JPH05172562A - 姿勢センサ装置 - Google Patents
姿勢センサ装置Info
- Publication number
- JPH05172562A JPH05172562A JP3356189A JP35618991A JPH05172562A JP H05172562 A JPH05172562 A JP H05172562A JP 3356189 A JP3356189 A JP 3356189A JP 35618991 A JP35618991 A JP 35618991A JP H05172562 A JPH05172562 A JP H05172562A
- Authority
- JP
- Japan
- Prior art keywords
- scanning mirror
- angle
- attitude
- earth
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/78—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
- G01S3/782—Systems for determining direction or deviation from predetermined direction
- G01S3/785—Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
- G01S3/786—Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
- G01S3/7867—Star trackers
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Navigation (AREA)
Abstract
(57)【要約】
【目的】 遠距離での宇宙飛翔体のロール及びピッチの
姿勢角の計測を有効になし得る姿勢センサ装置を提供す
ること。 【構成】 走査鏡と該走査鏡でとらえた信号を検出する
2個の検出器11,12とを有し、地球又は惑星及びそ
の大気から放射される赤外線を入力として、宇宙飛翔体
のロール姿勢角又はピッチ姿勢角を検出する姿勢センサ
装置において、走査鏡に入力される赤外線の入射光路を
一定角度だけ曲げるための光学プリズム2を走査鏡10
の前面に装備したこと。
姿勢角の計測を有効になし得る姿勢センサ装置を提供す
ること。 【構成】 走査鏡と該走査鏡でとらえた信号を検出する
2個の検出器11,12とを有し、地球又は惑星及びそ
の大気から放射される赤外線を入力として、宇宙飛翔体
のロール姿勢角又はピッチ姿勢角を検出する姿勢センサ
装置において、走査鏡に入力される赤外線の入射光路を
一定角度だけ曲げるための光学プリズム2を走査鏡10
の前面に装備したこと。
Description
【0001】
【産業上の利用分野】本発明は、宇宙飛翔体の地球又は
惑星に対する姿勢を検出する姿勢センサ装置に関する。
惑星に対する姿勢を検出する姿勢センサ装置に関する。
【0002】
【従来の技術】従来の姿勢センサ、例えば、静止三軸衛
星用地球センサは、図3に示すように衛星がゼロ姿勢角
の状態で、地球の南・北緯27°又は45°線上の赤外
線を検出するため東西に走査する機能としての走査鏡1
0と、赤道上を基準として2個の赤外線検出素子を「±
3.82°又は±6.07°」に傾けて取り付けた赤外
線検出器12,13と、信号処理回路及び電源などを有
している(例えば、NEC Research and
Development No.97,pp35−4
2,April 1990)。
星用地球センサは、図3に示すように衛星がゼロ姿勢角
の状態で、地球の南・北緯27°又は45°線上の赤外
線を検出するため東西に走査する機能としての走査鏡1
0と、赤道上を基準として2個の赤外線検出素子を「±
3.82°又は±6.07°」に傾けて取り付けた赤外
線検出器12,13と、信号処理回路及び電源などを有
している(例えば、NEC Research and
Development No.97,pp35−4
2,April 1990)。
【0003】次に、この姿勢センサの誤差角検出ロジッ
クについて図3を用いて説明する。
