[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05172076A - Multicylinder rotary compressor - Google Patents

Multicylinder rotary compressor

Info

Publication number
JPH05172076A
JPH05172076A JP10753292A JP10753292A JPH05172076A JP H05172076 A JPH05172076 A JP H05172076A JP 10753292 A JP10753292 A JP 10753292A JP 10753292 A JP10753292 A JP 10753292A JP H05172076 A JPH05172076 A JP H05172076A
Authority
JP
Japan
Prior art keywords
cylinder
control valve
compression element
rotary compressor
cylinder deactivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10753292A
Other languages
Japanese (ja)
Other versions
JP2803456B2 (en
Inventor
Yusuke Ogawa
雄介 小河
Katsuyuki Kawasaki
勝行 川▲さき▼
Hisashi Kanri
寿史 柬理
Tomoaki Oikawa
智明 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4107532A priority Critical patent/JP2803456B2/en
Publication of JPH05172076A publication Critical patent/JPH05172076A/en
Application granted granted Critical
Publication of JP2803456B2 publication Critical patent/JP2803456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To reduce the loss of compressing leakage gas so as to enable highly efficient operation of a multicylinder rotary compressor even during capacity control by bypassing a delivery portion and the suction side of the compressor by means of a valve mechanism even if gas leaks into a stopped cylinder. CONSTITUTION:A multicylinder rotary compressor having a cylinder 3 provided with a cylinder stopping mechanism includes an opening 27 provided near a delivery portion inside the cylinder 3 provided with the cylinder stopping mechanism, a passage 29 communicating with the suction side from the opening 27, and a valve mechanism 28 for opening and closing the passage 29.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、多気筒回転式圧縮機
の容量制御運転時の高効率化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high efficiency in capacity control operation of a multi-cylinder rotary compressor.

【0002】[0002]

【従来の技術】図12、13は、例えば特開昭59−1
50991号公報に示された従来の容量制御を行う冷凍
サイクルと圧縮機の断面図である。従来の容量制御冷凍
サイクルを、図12、13を使用して説明する。図12
は、従来の容量制御冷凍サイクルの一例を示すサイクル
構成図、図13は、図12における圧縮機の詳細を示す
断面図である。図12において、1は、圧縮要素2と休
筒用の圧縮要素3とを有する圧縮機に係る密閉型圧縮機
である。圧縮要素2、圧縮要素3は、たとえば、密閉型
圧縮機1を構成する単位圧縮機であり、容量制御時に
は、圧縮要素2のみを使用する。圧縮要素吐出パイプ4
は、圧縮要素吐出パイプ5と合流し、高圧ガス配管6で
凝縮器7と結ばれている。凝縮器7は、高圧液配管9に
より減圧器10を介して蒸発器8と接続され、この蒸発
器8は密閉型圧縮機1と低圧ガス配管11により結ばれ
る。低圧ガス配管11は、途中、圧縮要素吸込パイプ1
2と圧縮要素吸込パイプ13に分かれ、各々圧縮要素
2、圧縮要素3に接続する。圧縮要素吸込パイプ13の
途中には、容量制御用の二方弁14が設けられている。
前記密閉型圧縮機1を、図5を使用してさらに詳細に説
明すると、15はチャンバで、このチャンバ15内に圧
縮要素2、圧縮要素3が収納されている。また、このチ
ャンバ15は、モータのステータ16、圧縮要素シリン
ダブロック17を固定、保持している。
2. Description of the Related Art FIGS.
It is sectional drawing of the refrigerating cycle and compressor which perform the conventional capacity control shown by 50991 gazette. A conventional capacity-controlled refrigeration cycle will be described with reference to FIGS. 12
FIG. 13 is a cycle configuration diagram showing an example of a conventional capacity control refrigeration cycle, and FIG. 13 is a sectional view showing details of the compressor in FIG. In FIG. 12, 1 is a hermetic compressor related to a compressor having a compression element 2 and a cylinder decompression element 3. The compression element 2 and the compression element 3 are, for example, unit compressors that form the hermetic compressor 1, and only the compression element 2 is used during capacity control. Compressing element discharge pipe 4
Is joined to the compression element discharge pipe 5, and is connected to the condenser 7 by the high pressure gas pipe 6. The condenser 7 is connected to an evaporator 8 via a decompressor 10 by a high pressure liquid pipe 9, and the evaporator 8 is connected to the hermetic compressor 1 by a low pressure gas pipe 11. The low pressure gas pipe 11 is connected to the compression element suction pipe 1 on the way.
2 and the compression element suction pipe 13, which are respectively connected to the compression element 2 and the compression element 3. A two-way valve 14 for capacity control is provided in the middle of the compression element suction pipe 13.
The hermetic compressor 1 will be described in more detail with reference to FIG. 5. Reference numeral 15 is a chamber in which the compression element 2 and the compression element 3 are housed. The chamber 15 also fixes and holds the motor stator 16 and the compression element cylinder block 17.

【0003】圧縮要素シリンダブロック17の上部に
は、上ベアリング18が固定され、この上ベアリング1
8は、モータのロータ19が固定されたクランク軸20
を回転可能状態に保持している。クランク軸20の下端
は、圧縮要素吐出室21をその内部に有する下ベアリン
グ22で回転状態に保持され、この下ベアリング22
は、圧縮要素シリンダブロック23、仕切板24ととも
に圧縮要素シリンダブロック17に固定されている。そ
して、上ベアリング18、圧縮要素シリンダブロック1
7、仕切板24で圧縮要素2の圧縮室25が形成され、
仕切板24、圧縮要素シリンダブロック23、下ベアリ
ング22で圧縮要素3の圧縮室26が形成されている。
An upper bearing 18 is fixed to the upper portion of the compression element cylinder block 17, and the upper bearing 1
8 is a crankshaft 20 to which a rotor 19 of the motor is fixed
Is held in a rotatable state. The lower end of the crankshaft 20 is rotatably held by a lower bearing 22 having a compression element discharge chamber 21 therein.
Are fixed to the compression element cylinder block 17 together with the compression element cylinder block 23 and the partition plate 24. Then, the upper bearing 18, the compression element cylinder block 1
7. The compression chamber 25 of the compression element 2 is formed by the partition plate 24,
The partition plate 24, the compression element cylinder block 23, and the lower bearing 22 form a compression chamber 26 of the compression element 3.

