚50〜5000Åの非晶質のシリコン中間層を形
成し、次にこのシリコン中間層の上にPVD法又はプラ
ズマCVD法により1000Å〜3μmの非晶質の硬質
炭素膜を形成することを特徴とする。Further, in the method for producing a coated ceramic member of the present invention, an amorphous silicon intermediate layer having a film thickness of 50 to 5000 Å is formed on the surface of a ceramic substrate by an ion implantation vapor deposition method, and then the silicon intermediate layer is formed. It is characterized in that an amorphous hard carbon film of 1000 Å to 3 μm is formed on the layer by PVD method or plasma CVD method.
【0010】[0010]
【作用】従来からシリコンの中間層に関する提案はある
が、その結晶構造については全く報告されておらず、一
般的な成膜方法であるスパッタリング法やイオンプレー
ティング法等のPVD法で形成したシリコン膜の結晶構
造は結晶質となるので、従来も結晶質のシリコン中間層
を使用していた。本発明者らの研究によれば、結晶質の
シリコン中間層とその上層に設けた非晶質の硬質炭素膜
とでは格子定数などのミスマッチが大きく、そのため両
者の間の密着性の向上に限界が存在することが判明し
た。Although there has been a proposal for a silicon intermediate layer, the crystal structure thereof has not been reported at all, and silicon formed by a PVD method such as a sputtering method or an ion plating method, which is a general film forming method. Since the crystalline structure of the film is crystalline, a crystalline silicon intermediate layer has been used in the past. According to the research conducted by the present inventors, there is a large mismatch such as a lattice constant between the crystalline silicon intermediate layer and the amorphous hard carbon film provided on the crystalline silicon intermediate layer, so that there is a limit in improving the adhesion between the two. Was found to exist.
【0011】そこで本発明においては、セラミック基材
と非晶質硬質炭素膜との中間層として非晶質のシリコン
を採用し、結晶構造をマッチングさせることにより両者
間の密着性を向上させることが出来た。又、非晶質のシ
リコン中間層は、イオン注入蒸着法により成膜するた
め、セラミック基材との間でも密着性が極めて強い。Therefore, in the present invention, amorphous silicon is adopted as an intermediate layer between the ceramic substrate and the amorphous hard carbon film, and the crystal structure is matched to improve the adhesion between the two. done. Moreover, since the amorphous silicon intermediate layer is formed by the ion implantation vapor deposition method, the adhesion is extremely strong even with the ceramic substrate.
【0012】イオン注入蒸着法とは、中間層の材料であ
るシリコンを電子ビーム等により加熱蒸気化しておき、
イオン源で発生させたアルゴン等のイオンビームと共に
セラミック基材表面に加速して衝突させ、基材への注入
と同時に表面を被覆する方法である。この方法は、イオ
ン源の特性上、イオンの照射面積を大きくすることが難
しく量産性は低いが、セラミック基材に対しても極めて
密着性の良い非晶質シリコン中間層を形成できる大きな
利点がある。In the ion implantation vapor deposition method, silicon as a material for the intermediate layer is heated and vaporized by an electron beam or the like,
This is a method of accelerating and colliding with the surface of a ceramic base material together with an ion beam of argon or the like generated by an ion source so that the surface is coated simultaneously with the injection into the base material. This method is difficult to increase the irradiation area of ions due to the characteristics of the ion source and has low mass productivity, but has a great advantage that an amorphous silicon intermediate layer having excellent adhesion to a ceramic substrate can be formed. is there.
【0013】非晶質のシリコン中間層の膜厚を50〜5
000Åの範囲とする理由は、膜厚が50Å未満ではセ
ラミック基材の表面全部を完全に被覆することが困難で
あり、5000Åを越えると厚膜になり過ぎて、被覆さ
れたセラミック基材の表面硬度が低下するからである。The thickness of the amorphous silicon intermediate layer is 50 to 5
The reason for setting the range of 000Å is that it is difficult to completely cover the entire surface of the ceramic substrate if the film thickness is less than 50Å, and if it exceeds 5000Å, the film becomes too thick and the surface of the coated ceramic substrate is This is because the hardness decreases.