クについて図3を用いて説明する。
【0004】走査鏡が一定周波数で且つ一定振幅で「宇
宙→地球→宇宙」「宇宙→地球→宇宙」と往復振動する
時、検出器12,13の受光形状及び光学特性で決まる
センサの瞬時視野(IFOVという)は、±3.82°
(又は±6.07゜)離れた同一緯度線上を東西に往復
振動する。それらを、「北側スキャン」「南側スキャ
ン」と定義すると、「宇宙→地球→宇宙」と瞬時視野が
動く時、各々宇宙と地球との赤外線量の差で、2カ所往
復で4カ所の地(水)平線位置を検出する。従って、
「北側スキャン」「南側スキャン」から、図3に示すよ
うな2つの地球コード幅(CWN,CWS)が得られる。
宙→地球→宇宙」「宇宙→地球→宇宙」と往復振動する
時、検出器12,13の受光形状及び光学特性で決まる
センサの瞬時視野(IFOVという)は、±3.82°
(又は±6.07゜)離れた同一緯度線上を東西に往復
振動する。それらを、「北側スキャン」「南側スキャ
ン」と定義すると、「宇宙→地球→宇宙」と瞬時視野が
動く時、各々宇宙と地球との赤外線量の差で、2カ所往
復で4カ所の地(水)平線位置を検出する。従って、
「北側スキャン」「南側スキャン」から、図3に示すよ
うな2つの地球コード幅(CWN,CWS)が得られる。
【0005】一方、走査鏡10の中心を衛星のピッチ角
中心基準に選び、西側地(水)平線から走査鏡10の中
心位置までの角度距離をa,走査鏡中心から東側地
(水)平線までの角度距離をbとして、これらの角度を
走査鏡10と共に一緒に動く角度エンコーダで計測する
ことによって、衛星の地球中心に対するロール姿勢角及
びピッチ姿勢角は、以下の計測論理式によって計測でき
る。
中心基準に選び、西側地(水)平線から走査鏡10の中
心位置までの角度距離をa,走査鏡中心から東側地
(水)平線までの角度距離をbとして、これらの角度を
走査鏡10と共に一緒に動く角度エンコーダで計測する
ことによって、衛星の地球中心に対するロール姿勢角及
びピッチ姿勢角は、以下の計測論理式によって計測でき
る。
【0006】「△θR(ロール姿勢角)=KR(定数)・
(CWS−CWN)」,「△θP(ピッチ姿勢角)=K
P(定数)・(a−b)」
(CWS−CWN)」,「△θP(ピッチ姿勢角)=K
P(定数)・(a−b)」
【0007】
【発明が解決しようとする課題】この従来の姿勢センサ
では、2個の赤外線検出器の赤道面に対する傾き角(キ
ャント角という)が、「±3.82°又は±6.07
°」と固定されているため、衛星高度が極めて高くなる
と、例えばキャント角が「±3.82°」の場合、地球
ディスクの大きさが約4°の半径(高度約85000k
m)以下に小さくなると、ゼロ姿勢角状態で、北側スキ
ャン南側スキャン共に地球ディスクの外側を走査するこ
とになり、センサの出力としてロール姿勢角が原理的に
得られなくなるという欠点があった。
では、2個の赤外線検出器の赤道面に対する傾き角(キ
ャント角という)が、「±3.82°又は±6.07
°」と固定されているため、衛星高度が極めて高くなる
と、例えばキャント角が「±3.82°」の場合、地球
ディスクの大きさが約4°の半径(高度約85000k
m)以下に小さくなると、ゼロ姿勢角状態で、北側スキ
ャン南側スキャン共に地球ディスクの外側を走査するこ
とになり、センサの出力としてロール姿勢角が原理的に
得られなくなるという欠点があった。
【0008】
【発明の目的】本発明は、かかる従来例の有する不都合
を改善し、とくに遠距離での宇宙飛翔体のロール及びピ
ッチの姿勢角の計測を有効になし得る姿勢センサ装置を
提供することを、その目的とする。
を改善し、とくに遠距離での宇宙飛翔体のロール及びピ
ッチの姿勢角の計測を有効になし得る姿勢センサ装置を
提供することを、その目的とする。
【0009】
【課題を解決するための手段】本発明では、軌道高度が
高くなって地球(又は惑星)の大きさが小さくなった時
でも、地球(又は惑星)から放射される赤外線をセンサ
に入力することができように、光路を一定角度曲げる効
果を有する光学プリズムをセンサの開口部に備えてい
る、という構成を採っている。これによって前述した目
的を達成しようとするものである。
高くなって地球(又は惑星)の大きさが小さくなった時