【0004】次に動作について説明する。前記のように
構成した密閉型圧縮機1の圧縮行程は、それぞれ圧縮要
素2、圧縮要素3の圧縮室25、26内で、クランク軸
20によって偏心回転させられる圧縮要素2のローラ2
7、圧縮要素3のローラ28により行なわれる。そし
て、圧縮要素2内での冷媒ガスの流れは、圧縮要素吸込
パイプ12から圧縮室25へ吸込まれ、圧縮後、圧縮要
素吐出弁29から高圧圧力室であるチャンバ15内に吐
出される。その後、モータのロータ19とステータ16
を冷却して、圧縮要素吐出パイプ4から吐出される。一
方、圧縮要素3内での冷媒ガスの流れは、圧縮要素吸込
パイプ13から圧縮室26へ吸込まれ、圧縮後、圧縮要
素吐出弁30から圧縮要素吐出室21へ吐出される。そ
の後、さらに、下ベアリング22、圧縮要素シリンダブ
ロック23に設けられた吐出路31を通り、圧縮要素吐
出パイプ5から吐出される。さて、以上説明した従来の
容量制御冷凍サイクルでは、冷凍サイクルの負荷が小さ
くなったとき、圧縮要素吸込パイプ13に設けられた容
量制御用の二方弁14を閉じ、休筒用の圧縮要素3へ冷
媒が流れないようにして、冷凍サイクルの容量制御を行
なっていた。
Next, the operation will be described. The compression stroke of the hermetic compressor 1 configured as described above includes the roller 2 of the compression element 2 which is eccentrically rotated by the crankshaft 20 in the compression chambers 25 and 26 of the compression element 2 and the compression element 3, respectively.
7. The roller 28 of the compression element 3 is used. Then, the flow of the refrigerant gas in the compression element 2 is sucked into the compression chamber 25 from the compression element suction pipe 12, and after being compressed, is discharged from the compression element discharge valve 29 into the chamber 15 which is a high pressure chamber. After that, the rotor 19 and the stator 16 of the motor
Is cooled and discharged from the compression element discharge pipe 4. On the other hand, the flow of the refrigerant gas in the compression element 3 is sucked into the compression chamber 26 from the compression element suction pipe 13, and after being compressed, is discharged from the compression element discharge valve 30 to the compression element discharge chamber 21. After that, the gas is further discharged from the compression element discharge pipe 5 through the discharge passage 31 provided in the lower bearing 22 and the compression element cylinder block 23. In the conventional capacity control refrigeration cycle described above, when the load of the refrigeration cycle becomes small, the two-way valve 14 for capacity control provided in the compression element suction pipe 13 is closed and the decompression cylinder compression element 3 is closed. The capacity of the refrigeration cycle was controlled so that the refrigerant did not flow into.

【0005】[0005]

【発明が解決しようとする課題】従来の容量制御を行う
多気筒回転圧縮機は以上のように構成されているので、
容量制御時に、休筒用圧縮要素3が真空運転することか
ら、仕切板24と圧縮要素3のローラ28端面との間、
もしくは下ベアリング22とローラ28端面との間の漏
れが大きく、密閉型圧縮機1の断熱圧縮効率が、容量制
御をしない場合に比べて大幅に低下するという問題点が
あった。
Since the conventional multi-cylinder rotary compressor for carrying out capacity control is constructed as described above,
During the capacity control, the cylinder decompression element 3 is operated in vacuum, so that between the partition plate 24 and the end surface of the roller 28 of the compression element 3,
Alternatively, there is a problem that the leakage between the lower bearing 22 and the end surface of the roller 28 is large, and the adiabatic compression efficiency of the hermetic compressor 1 is significantly reduced as compared with the case where the capacity control is not performed.

【0006】また休筒側圧縮要素の吸入側と密閉容器内
とを連通させるバイパス通路を備えた従来の休筒機構付
多気筒圧縮機は、容量制御時に、シリンダ内とベーン背
部が等圧となり、ベーンがローリングピストンから受け
る力によって飛ばされ常にベーンとローリングピストン
が接触していることができず、異音を発生するなどの問
題点があった。
Further, in a conventional multi-cylinder compressor with a cylinder deactivation mechanism having a bypass passage that connects the suction side of the cylinder decompression-side compression element and the inside of the closed container, the inside of the cylinder and the back of the vane become equal pressure during capacity control. However, there is a problem that the vane is blown off by the force received from the rolling piston and the vane and the rolling piston cannot always be in contact with each other, which causes abnormal noise.

【0007】この発明は上記の様な問題点を解決するた
めになされたもので、容量制御時の休筒シリンダに漏れ
入るガスによる圧縮仕事ロスを解消し、高効率な容量制
御運転を行う多気筒回転式圧縮機を得ること及び容量制
御時においても、常にベーンがローリングピストンと接
触し、異音を発生することなく運転できる多気筒回転式
圧縮機を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and eliminates the compression work loss due to the gas leaking into the cylinder deactivation cylinder during capacity control, and performs highly efficient capacity control operation. An object of the present invention is to obtain a cylinder rotary compressor, and to obtain a multi-cylinder rotary compressor that can be operated without causing abnormal noise, because the vane always comes into contact with the rolling piston even during capacity control.

【0008】[0008]

【課題を解決するための手段】請求項1の多気筒回転式
圧縮機は、休筒機構付のシリンダを有するものにおい
て、前記休筒機構付のシリンダ内の吐出部の近傍に設け
られた開口部と、この開口部から吸入側へ連通する通路
と、この通路の開閉を行う弁機構とを備えたものであ
る。
A multi-cylinder rotary compressor according to claim 1 has a cylinder with a cylinder deactivation mechanism, and an opening provided in the vicinity of a discharge portion in the cylinder with the cylinder deactivation mechanism. And a passage communicating from the opening to the suction side, and a valve mechanism for opening and closing the passage.

【0009】請求項2の多気筒回転式圧縮機は、休筒機
構付のシリンダを有するものにおいて、前記休筒機構付
のシリンダ内の吸入側と密閉容器内とを連通させるバイ
パス通路を備えたものである。
A multi-cylinder rotary compressor according to a second aspect of the present invention has a cylinder with a cylinder deactivation mechanism, and is provided with a bypass passage for connecting the suction side of the cylinder with the cylinder deactivation mechanism and the inside of a closed container. It is a thing.