【0014】一方、最外層となる非晶質の硬質炭素膜の
形成には、通常の蒸着法やイオンプレーティング法等の
PVD法か、プラズマの励起に高周波やマイクロ波等を
利用した各種のプラズマCVD法を使用する。非晶質の
硬質炭素膜は熱安定性に乏しく400℃以上では結晶構
造が変化しやすいため、成膜温度が高い熱フィラメント
CVD法等の方法は不適当であり、低温での成膜が可能
なプラズマCVD法又はPVD法を採用する必要があ
る。尚、つきまわり性の高いプラズマCVD法は複雑形
状の基材表面への成膜に適しており、PVD法はつきま
わり性はやや悪いものの、平面状の基材表面にはプラズ
マCVD法よりも生産性良く成膜できるので、セラミッ
ク基材の形状に応じて使い分けることが好ましい。On the other hand, the amorphous hard carbon film as the outermost layer is formed by a PVD method such as an ordinary vapor deposition method or an ion plating method, or various kinds of plasma utilizing high frequency or microwave. A plasma CVD method is used. Amorphous hard carbon film has poor thermal stability and its crystal structure is likely to change at 400 ° C or higher. Therefore, the method such as hot filament CVD method, which has high film formation temperature, is not suitable, and film formation at low temperature is possible. It is necessary to adopt a simple plasma CVD method or PVD method. The plasma CVD method, which has a high throwing power, is suitable for forming a film on the surface of a substrate having a complicated shape. The PVD method has a slightly poor throwing power, but a flat substrate surface has a better throwing power than the plasma CVD method. Since it is possible to form a film with good productivity, it is preferable to use the film properly according to the shape of the ceramic substrate.
【0015】非晶質の硬質炭素膜の膜厚を1000Å
(0.1μm)〜3μm(30000Å)の範囲とする
理由は、1000Å未満では膜厚が薄すぎて被覆による
耐摩耗性及び耐摺動特性の向上効果が顕著に現れず、3
μmを越えると膜の内部応力が大きくなり、使用条件に
よっては膜剥離が発生するからである。又、生産性の上
からも、不必要に厚膜化することは好ましくない。The thickness of the amorphous hard carbon film is 1000Å
The reason for setting it in the range of (0.1 μm) to 3 μm (30000Å) is that the film thickness is too thin when the thickness is less than 1000 Å and the effect of improving wear resistance and sliding resistance due to coating does not appear significantly.
This is because if the thickness exceeds μm, the internal stress of the film becomes large, and film peeling may occur depending on the usage conditions. Also, in terms of productivity, it is not preferable to unnecessarily increase the film thickness.
【0016】[0016]
【実施例1】イオン注入蒸着法により、蒸発させた金属
シリコンをアルゴンのイオンビームと共に加速電圧20
eVにて、下記表1に示す種々の膜厚の非晶質シリコン
中間層をアルミナ基材表面に成膜した。次に、13.5
6MHzの高周波プラズマCVD法により、メタンガス
を原料ガスとして成膜温度250℃にて、上記非晶質シ
リコン中間層の上に表1に示す種々の膜厚の非晶質硬質
炭素膜を形成した。Example 1 Evaporating metallic silicon by an ion implantation vapor deposition method together with an ion beam of argon and accelerating voltage 20
An amorphous silicon intermediate layer having various thicknesses shown in Table 1 below was formed on the surface of the alumina substrate by eV. Next, 13.5
Amorphous hard carbon films of various thicknesses shown in Table 1 were formed on the amorphous silicon intermediate layer at a film forming temperature of 250 ° C. using methane gas as a source gas by a high frequency plasma CVD method of 6 MHz.
【0017】得られた各試料を用いて、アルミナボール
との摺動試験をボールオンディスク法により、摺動速度
20m/min、押し付け荷重50g、摺動時間最大5
00時間の条件にて実施し、各試料の摺動特性を調査し
た結果を表1に示した。又、結晶質のシリコン中間層を
用いた以外は上記と同様に構成した比較例の試料につい
ても、同様に試験して結果を表1に併せて示した。Using each of the obtained samples, a sliding test with an alumina ball was carried out by a ball-on-disk method at a sliding speed of 20 m / min, a pressing load of 50 g, and a sliding time of 5 at maximum.