でも、地球(又は惑星)から放射される赤外線をセンサ
に入力することができように、光路を一定角度曲げる効
果を有する光学プリズムをセンサの開口部に備えてい
る、という構成を採っている。これによって前述した目
的を達成しようとするものである。
【0010】
【実施例】以下本発明の一実施例を図1ないし図2に基
づいて説明する。ここで、前述した従来例と同一の構成
部材については同一の符号を用いるものとする。この図
1ないし図2に示すに示す姿勢センサ装置は、走査鏡1
0と該走査鏡10でとらえた信号を検出する2個の検出
器11,12とを有し、地球又は惑星及びその大気から
放射される赤外線を入力として、宇宙飛翔体のロール姿
勢角又はピッチ姿勢角を検出し得るようになっている。
そして、走査鏡10に入力される赤外線の入射光路を一
定角度だけ曲げるための光学プリズム2が走査鏡10の
前面に装備されている。
づいて説明する。ここで、前述した従来例と同一の構成
部材については同一の符号を用いるものとする。この図
1ないし図2に示すに示す姿勢センサ装置は、走査鏡1
0と該走査鏡10でとらえた信号を検出する2個の検出
器11,12とを有し、地球又は惑星及びその大気から
放射される赤外線を入力として、宇宙飛翔体のロール姿
勢角又はピッチ姿勢角を検出し得るようになっている。
そして、走査鏡10に入力される赤外線の入射光路を一
定角度だけ曲げるための光学プリズム2が走査鏡10の
前面に装備されている。
【0011】これを更に詳述すると、図2は、本発明の
一実施例である姿勢センサの外観図を示す。この図2に
おいて符号1が従来のミラー振動型地球センサであり、
符号2が光学プリズムである。ここで、図3に、従来の
ミラー振動型地球センサの静止高度(35786km)
での赤外線入力とセンサの検出器11,12の関係を示
す。この図3にあって、キャント角は、±3.82°あ
るいは±6.07°の地球センサが知られている。図4
は、衛星高度が高くなり地球ディスクの大きさが小さく
なって、センサの瞬時視野が地球ディスクの外に出てし
まって、ロール角が計測不能の状態を示す。
一実施例である姿勢センサの外観図を示す。この図2に
おいて符号1が従来のミラー振動型地球センサであり、
符号2が光学プリズムである。ここで、図3に、従来の
ミラー振動型地球センサの静止高度(35786km)
での赤外線入力とセンサの検出器11,12の関係を示
す。この図3にあって、キャント角は、±3.82°あ
るいは±6.07°の地球センサが知られている。図4
は、衛星高度が高くなり地球ディスクの大きさが小さく
なって、センサの瞬時視野が地球ディスクの外に出てし
まって、ロール角が計測不能の状態を示す。
【0012】これに対し、図2は、センサの開口部に頂
角δ°の光学プリズム2を設けた時の地球(又は惑星)
からの赤外線入力とキャント角の関係を示す。例えば衛
星高度が15万[km]の時、衛星から見た地球ディス
クの大きさは、半径が2.3°となり、明らかにキャン
ト角が±3.82°のセンサでさえ、図4の走査状態と
なり地球中心に対する衛星のロール姿勢角を計測できな
い。
角δ°の光学プリズム2を設けた時の地球(又は惑星)
からの赤外線入力とキャント角の関係を示す。例えば衛
星高度が15万[km]の時、衛星から見た地球ディス
クの大きさは、半径が2.3°となり、明らかにキャン
ト角が±3.82°のセンサでさえ、図4の走査状態と
なり地球中心に対する衛星のロール姿勢角を計測できな
い。
【0013】しかし、センサ開口部に頂角δ,屈折率n
の光学プリズム2を図2のように設置した場合、光線は
「ε≒(n−1)δ」だけ曲げられる事になる。
の光学プリズム2を図2のように設置した場合、光線は
「ε≒(n−1)δ」だけ曲げられる事になる。
【0014】この場合、地球(又は惑星)の南・北緯4
5°線上を走査させたい場合、センサキャント角を6.
07°とすれば、「ε=6.07°−1.15°≒4.
9°」となり、光線を曲げる必要がある。従って、光学
プリズム2としてGeを用いると、屈折率が4.00で
あることから、頂角δは、「δ=4.09°/(4−
1)≒1.64°」となる。
5°線上を走査させたい場合、センサキャント角を6.
07°とすれば、「ε=6.07°−1.15°≒4.