【0010】請求項3の多気筒回転式圧縮機は、休筒制
御弁を用いた休筒機構付の圧縮要素を有する多気筒回転
式圧縮機において、前記休筒機構付の圧縮要素の吐出側
と他の圧縮要素の吐出側との間に設けられ、第1の制御
弁を有する第1のバイパス通路と、前記休筒機構付の圧
縮要素の吐出側と吸入側および前記休筒制御弁との間に
設けられ、第2の制御弁を有する第2のバイパス通路と
を備え、通常運転時は前記休筒制御弁、第1の制御弁は
開、前記第2の制御弁は閉で、容量制御時は前記休筒制
御弁は閉、第1の制御弁及び前記第2の制御弁は開また
は前記休筒制御弁は開、第1の制御弁は閉、前記第2の
制御弁は開とするものである。
A multi-cylinder rotary compressor according to claim 3 is a multi-cylinder rotary compressor having a compression element with a cylinder deactivation mechanism using a cylinder deactivation control valve, wherein the discharge side of the compression element with the cylinder deactivation mechanism. And a discharge side of another compression element, a first bypass passage having a first control valve, a discharge side and a suction side of the compression element with the cylinder deactivating mechanism, and the cylinder deactivation control valve. And a second bypass passage having a second control valve, and during normal operation, the cylinder deactivation control valve, the first control valve are open, and the second control valve is closed. During capacity control, the cylinder deactivation control valve is closed, the first control valve and the second control valve are open or the cylinder deactivation control valve is open, the first control valve is closed, and the second control valve is It is to be opened.

【0011】請求項4の多気筒回転式圧縮機は、休筒制
御弁を用いた休筒機構付の圧縮要素を有する多気筒回転
式圧縮機において、前記休筒機構付の圧縮要素の吐出側
と他の圧縮要素の吐出側との間に設けられ、第1の制御
弁を有する第1のバイパス通路と、前記休筒機構付の圧
縮要素の吐出側と前記休筒制御弁の上流側との間に設け
られ、第2の制御弁を有する第2のバイパス通路とを備
え、通常運転時は前記休筒制御弁、第1の制御弁は開、
前記第2の制御弁は閉で、容量制御時は前記休筒制御弁
及び第1の制御弁は閉、前記第2の制御弁は開とするも
のである。
A multi-cylinder rotary compressor according to a fourth aspect is a multi-cylinder rotary compressor having a compression element with a cylinder deactivation mechanism using a cylinder deactivation control valve, wherein the discharge side of the compression element with the cylinder deactivation mechanism. And a discharge side of another compression element, a first bypass passage having a first control valve, a discharge side of the compression element with the cylinder deactivation mechanism, and an upstream side of the cylinder deactivation control valve. And a second bypass passage having a second control valve, and the cylinder deactivation control valve and the first control valve are opened during normal operation.
The second control valve is closed, the cylinder deactivation control valve and the first control valve are closed, and the second control valve is open during capacity control.

【0012】請求項5の多気筒回転式圧縮機は、独立し
て冷媒吸入通路が設けられた圧縮要素を有する多気筒回
転式圧縮機において、前記一方の圧縮要素の吐出側と他
方の圧縮要素の吐出側との間に設けられ、第1の制御弁
を有する第1のバイパス通路と、前記一方の圧縮要素の
吐出側と吸入側との間に設けられ、第2の制御弁を有す
る第2のバイパス通路とを備え、通常運転時は前記第1
の制御弁は開、前記第2の制御弁は閉で、容量制御時は
第1の制御弁は閉、前記第2の制御弁は開とするもので
ある。
A multi-cylinder rotary compressor according to a fifth aspect is a multi-cylinder rotary compressor having a compression element in which a refrigerant suction passage is provided independently, and the discharge side of the one compression element and the other compression element. A first bypass passage that is provided between the discharge side and the suction side of the one compression element and that has a second control valve that is provided between the discharge side and the suction side of the one compression element. 2 bypass passages, and the first
The control valve is open, the second control valve is closed, and the first control valve is closed and the second control valve is open during capacity control.

【0013】請求項6の多気筒回転式圧縮機は、休筒制
御弁を用いた休筒機構付の圧縮要素を有する多気筒回転
式圧縮機において、前記休筒機構付の圧縮要素の吐出側
と他の圧縮要素の吐出側との間に設けられ、第1の制御
弁を有する第1のバイパス通路と、前記休筒機構付の圧
縮要素はその押しのけ量を他の圧縮要素の押しのけ量よ
り小さくしたものである。
A multi-cylinder rotary compressor according to a sixth aspect is a multi-cylinder rotary compressor having a compression element with a cylinder deactivation mechanism using a cylinder deactivation control valve, wherein the discharge side of the compression element with the cylinder deactivation mechanism. And a discharge side of another compression element, the first bypass passage having a first control valve and the compression element with the cylinder deactivation mechanism have a displacement greater than that of another compression element. It is a small one.

【0014】請求項7の多気筒回転式圧縮機は、休筒機
構付の圧縮要素を有し、前記休筒機構付の圧縮要素の吸
入側と密閉容器内とを連通させるバイパス通路を備えた
多気筒回転式圧縮機において、前記休筒機構付の圧縮要
素は、そのベーンスプリングのバネ力を他の圧縮要素の
ベーンスプリングのバネ力より大きくしたものである。
A multi-cylinder rotary compressor according to a seventh aspect of the present invention includes a compression element with a cylinder deactivation mechanism, and a bypass passage for connecting the suction side of the compression element with the cylinder deactivation mechanism and the inside of a closed container. In the multi-cylinder rotary compressor, the compression element with the cylinder deactivating mechanism has a spring force of a vane spring larger than a spring force of a vane spring of another compression element.

【0015】[0015]

【作用】請求項1の多気筒回転式圧縮機は、休筒シリン
ダ内に漏れたガスが入っても、弁機構により吐出部と吸
入側をバイパスすることで、漏れたガスを圧縮するロス
を軽減し、容量制御時にも高効率な運転を行える。
In the multi-cylinder rotary compressor according to the first aspect of the present invention, even if the leaked gas enters the deactivated cylinder, the valve mechanism bypasses the discharge portion and the suction side to reduce the loss of compressing the leaked gas. It can be reduced and highly efficient operation can be performed even during capacity control.

【0016】請求項2の多気筒回転式圧縮機は、容量制
御時に休筒シリンダ内が高圧圧力室と等圧になり、圧縮
仕事ロスが無くなり高効率な運転を行える。
In the multi-cylinder rotary compressor according to the second aspect of the present invention, when the capacity is controlled, the cylinder deactivation cylinder becomes equal in pressure to the high pressure chamber so that compression work loss is eliminated and highly efficient operation can be performed.