Table 1 shows the results of examining the sliding characteristics of each sample, which was carried out under the condition of 00 hours. Further, a sample of a comparative example having the same structure as above except that a crystalline silicon intermediate layer was used was also tested in the same manner, and the results are also shown in Table 1.
【0018】[0018]
【表1】 Si中間層 硬質C膜 摺 動 試 験 結 果 試料 膜厚(Å) 膜厚(μm) 摩擦係数 摺動時間(hr) 1* 30 0.05 0.4 22 2* 50 0.05 0.02 250 3 50 0.1 0.01 >500 4 100 0.2 <0.01 >500 5 300 0.3 <0.01 >500 6 500 0.1 <0.01 >500 7 500 0.5 <0.01 >500 8 500 1.0 <0.01 >500 9 500 2.0 <0.01 >500 10 500 3.0 <0.01 >500 11* 500 3.5 <0.01 125 12 2000 1.0 <0.01 >500 13 2500 2.0 <0.01 >500 14 4000 1.5 <0.01 >500 15 4500 3.0 <0.01 >500 16 5000 3.0 <0.01 >500 17* 5000 3.5 <0.01 210 18* 5500 3.0 <0.01 240 19* 3000 2.0 <0.01 120 20* 4000 1.5 <0.01 140 (注)*を付した試料は比較例であり、その内の試料1
9及び20はSi中間層が結晶質の比較例である。TABLE 1 Si intermediate layer hard C film sliding Test results Sample thickness (Å) thickness ([mu] m) Friction coefficient sliding time (hr) 1 * 30 0.05 0.4 22 2 * 50 0.05 0.02 250 3 50 0.1 0.01> 500 4 100 0.2 <0.01> 500 5 300 0.3 <0.01> 500 6 500 0.1 <0.01> 500 7 500 0.5 <0.01> 500 8 500 1.0 <0.01> 500 9 500 2.0 <0.01> 500 10 500 3.0 <0.01 > 500 11 * 500 3.5 <0.01 125 12 2000 1.0 <0.01> 500 13 2500 2.0 <0.01> 500 14 4000 1.5 <0.01> 500 15 4500 3.0 <0.01> 500 16 5000 3.0 <0.01> 500 17 * 5000 3.5 <0.01 210 18 * 5500 3.0 <0.01 240 19 * 3000 2.0 <0.01 120 20 * 4000 1.5 <0.01 140 (Note) The sample marked with * is a comparative example, of which sample 1
9 and 20 are comparative examples in which the Si intermediate layer is crystalline.
【0019】[0019]
【実施例2】アルミナ基材表面に形成するシリコン中間
層を、実施例1と同様にイオン注入蒸着法を用いて非晶
質に形成したほか、従来と同様にイオンプレーティング
法又はスパッタリング法を用いて結晶質に形成した。
又、最外層の非晶質硬質炭素膜はプラズマCVD法、イ
オンプレーティング法、スパッタリング法のいずれかの
方法により通常の条件で形成した。[Example 2] The silicon intermediate layer formed on the surface of the alumina substrate was made amorphous by the ion implantation vapor deposition method as in Example 1, and the ion plating method or the sputtering method was used as in the conventional method. Used to form crystalline.
The outermost amorphous hard carbon film was formed under ordinary conditions by any one of plasma CVD method, ion plating method and sputtering method.
【0020】得られた表2に示す各試料について、シリ
コン中間層の結晶構造が非晶質硬質炭素膜の密着性に及
ぼす影響をスクラッチテスターを用いて、アコーステイ
ックエミッション法にて調査し、臨界荷重(N)を密着
力として表2に示した。With respect to each of the obtained samples shown in Table 2, the influence of the crystal structure of the silicon intermediate layer on the adhesion of the amorphous hard carbon film was investigated by an acoustic emission method using a scratch tester, and the critical load was examined. Table 2 shows (N) as adhesion.