9°」となり、光線を曲げる必要がある。従って、光学
プリズム2としてGeを用いると、屈折率が4.00で
あることから、頂角δは、「δ=4.09°/(4−
1)≒1.64°」となる。
【0015】このように、軌道高度が高くなった場合で
も、高度に対応した頂角δ,屈折率nの光学プリズムを
用いることによって従来のセンサを何ら変更することな
く、姿勢センサとして使用することが可能となる。
も、高度に対応した頂角δ,屈折率nの光学プリズムを
用いることによって従来のセンサを何ら変更することな
く、姿勢センサとして使用することが可能となる。
【0016】
【発明の効果】以上説明したように、本発明によると、
2個の赤外線検出器のキャント角(開き角)を光学プリ
ズムによって実効上、任意の高い軌道高度から見た時の
南・北緯27°線上又は45°線上を走査する姿勢セン
サとして使用することができ、従来の姿勢センサをその
まま使用し、開口部分に軌道高度に対応して決められる
適当な頂角をもつ光学プリズムを付加するだけで、高い
軌道高度での姿勢検出を可能にするという従来にない優
れた姿勢センサ装置を提供することができる。
2個の赤外線検出器のキャント角(開き角)を光学プリ
ズムによって実効上、任意の高い軌道高度から見た時の
南・北緯27°線上又は45°線上を走査する姿勢セン
サとして使用することができ、従来の姿勢センサをその
まま使用し、開口部分に軌道高度に対応して決められる
適当な頂角をもつ光学プリズムを付加するだけで、高い
軌道高度での姿勢検出を可能にするという従来にない優
れた姿勢センサ装置を提供することができる。
【図1】本発明の一実施例を示す説明図
【図2】図1に示す実施例の外観図
【図3】従来のミラー振動型地球センサの計測原理図
【図4】高い軌道高度での地球(又は惑星)ディスクと
赤外線入力の関係を示す説明図である。
赤外線入力の関係を示す説明図である。
1 従来のミラー振動型地球センサ 2 光学プリズム 10 走査鏡 11,12 検出器
Claims (1)
- 【請求項1】 走査鏡と該走査鏡でとらえた信号を検出
する2個の検出器とを有し、地球又は惑星及びその大気
から放射される赤外線を入力として、宇宙飛翔体のロー
ル姿勢角又はピッチ姿勢角を検出する姿勢センサ装置に
おいて、前記走査鏡に入力される赤外線の入射光路を一
定角度だけ曲げるための光学プリズムを前記走査鏡の前
面に装備したことを特徴とする姿勢センサ装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3356189A JPH05172562A (ja) | 1991-12-24 | 1991-12-24 | 姿勢センサ装置 |
US07/994,716 US5337241A (en) | 1991-12-24 | 1992-12-22 | Spacecraft attitude sensor having an optical apparatus for increasing applications thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3356189A JPH05172562A (ja) | 1991-12-24 | 1991-12-24 | 姿勢センサ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05172562A true JPH05172562A (ja) | 1993-07-09 |
Family
ID=18447781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3356189A Pending JPH05172562A (ja) | 1991-12-24 | 1991-12-24 | 姿勢センサ装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US5337241A (ja) |
JP (1) | JPH05172562A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102927983A (zh) * | 2012-10-31 | 2013-02-13 | 北京控制工程研究所 | 一种geo卫星俯仰偏置下地球敏感器探头保护方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5452077A (en) * | 1993-12-09 | 1995-09-19 | Hughes Aircraft Company | Transient-free method of determining satellite attitude |
US6108593A (en) * | 1997-07-09 | 2000-08-22 | Hughes Electronics Corporation | Method and apparatus for estimating attitude sensor bias in a satellite |
US6026337A (en) * | 1997-09-12 | 2000-02-15 | Lockheed Martin Corporation | Microbolometer earth sensor assembly |
EP1950540A1 (en) * | 2007-01-23 | 2008-07-30 | Oerlikon Space AG | Method and apparatus to determine a planet vector |
US20110004405A1 (en) * | 2009-07-01 | 2011-01-06 | Optical Physics Company Inc. | Earth horizon sensor |
CN102679945B (zh) * | 2012-06-05 | 2014-03-05 | 哈尔滨工业大学 | 基于三点反射合作的卫星指向与姿态测量方法与装置 |
US10009101B2 (en) | 2015-03-17 | 2018-06-26 | The Boeing Company | Laser communications following an atmospheric event |
US10313010B2 (en) * | 2015-03-17 | 2019-06-04 | The Boeing Company | Laser communications in super-geosynchronous earth orbit |
RU2650730C1 (ru) * | 2016-07-11 | 2018-04-17 | Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" | Устройство для автономного определения навигационных параметров и параметров ориентации пилотируемого космического корабля |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6280200A (ja) * | 1985-10-03 | 1987-04-13 | 日本電気株式会社 | スキヤン型地球センサ |
JPH03277918A (ja) * | 1990-03-28 | 1991-12-09 | Nec Corp | 突抜走査型地球センサ |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3020407A (en) * | 1959-11-12 | 1962-02-06 | Barnes Eng Co | Horizon sensor |
US3118063A (en) * | 1960-10-19 | 1964-01-14 | Barnes Eng Co | Horizon sensors selectively responsive to a gaseous atmospheric component |
US3576999A (en) * | 1965-01-16 | 1971-05-04 | Bendix Corp | Method and apparatus for determining the orientation of an object relative to an elliptic object |