【0017】請求項3の多気筒回転式圧縮機は、休筒中
の圧縮要素に漏れたガスが入っても、弁機構により前記
圧縮要素の吐出側と吸入側をバイパスすることで漏れ入
ったガスを圧縮するロスを防ぎ、また前記圧縮要素内を
高圧、または低圧とすることで、漏れて入ってくるガス
をさらに低減できるため、容量制御時にも高効率な運転
を行える。
According to another aspect of the multi-cylinder rotary compressor of the present invention, even if the leaking gas enters the decompressing compression element, the leaking gas is bypassed by bypassing the discharge side and the suction side of the compression element by the valve mechanism. By preventing the loss of compressing and compressing the inside of the compression element to a high pressure or a low pressure, it is possible to further reduce the leaked gas, so that highly efficient operation can be performed even during capacity control.

【0018】請求項4の多気筒回転式圧縮機は、休筒中
の圧縮要素に漏れたガスが入っても、弁機構により前記
圧縮要素の吐出側と圧縮機の吸入側とをバイパスするこ
とで、吸入側の低圧までしか圧縮されないので、容量制
御時にも高効率な運転を行える。
In the multi-cylinder rotary compressor according to the present invention, even if the leaked gas enters the decompressed compression element, the valve mechanism bypasses the discharge side of the compression element and the suction side of the compressor. Since only the low pressure on the suction side is compressed, highly efficient operation can be performed even during capacity control.

【0019】請求項5の多気筒回転式圧縮機は、弁機構
により片方の圧縮要素の吸入側と吐出側及び、圧縮機の
吐出側とバイパスすることにより前記圧縮要素の吸入
側、吐出側及び内部とも低圧になるため圧縮要素内のガ
スは圧縮されず、かつガスが漏れ入る量も少なくなる
為、容量制御時にも高効率な運転を行える。
A multi-cylinder rotary compressor according to a fifth aspect of the present invention includes a valve mechanism for bypassing the suction side and discharge side of one compression element, and the discharge side of the compressor to bypass the compression side. Since the pressure inside both becomes low, the gas in the compression element is not compressed, and the amount of gas leaking in is small, so that highly efficient operation can be performed even during capacity control.

【0020】請求項6の多気筒式圧縮機は、容量制御側
の圧縮要素の押しのけ量を、他方の圧縮要素の押しのけ
量より小さくすることで、容量制御側の圧縮要素に漏れ
入るガス量を減少させ、圧縮仕事ロスを軽減し、容量制
御時に、高効率な運転を行える。
In the multi-cylinder compressor of claim 6, the displacement amount of the compression element on the capacity control side is made smaller than the displacement amount of the other compression element, so that the amount of gas leaking into the compression element on the capacity control side is reduced. It reduces the compression work loss and enables highly efficient operation during capacity control.

【0021】請求項7の多気筒回転式圧縮機は、休筒側
圧縮要素のベーンスプリングのバネ力を大きく設定した
ことにより、休筒運転時に、休筒側圧縮要素のベーンが
ローリングピストンと離れることなく、異音を発生しな
い。
In the multi-cylinder rotary compressor according to the seventh aspect of the present invention, the vane of the cylinder decompression element separates from the rolling piston during the cylinder decompression operation by setting a large spring force of the vane spring of the cylinder decompression element. Without any abnormal noise.

【0022】[0022]

【実施例】【Example】

実施例1.以下この発明の実施例1を図について説明す
る。図1はこの発明の実施例1に係る多気筒回転式圧縮
機の断面図、図2は休筒用シリンダと、バイパス通路を
示すモデル図である。
Example 1. Embodiment 1 of the present invention will be described below with reference to the drawings. 1 is a cross-sectional view of a multi-cylinder rotary compressor according to Embodiment 1 of the present invention, and FIG. 2 is a model view showing a cylinder for cylinder deactivation and a bypass passage.

【0023】図1、図2において、14は吸入を止め、
休筒を行う為の二方弁、13は圧縮要素吸込パイプ、2
6は圧縮室、27は吐出部近くに設けられた開口部、2
8はバイパス通路の開閉を行う弁機構であり、バイパス
パイプ29内部の背圧により、コマ30が開口部27へ
と押しつけられ開閉動作を行う。リング31はコマ30
の逸脱防止用のリングである。高圧側制御弁32と低圧
側制御弁33は、バイパスパイプ29内の圧力を制御す
る為、各々チャンバ15内高圧部、吸入側吸込パイプ1
3へと接続されている。また吸入側へのパイプはバイパ
ス通路の役割も兼ねる。
In FIG. 1 and FIG. 2, reference numeral 14 is for stopping the inhalation,
A two-way valve for deactivating the cylinder, 13 is a compression element suction pipe, 2
6 is a compression chamber, 27 is an opening provided near the discharge part, 2
Reference numeral 8 denotes a valve mechanism that opens and closes the bypass passage, and by the back pressure inside the bypass pipe 29, the top 30 is pressed against the opening 27 to open and close. Ring 31 is top 30
This is a ring for preventing deviation. The high-pressure side control valve 32 and the low-pressure side control valve 33 control the pressure in the bypass pipe 29.
Connected to 3. The pipe to the suction side also serves as a bypass passage.

【0024】次に動作について説明する。通常の運転時
には、低圧側制御弁33を閉、高圧側制御弁32を開と
することにより、バイパスパイプ29内は高圧となり、
コマ30は開口部27へ押しつけられる為、バイパス通
路は閉となる、容量制御の為、二方弁14が閉じられる
と休筒シリンダ内部は真空に近くなるが、各摺動部など
からガスが漏れ入ってくる為に、圧縮が行われ、その分
だけ余分な仕事を必要とする。ここで、低圧側制御弁3
3を開き、高圧側制御弁32を閉じるとバイパスパイプ
29内の圧力が下がりコマ30が開く為、圧縮室26
と、圧縮要素吸込パイプ13が連通する。その為、休筒
シリンダ内へリークした冷媒ガスは圧縮されることなく
吸入側へ戻され、余分な圧縮仕事はなされず高効率な運
転が得られる。
Next, the operation will be described. During normal operation, by closing the low pressure side control valve 33 and opening the high pressure side control valve 32, the inside of the bypass pipe 29 becomes high pressure,
Since the top 30 is pressed against the opening 27, the bypass passage is closed. For capacity control, when the two-way valve 14 is closed, the inside of the cylinder deactivation cylinder becomes close to a vacuum, but the gas from each sliding portion, etc. Since it leaks in, it is compressed and requires extra work. Here, the low pressure side control valve 3
3 is opened and the high pressure side control valve 32 is closed, the pressure in the bypass pipe 29 is reduced and the top 30 is opened.
And the compression element suction pipe 13 communicate with each other. Therefore, the refrigerant gas leaking into the cylinder deactivation cylinder is returned to the suction side without being compressed, and extra compression work is not performed, so that highly efficient operation can be obtained.