【0021】[0021]
【表2】 シ リ コ ン 中 間 層 非晶質硬質炭素膜 密 着 力試料 膜厚(Å) 結晶構造 成膜法 膜厚(Å) 成膜法 臨界荷重(N) 21* 30 非晶質 IVD 0.05 IP 10 22* 30 非晶質 IVD 0.1 IP 15 23 50 非晶質 IVD 0.1 IP 36 24* 50 結晶質 IP 0.1 IP 16 25 100 非晶質 IVD 0.3 PCVD 42 26 200 非晶質 IVD 1.0 PCVD 45 27 300 非晶質 IVD 0.5 SP 48 28 500 非晶質 IVD 1.5 SP 44 29 500 非晶質 IVD 1.0 SP 45 30* 1000 結晶質 SP 2.0 PCVD 18 31 1000 非晶質 IVD 2.0 PCVD 48 32 3000 非晶質 IVD 3.0 PCVD 51 33 4000 非晶質 IVD 2.5 PCVD 47 34 4500 非晶質 IVD 3.0 PCVD 53 35* 4500 非晶質 IVD 3.5 PCVD 26 36* 5500 非晶質 IVD 3.0 PCVD 28 37* 5500 非晶質 IVD 4.0 PCVD 19 38* 5000 非晶質 IVD 5.0 PCVD 8 (注)*を付した試料は比較例である。 IVD:イオン注入蒸着法 IP:イオンプレーティング法 SP:スパッタリング法 PCVD:プラズマCVD法TABLE 2 Shi Li co down during layer amorphous hard carbon film tight adhesion force sample thickness (Å) crystal structure film formation method thickness (Å) film forming method critical load (N) 21 * 30 amorphous IVD 0.05 IP 10 22 * 30 Amorphous IVD 0.1 IP 15 23 50 Amorphous IVD 0.1 IP 36 24 * 50 Crystalline IP 0.1 IP 16 25 100 Amorphous IVD 0.3 PCVD 42 26 200 Amorphous IVD 1.0 PCVD 45 27 300 Amorphous IVD 0.5 SP 48 28 500 Amorphous IVD 1.5 SP 44 29 500 Amorphous IVD 1.0 SP 45 30 * 1000 Crystalline SP 2.0 PCVD 18 31 1000 Amorphous IVD 2.0 PCVD 48 32 3000 Amorphous IVD 3.0 PCVD 51 33 4000 Amorphous IVD 2.5 PCVD 47 34 4500 Amorphous IVD 3.0 PCVD 53 35 * 4500 Amorphous IVD 3.5 PCVD 26 36 * 5500 Amorphous IVD 3.0 PCVD 28 37 * 5500 Amorphous IVD 4.0 PCVD 19 38 * 5000 Amorphous IVD 5.0 PCVD 8 (Note) * Fee is a comparative example. IVD: Ion implantation evaporation method IP: Ion plating method SP: Sputtering method PCVD: Plasma CVD method
【0022】[0022]
【発明の効果】本発明によれば、セラミック基材の被覆
層として高硬度で摩擦係数の小さい非晶質の硬質炭素膜
を使用しており、この被覆層とセラミック基材との中間
層として非晶質のシリコンを最適な膜厚若しくは成膜方
法により形成してあるので、電子機器や機械部品の無潤
滑状態で高速摺動する部分として好適な、耐摩耗性や摺
動特性に優れた被覆セラミック部材を提供することが出
来る。According to the present invention, an amorphous hard carbon film having a high hardness and a small friction coefficient is used as a coating layer for a ceramic substrate, and as an intermediate layer between the coating layer and the ceramic substrate. Amorphous silicon is formed by the optimum film thickness or film formation method, so it is suitable for parts that slide at high speed without lubrication in electronic devices and mechanical parts, and has excellent wear resistance and sliding characteristics. A coated ceramic member can be provided.
Claims (2)
面上に直接設けられた膜厚50〜5000Åの非晶質の
シリコン中間層と、シリコン中間層の上に設けられた膜
厚1000Å〜3μmの非晶質の硬質炭素膜とからなる
ことを特徴とする被覆セラミック部材。1. A ceramic base material, an amorphous silicon intermediate layer having a film thickness of 50 to 5000 Å directly provided on the surface of the ceramic base material, and a film thickness 1000 Å to 3 μm provided on the silicon intermediate layer. And a hard carbon film which is amorphous.