US3419321A (en) * | 1966-02-24 | 1968-12-31 | Lear Siegler Inc | Laser optical apparatus for cutting holes |
US3418478A (en) * | 1966-08-29 | 1968-12-24 | Barnes Eng Co | Horizon sensor using two stationary fields of view separated by a fixed elevation angle which are alternately sampled |
US3793518A (en) * | 1972-03-17 | 1974-02-19 | Ithaco | Optical scanning system with a crossed scanning pattern |
US3909131A (en) * | 1974-02-12 | 1975-09-30 | United Technologies Corp | Surface gauging by remote image tracking |
US3986774A (en) * | 1975-05-08 | 1976-10-19 | United Technologies Corporation | Gauging surfaces by remotely tracking multiple images |
GB1544083A (en) * | 1975-07-21 | 1979-04-11 | Rca Corp | Precision closed loop roll and yaw control for momentum biased satellites in low inclination orbits |
US4494835A (en) * | 1982-07-30 | 1985-01-22 | The United States Of America As Represented By The Secretary Of The Navy | Polyconductor device for laser beam detection and protection |
US4628206A (en) * | 1984-08-27 | 1986-12-09 | Barnes Engineering Company | Visible-UV horizon sensor |
GB8616385D0 (en) * | 1986-07-04 | 1986-08-13 | Marconi Space Systems Ltd | Satellite attitude control |
US4792684A (en) * | 1987-03-26 | 1988-12-20 | Barnes Engineering Company | Dual field horizon scanner |
US5048774A (en) * | 1989-12-20 | 1991-09-17 | Barnes Engineering Co. | High-accuracy attitude sensor for spin stabilized satellite |
US5267015A (en) * | 1990-10-09 | 1993-11-30 | Nikon Corporation | Photometric apparatus |
-
1991
- 1991-12-24 JP JP3356189A patent/JPH05172562A/ja active Pending
-
1992
- 1992-12-22 US US07/994,716 patent/US5337241A/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6280200A (ja) * | 1985-10-03 | 1987-04-13 | 日本電気株式会社 | スキヤン型地球センサ |
JPH03277918A (ja) * | 1990-03-28 | 1991-12-09 | Nec Corp | 突抜走査型地球センサ |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102927983A (zh) * | 2012-10-31 | 2013-02-13 | 北京控制工程研究所 | 一种geo卫星俯仰偏置下地球敏感器探头保护方法 |
Also Published As
Publication number | Publication date |
---|---|
US5337241A (en) | 1994-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5914483A (en) | Sun sensor | |
US3328595A (en) | Dual beam optical gyroscope pickoff | |
JPH05172562A (ja) | 姿勢センサ装置 | |
US3277304A (en) | Photosensitive two-axis angle measuring device | |
US3478219A (en) | Optical prism with multiple photocells | |
US4827422A (en) | Fan scan horizon sensor for a spin stabilized satellite | |
JP2740920B2 (ja) | 走査による天体観測並びに宇宙航空機の角速度の測定のための方法、それを実行するための観測装置およびその観測装置を備えた宇宙航空機 | |
US3793518A (en) | Optical scanning system with a crossed scanning pattern | |
US4791297A (en) | Yaw sensing conical scanner horizon sensor | |
US4159419A (en) | Three axis stellar sensor | |
US3311748A (en) | Sun tracker with rotatable planeparallel plate and two photocells | |
US5257760A (en) | Scanning earth sensor using the sun's position for determining yaw | |
US4855588A (en) | Cylindrical wide field receiver element | |
US4118622A (en) | Cone optical system | |
US3383511A (en) | Horizon scanner with special reflector | |
US3443110A (en) | Scanner having rotating double-sided reflector | |
US5646723A (en) | Combined earth sensor | |
US5783827A (en) | Scanning earth horizon sensor | |
US4914287A (en) | Laser radiation protected horizon sensor with successive reststrahlen | |
US4582428A (en) | Non-retro angle of arrival meter | |
US3548211A (en) | Rotating radiation sensor | |
JPS61200099A (ja) | ミラ−スキヤン形二軸地球センサ | |
JP2910405B2 (ja) | 静止衛星用姿勢検出装置 | |
Jain et al. | Adaptation of GEO earth sensor for LEO application | |
JPS6363908A (ja) | 太陽センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19980414 |