【0025】実施例2.以下この発明の実施例2を図に
ついて説明する。図3はこの発明の実施例2に係る多気
筒回転式圧縮機の断面図である。図3において、14は
吸入を止め、休筒を行う為の二方弁、13は圧縮要素吸
込パイプ、26は圧縮室、29はバイパスパイプであ
り、圧縮要素吸込パイプ13と高圧圧力室であるチャン
バ15内とを、バイパスパイプ29内に設けられた二方
弁32を開くことによって連通させる。
Example 2. Embodiment 2 of the present invention will be described below with reference to the drawings. FIG. 3 is a sectional view of a multi-cylinder rotary compressor according to a second embodiment of the present invention. In FIG. 3, 14 is a two-way valve for stopping suction and performing cylinder deactivation, 13 is a compression element suction pipe, 26 is a compression chamber, 29 is a bypass pipe, and the compression element suction pipe 13 and a high pressure chamber. The inside of the chamber 15 is made to communicate by opening a two-way valve 32 provided in the bypass pipe 29.

【0026】次に動作について説明する。通常の運転時
には、吸込パイプ13に設けられた二方弁14を開、バ
イパスパイプ29に設けられた二方弁32を閉とし、す
べての圧縮室で通常の圧縮作用が行われる。
Next, the operation will be described. During normal operation, the two-way valve 14 provided on the suction pipe 13 is opened, the two-way valve 32 provided on the bypass pipe 29 is closed, and normal compression action is performed in all compression chambers.

【0027】次に容量制御運転の為、二方弁14が閉じ
られると、休筒圧縮室内部は真空近くになり、冷媒ガス
が漏れ入り、圧縮仕事ロスが生じてしまうが、ここで二
方弁32を開くと、チャンバ15内の高圧圧力室と、吸
込パイプ13が連通され、休筒圧縮室内部は高圧とな
り、圧縮仕事は行われず、ロスがなくなり、高効率な運
転が得られる。
Next, when the two-way valve 14 is closed for the capacity control operation, the inside of the cylinder decompression chamber becomes close to a vacuum, and the refrigerant gas leaks in, causing compression work loss. When the valve 32 is opened, the high pressure chamber in the chamber 15 and the suction pipe 13 are communicated with each other, the pressure inside the decompression cylinder chamber becomes high, compression work is not performed, loss is eliminated, and highly efficient operation is obtained.

【0028】実施例3.以下この発明の実施例3につい
て説明する。図4はこの発明の実施例3に係わる多気筒
回転式圧縮機のモデル図、図5はその断面図である。図
4、5において、40は吸入を止め、休筒を行うための
休筒制御弁、2は圧縮要素、3は休筒用圧縮要素、15
はチャンバ、41は第1バイパス通路、42は第1制御
弁、43は休筒用圧縮要素の吐出側と吸入側とを結ぶ第
2バイパス通路、44は第2制御弁である。
Example 3. The third embodiment of the present invention will be described below. 4 is a model diagram of a multi-cylinder rotary compressor according to Embodiment 3 of the present invention, and FIG. 5 is a sectional view thereof. In FIGS. 4 and 5, 40 is a cylinder deactivation control valve for stopping suction and performing cylinder deactivation, 2 is a compression element, 3 is a compression element for cylinder deactivation, and 15
Is a chamber, 41 is a first bypass passage, 42 is a first control valve, 43 is a second bypass passage connecting the discharge side and the suction side of the cylinder decompression element, and 44 is a second control valve.

【0029】次に動作について説明する。通常の運転時
には、休筒制御弁40を開、第1制御弁42を開、第2
制御弁44を閉とすることにより、圧縮要素2と休筒用
の圧縮要素3の両方で圧縮が行われる。容量制御の為、
休筒制御弁40が閉じられると休筒用の圧縮要素3内部
は真空に近くなるが、各摺動部などからガスが漏れて入
ってくるために、圧縮が行われ、その分だけ余分な仕事
を必要とする。ここで第2制御弁44を開くと、第1バ
イパス通路41、第2バイパス通路43を通して休筒用
圧縮要素3の吐出側と吸入側とチャンバ15が連通し、
休筒用圧縮要素3の内部は高圧となる、冷媒は圧縮され
ることなく吸入側に戻され、またガスがリークすること
もなく高効率な運転ができる。あるいは休筒制御弁40
を開、第1制御弁42を閉、第2制御弁44を開とする
ことにより、休筒用圧縮要素3の吐出側と圧縮機の吸入
側とが連通し低圧となる。その為、冷媒は圧縮されるこ
となく吸入側に戻され、ガスが漏れて入っても高圧まで
圧縮されず低圧のまま吐出されるため圧縮ロスが低減で
き、高効率運転が得られる。
Next, the operation will be described. During normal operation, the cylinder deactivation control valve 40 is opened, the first control valve 42 is opened, and the second control valve 42 is opened.
By closing the control valve 44, compression is performed by both the compression element 2 and the cylinder deactivation compression element 3. For capacity control,
When the cylinder deactivation control valve 40 is closed, the inside of the compression element 3 for cylinder decompression becomes close to a vacuum, but gas leaks from each sliding portion and the like, so that compression is performed, and an extra amount is generated accordingly. Need a job. Here, when the second control valve 44 is opened, the discharge side and the suction side of the cylinder decompression element 3 communicate with the chamber 15 through the first bypass passage 41 and the second bypass passage 43,
The inside of the cylinder decompression element 3 has a high pressure, the refrigerant is returned to the suction side without being compressed, and highly efficient operation can be performed without gas leakage. Alternatively, the cylinder control valve 40
Is opened, the first control valve 42 is closed, and the second control valve 44 is opened, so that the discharge side of the cylinder decompression element 3 and the suction side of the compressor communicate with each other and the pressure becomes low. Therefore, the refrigerant is returned to the suction side without being compressed, and even if gas leaks and enters, the refrigerant is not compressed to a high pressure and is discharged at a low pressure, so that compression loss can be reduced and high efficiency operation can be obtained.