着法により膜厚50〜5000Åの非晶質のシリコン中
間層を形成し、次にこのシリコン中間層の上にPVD法
又はプラズマCVD法により膜厚1000Å〜3μmの
非晶質の硬質炭素膜を形成することを特徴とする被覆セ
ラミック部材の製造方法。2. An amorphous silicon intermediate layer having a film thickness of 50 to 5000 Å is formed on the surface of a ceramic substrate by an ion implantation vapor deposition method, and then a PVD method or a plasma CVD method is applied on the silicon intermediate layer. A method for producing a coated ceramic member, which comprises forming an amorphous hard carbon film having a film thickness of 1000Å to 3 µm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02205792A JP3189353B2 (en) | 1992-01-10 | 1992-01-10 | Coated ceramic member and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02205792A JP3189353B2 (en) | 1992-01-10 | 1992-01-10 | Coated ceramic member and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05186287A true JPH05186287A (en) | 1993-07-27 |
JP3189353B2 JP3189353B2 (en) | 2001-07-16 |
Family
ID=12072287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02205792A Expired - Lifetime JP3189353B2 (en) | 1992-01-10 | 1992-01-10 | Coated ceramic member and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3189353B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2000560A1 (en) | 1999-07-08 | 2008-12-10 | Sumitomo Electric Industries, Ltd | Hard coating and coated member |
-
1992
- 1992-01-10 JP JP02205792A patent/JP3189353B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2000560A1 (en) | 1999-07-08 | 2008-12-10 | Sumitomo Electric Industries, Ltd | Hard coating and coated member |
Also Published As
Publication number | Publication date |
---|---|
JP3189353B2 (en) | 2001-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3737291B2 (en) | Diamond-like carbon hard multilayer film molded body | |
US7416786B2 (en) | Amorphous carbon film, process for producing the same and amorphous carbon film-coated material | |
Hoffman et al. | Internal stresses in sputtered chromium | |
US5309874A (en) | Powertrain component with adherent amorphous or nanocrystalline ceramic coating system | |
US6562445B2 (en) | Diamond-like carbon hard multilayer film and component excellent in wear resistance and sliding performance | |
US8202615B2 (en) | Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member | |
US11293548B2 (en) | Sliding member and coating film | |
US20090169845A1 (en) | Structural material of diamond like carbon composite layers and method of manufacturing the same | |
JPH0578821A (en) | Piston ring and its manufacture | |
JP2002322555A (en) | Diamond-like carbon multilayered film | |
JP2002053946A (en) | Hard film and wear resistant member, and manufacturing method thereof | |
JP4139102B2 (en) | Diamond-like carbon hard multilayer film molded body and method for producing the same | |
JP2004169137A (en) | Sliding member | |
JP2008069372A (en) | Member with hard carbon film | |
CN109402564A (en) | A kind of AlCrSiN and AlCrSiON double-layer nanometer composite coating and preparation method thereof | |
EP3877568A1 (en) | Temperature resistant carbon coatings | |
JP4360082B2 (en) | Method for producing amorphous carbon coating and sliding part with amorphous carbon coating | |
JP5077293B2 (en) | Method for producing amorphous carbon coating and sliding part with amorphous carbon coating | |
CN115161607B (en) | Rare earth doped high-entropy alloy nitride coating and preparation method thereof | |
JPH10237627A (en) | Hard carbon coating-coated member | |
JP2711962B2 (en) | Piston ring and method of manufacturing the same | |
RU2759458C1 (en) | Method for obtaining a multilayer thermodynamically stable wear-resistant coating (options) | |
WO2022073631A1 (en) | Hard carbon coatings with improved adhesion strength by means of hipims and method thereof | |
JP3189353B2 (en) | Coated ceramic member and method of manufacturing the same | |
JP2004204311A (en) | Sliding member coated with cr carbide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090518 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090518 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100518 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110518 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110518 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120518 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120518 Year of fee payment: 11 |