【0030】実施例4.以下この発明の他の実施例につ
いて説明する。図6はこの発明の他の実施例に係わる多
気筒回転式圧縮機のモデル図である。図6において、4
0は吸入を止め、休筒を行うための休筒制御弁、2は圧
縮要素、3は休筒用圧縮要素、15はチャンバ、41は
休筒用圧縮要素3吐出側と圧縮機の吐出側の高圧ガス配
管6とを結ぶ第1バイパス通路、42は第1制御弁、4
3は休筒用圧縮要素の吐出側と圧縮機の吸入側の低圧ガ
ス配管11とを結ぶ第2バイパス通路、44は第2制御
弁である。
Example 4. Another embodiment of the present invention will be described below. FIG. 6 is a model diagram of a multi-cylinder rotary compressor according to another embodiment of the present invention. In FIG. 6, 4
0 is a cylinder deactivation control valve for stopping suction and decommissioning, 2 is a compression element, 3 is a compression element for cylinder deactivation, 15 is a chamber, 41 is a compression element for cylinder deactivation 3 the discharge side and the discharge side of the compressor Of the high pressure gas pipe 6 of the first bypass passage, 42 is the first control valve, 4
3 is a second bypass passage connecting the discharge side of the cylinder decompression element and the low pressure gas pipe 11 on the suction side of the compressor, and 44 is a second control valve.

【0031】次に動作について説明する。通常の運転時
には、休筒制御弁40を開、第1制御弁42を開、第2
制御弁44を閉とすることにより、圧縮要素2と休筒用
の圧縮要素3の両方で圧縮が行われる。次に容量制御運
転の為、休筒制御弁40が閉じられると休筒用の圧縮要
素3内部は真空に近くなるが、各摺動部などからガスが
漏れて入ってくるために、圧縮が行われ、その分だけ余
分な仕事を必要とする。そこで、第1制御弁42を閉、
第2制御弁44を開とする事により、第2バイパス通路
43を通して、休筒用圧縮要素3の吐出側と圧縮機の吸
入側とが連通し低圧となる。その為、冷媒は圧縮される
ことなく吸入側に戻され、ガスが漏れて入っても、高圧
まで圧縮されず低圧までしか圧縮されずに吐出されるた
め圧縮ロスが低減でき、高効率運転が得られる。
Next, the operation will be described. During normal operation, the cylinder deactivation control valve 40 is opened, the first control valve 42 is opened, and the second control valve 42 is opened.
By closing the control valve 44, compression is performed by both the compression element 2 and the cylinder deactivation compression element 3. Next, due to the capacity control operation, when the cylinder deactivation control valve 40 is closed, the inside of the compression element 3 for cylinder deactivation becomes close to a vacuum, but the gas leaks from each sliding part, etc. Done and requires extra work. Therefore, the first control valve 42 is closed,
By opening the second control valve 44, the discharge side of the cylinder decompression element 3 and the suction side of the compressor communicate with each other through the second bypass passage 43, and the pressure becomes low. Therefore, the refrigerant is returned to the suction side without being compressed, and even if gas leaks in, it is discharged only after being compressed to a high pressure and only to a low pressure, so that compression loss can be reduced and highly efficient operation can be achieved. can get.

【0032】実施例5.以下この発明の実施例5につい
て説明する。図7はこの発明の実施例5に係わる多気筒
回転式圧縮機のモデル図である。図7において、2は圧
縮要素、3は休筒用圧縮要素、15はチャンバ、41は
休筒用圧縮要素3吐出側と、圧縮機の吐出側の高圧ガス
配管6とを結ぶ第1バイパス通路、42は第1制御弁、
43は休筒用圧縮要素の吐出側と圧縮機の吸入側の低圧
ガス配管11とを結ぶ第2バイパス通路、44は第2制
御弁である。
Example 5. The fifth embodiment of the present invention will be described below. FIG. 7 is a model diagram of a multi-cylinder rotary compressor according to Embodiment 5 of the present invention. In FIG. 7, 2 is a compression element, 3 is a cylinder decompression element, 15 is a chamber, 41 is a cylinder decompression element 3, and a first bypass passage that connects the discharge side of the cylinder decompression element and the high-pressure gas pipe 6 on the discharge side of the compressor. , 42 is the first control valve,
Reference numeral 43 is a second bypass passage connecting the discharge side of the cylinder decompression element and the low pressure gas pipe 11 on the suction side of the compressor, and 44 is a second control valve.

【0033】次に動作について説明する。通常の運転時
には、第1制御弁42を開、第2制御弁44を閉とする
ことにより、圧縮要素2と休筒用圧縮要素3の両方で圧
縮が行われる。容量制御時には、第1制御弁42を閉、
第2制御弁44を開とする事により、第2バイパス通路
43を通して、休筒用圧縮要素3の吐出側と圧縮機の吸
入側とが連通し低圧となる。その為、冷媒は圧縮される
ことなく吸入側に戻され、また休筒用圧縮要素内部も真
空ではなく低圧となるためガスが漏れて入る量も低減で
きる為、高効率な運転が得られる。
Next, the operation will be described. During normal operation, the first control valve 42 is opened and the second control valve 44 is closed, so that compression is performed by both the compression element 2 and the cylinder deactivation compression element 3. At the time of capacity control, the first control valve 42 is closed,
By opening the second control valve 44, the discharge side of the cylinder decompression element 3 and the suction side of the compressor communicate with each other through the second bypass passage 43, and the pressure becomes low. Therefore, the refrigerant is returned to the suction side without being compressed, and the inside of the cylinder decompression element is not in a vacuum but in a low pressure, so that the amount of gas leaked can be reduced, so that highly efficient operation can be obtained.

【0034】実施例6.以下この発明の実施例6につい
て説明する。図8はこの発明の実施例6に係わる多気筒
回転式圧縮機のモデル図である。前記実施例3の第1制
御弁42を逆止弁45に置き換えても疑似的な動作が期
待できる。
Example 6. Embodiment 6 of the present invention will be described below. FIG. 8 is a model diagram of a multi-cylinder rotary compressor according to Embodiment 6 of the present invention. Even if the first control valve 42 of the third embodiment is replaced with the check valve 45, a pseudo operation can be expected.

【0035】実施例7.以下この発明の実施例7につい
て説明する。図9はこの発明の実施例7に係わる多気筒
回転式圧縮機のモデル図である。前記実施例3の休筒制
御弁40を逆止弁46に置き換えても疑似的な動作が期
待できる。
Example 7. The seventh embodiment of the present invention will be described below. FIG. 9 is a model diagram of a multi-cylinder rotary compressor according to Embodiment 7 of the present invention. Even if the cylinder deactivation control valve 40 of the third embodiment is replaced with the check valve 46, a pseudo operation can be expected.

【0036】実施例8.以下この発明の実施例8を図に
ついて説明する。図10は、この発明の実施例8に係る
多気筒回転式圧縮機の断面図である。図において、3は
容量制御用圧縮要素で圧縮要素2に比べて、押しのけ量
を小さくしている。
Example 8. Embodiment 8 of the present invention will be described below with reference to the drawings. FIG. 10 is a sectional view of a multi-cylinder rotary compressor according to Embodiment 8 of the present invention. In the figure, 3 is a compression element for capacity control, and the displacement amount is smaller than that of the compression element 2.

【0037】次に動作について説明する。通常の運転時
には、吸込パイプ13に設けられた二方弁40を開と
し、すべての圧縮室で通常の圧縮作用が行われる。次に
容量制御運転の為、二方弁40が閉じられると、休筒圧
縮室内部は真空近くになり、冷媒ガスが漏れ入り、圧縮
仕事ロスが生じる。この圧縮仕事ロスは、圧縮要素の押
しのけ量に比例するが、本請求項の多気筒回転式圧縮機
は、休筒圧縮室の押しのけ量を小さく設定しているた
め、圧縮仕事ロスを軽減し、容量制御時に、高効率な運
転が行える。なお、休筒圧縮室の押しのけ量は小さくす
ればするほど、再圧縮の仕事ロスは小さくなり容量制御
時の圧縮機の効率は上がるが、容量制御をしない通常の
運転においては、圧縮機の最大能力が低下するため、そ
の押しのけ量は必要とする最大能力と、容量制御時の効
率とのかねあいにより最適値が決定される。
Next, the operation will be described. During normal operation, the two-way valve 40 provided on the suction pipe 13 is opened, and normal compression action is performed in all compression chambers. Next, when the two-way valve 40 is closed due to the capacity control operation, the inside of the cylinder decompression chamber becomes close to a vacuum, the refrigerant gas leaks, and compression work loss occurs. The compression work loss is proportional to the displacement amount of the compression element, but the multi-cylinder rotary compressor of the present claim sets the displacement amount of the cylinder decompression chamber to be small, so that the compression work loss is reduced, Highly efficient operation is possible during capacity control. Note that the smaller the displacement of the cylinder decompression chamber, the smaller the work loss of recompression and the higher the efficiency of the compressor during capacity control.However, in normal operation without capacity control, the maximum compressor Since the capacity decreases, the optimum value of the displacement is determined by the balance between the maximum capacity required and the efficiency during capacity control.

【0038】実施例9.以下この発明の実施例9を図1
1について説明する。図11は、この発明の実施例11
に係る多気筒回転式圧縮機の休筒側圧縮要素の断面図で
ある。図において、61はローリングピストン、60は
ベーンで、62はこのベーン60の背部に設けられた他
の圧縮要素のベーンスプリングよりもバネ力を大きくし
たベーンスプリングである。
Example 9. Embodiment 9 of the present invention will be described below with reference to FIG.
1 will be described. FIG. 11 shows the eleventh embodiment of the present invention.
3 is a cross-sectional view of a cylinder decompression-side compression element of the multi-cylinder rotary compressor according to FIG. In the figure, 61 is a rolling piston, 60 is a vane, and 62 is a vane spring having a larger spring force than the vane springs of other compression elements provided at the back of the vane 60.

【0039】次に動作について説明する。通常の運転時
には、ベーン60は、チャンバ15内と等圧で高圧であ
る背圧と、ベーンスプリング62により、圧縮室13の
中心方向に押され、常にローリングピストン61と接触
している事ができるが、容量制御時に高効率運転のため
圧縮室13内が高圧となると、ベーン60は、ベーンス
プリング62によってのみ押されるので、ローリングピ
ストン61が回転中ベーン方向に向う時に、ベーン60
を押す力に負け飛ばされ異音を発生する。そこでベーン
スプリング62を、ローリングピストン61より受ける
力に負けないようにバネ力を大きくしたベーンスプリン
グ62に変更すると、ベーン60は常にローリングピス
トン61に接触し、異音を発生しない。
Next, the operation will be described. During normal operation, the vane 60 is pushed toward the center of the compression chamber 13 by the back pressure, which is a high pressure equal to the pressure inside the chamber 15, and the vane spring 62, and can always be in contact with the rolling piston 61. However, when the pressure inside the compression chamber 13 becomes high due to high efficiency operation during capacity control, the vanes 60 are pushed only by the vane springs 62, so that when the rolling piston 61 faces the vane direction during rotation,
It is defeated by the force of pushing and a strange noise is generated. Therefore, if the vane spring 62 is changed to a vane spring 62 having a large spring force so as not to lose the force received from the rolling piston 61, the vane 60 is always in contact with the rolling piston 61 and no abnormal noise is generated.

【0040】実施例10.また、上記実施例9では、ベ
ーンスプリング62にバネ力を大きくしたものを用いた
が、ベーンスプリング62の本数を増やしてもよく、上
記実施例9と同様の効果を奏する。
Example 10. In the ninth embodiment, the vane spring 62 having a large spring force is used, but the number of the vane springs 62 may be increased, and the same effect as that of the ninth embodiment can be obtained.

【0041】[0041]

【発明の効果】この発明は次に記載する効果を奏する。
請求項1の多気筒回転式圧縮機は、休筒機構付のシリン
ダを有するものにおいて、前記休筒機構付のシリンダ内
の吐出部の近傍に設けられた開口部と、この開口部から
吸入側へ連通する通路と、この通路の開閉を行う弁機構
とを備えた構成にしたので、休筒シリンダ内に漏れたガ
スが入っても、弁機構により吐出部と吸入側をバイパス
することで、漏れたガスを圧縮するロスを軽減し、容量
制御時にも高効率な運転を行える効果を奏する。
The present invention has the following effects.
A multi-cylinder rotary compressor according to claim 1, wherein the multi-cylinder rotary compressor has a cylinder with a cylinder deactivation mechanism, wherein an opening is provided in the vicinity of the discharge part in the cylinder with the cylinder deactivation mechanism, and a suction side from this opening. Since it is configured to include a passage communicating with the passage and a valve mechanism that opens and closes this passage, even if leaked gas enters the cylinder deactivation cylinder, the valve mechanism bypasses the discharge portion and the suction side, The loss of compressing the leaked gas is reduced, and highly efficient operation can be achieved even during capacity control.

【0042】請求項2の多気筒回転式圧縮機は、休筒機
構付のシリンダを有するものにおいて、前記休筒機構付
のシリンダ内の吸入側と密閉容器内とを連通させるバイ
パス通路を備えた構成にしたので、容量制御時に休筒シ
リンダ内が高圧圧力室と等圧になり、圧縮仕事ロスが無
くなり高効率な運転を行える。
A multi-cylinder rotary compressor according to a second aspect of the present invention has a cylinder with a cylinder deactivation mechanism, and is provided with a bypass passage that connects the suction side of the cylinder with the cylinder deactivation mechanism and the inside of a closed container. Since the configuration is adopted, the inside of the cylinder deactivation cylinder becomes equal in pressure to the high-pressure pressure chamber during capacity control, and compression work loss is eliminated, so that highly efficient operation can be performed.

【0043】請求項3の多気筒回転式圧縮機は、休筒制
御弁を用いた休筒機構付の圧縮要素を有する多気筒回転
式圧縮機において、前記休筒機構付の圧縮要素の吐出側
と他の圧縮要素の吐出側との間に設けられ、第1の制御
弁を有する第1のバイパス通路と、前記休筒機構付の圧
縮要素の吐出側と吸入側および前記休筒制御弁との間に
設けられ、第2の制御弁を有する第2のバイパス通路と
を備え、通常運転時は前記休筒制御弁、第1の制御弁は
開、前記第2の制御弁は閉で、容量制御時は前記休筒制
御弁は閉、第1の制御弁及び前記第2の制御弁は開また
は前記休筒制御弁は開、第1の制御弁は閉、前記第2の
制御弁は開とする構成にしたので、弁機構により、休筒
用圧縮要素の吐出側と吸入側と連通し、同じ圧力の高
圧、または低圧とできるため、休筒用圧縮要素では圧縮
は行われず、また漏れて入るガスを圧縮してしまうロス
を低減し、容量制御時にも高効率な運転を行えるという
効果を奏する。
A multi-cylinder rotary compressor according to claim 3 is a multi-cylinder rotary compressor having a compression element with a cylinder deactivation mechanism using a cylinder deactivation control valve, wherein the discharge side of the compression element with the cylinder deactivation mechanism. And a discharge side of another compression element, a first bypass passage having a first control valve, a discharge side and a suction side of the compression element with the cylinder deactivating mechanism, and the cylinder deactivation control valve. And a second bypass passage having a second control valve, and during normal operation, the cylinder deactivation control valve, the first control valve are open, and the second control valve is closed. During capacity control, the cylinder deactivation control valve is closed, the first control valve and the second control valve are open or the cylinder deactivation control valve is open, the first control valve is closed, and the second control valve is Since it is configured to open, the valve mechanism connects the discharge side and the suction side of the cylinder decompression element so that high pressure or low pressure of the same pressure can be applied. It achieved because, not performed the compression in the cylinder deactivation for compression element, also reduces the loss would compress the leakage entering gas, the effect of enabling a highly efficient operation even during capacity control.

【0044】請求項4の多気筒回転式圧縮機は、休筒制
御弁を用いた休筒機構付の圧縮要素を有する多気筒回転
式圧縮機において、前記休筒機構付の圧縮要素の吐出側
と他の圧縮要素の吐出側との間に設けられ、第1の制御
弁を有する第1のバイパス通路と、前記休筒機構付の圧
縮要素の吐出側と前記休筒制御弁の上流側との間に設け
られ、第2の制御弁を有する第2のバイパス通路とを備
え、通常運転時は前記休筒制御弁、第1の制御弁は開、
前記第2の制御弁は閉で、容量制御時は前記休筒制御弁
及び第1の制御弁は閉、前記第2の制御弁は開とする構
成にしたので、弁機構により、休筒用圧縮要素の吐出側
と吸入側と連通し、同じ圧力の低圧とできるため、休筒
用圧縮要素では圧縮は行われず、また漏れて入るガスを
圧縮してしまうロスを低減し、容量制御時にも高効率な
運転を行えるという効果を奏する。
A multi-cylinder rotary compressor according to claim 4 is a multi-cylinder rotary compressor having a compression element with a cylinder deactivation mechanism using a cylinder deactivation control valve, wherein the discharge side of the compression element with the cylinder deactivation mechanism. And a discharge side of another compression element, a first bypass passage having a first control valve, a discharge side of the compression element with the cylinder deactivation mechanism, and an upstream side of the cylinder deactivation control valve. And a second bypass passage having a second control valve, and the cylinder deactivation control valve and the first control valve are opened during normal operation.
Since the second control valve is closed, and the cylinder deactivation control valve and the first control valve are closed and the second control valve is opened during the capacity control, the valve mechanism allows the cylinder deactivation. Since the discharge side and the suction side of the compression element communicate with each other and the same low pressure can be achieved, the cylinder decompression element does not perform compression, and the loss of compressing leaking gas is reduced, and even during capacity control. This has the effect of enabling highly efficient operation.

【0045】請求項5の多気筒回転式圧縮機は、独立し
て冷媒吸入通路が設けられた圧縮要素を有する多気筒回
転式圧縮機において、前記一方の圧縮要素の吐出側と他
方の圧縮要素の吐出側との間に設けられ、第1の制御弁
を有する第1のバイパス通路と、前記一方の圧縮要素の
吐出側と吸入側との間に設けられ、第2の制御弁を有す
る第2のバイパス通路とを備え、通常運転時は前記第1
の制御弁は開、前記第2の制御弁は閉で、容量制御時は
第1の制御弁は閉、前記第2の制御弁は開とする構成に
したので、弁機構により、休筒用圧縮要素の吐出側と吸
入側と連通し、同じ圧力の低圧とできるため、休筒用圧
縮要素では圧縮は行われず、また漏れて入るガスを圧縮
してしまうロスを低減し、容量制御時にも高効率な運転
を行えるという効果を奏する。
A multi-cylinder rotary compressor according to a fifth aspect of the present invention is a multi-cylinder rotary compressor having a compression element in which a refrigerant suction passage is provided independently, and the discharge side of the one compression element and the other compression element. A first bypass passage that is provided between the discharge side and the suction side of the one compression element and that has a second control valve that is provided between the discharge side and the suction side of the one compression element. 2 bypass passages, and the first
The control valve is open, the second control valve is closed, and the first control valve is closed and the second control valve is open during capacity control. Since the discharge side and the suction side of the compression element communicate with each other and the same low pressure can be achieved, the cylinder decompression element does not perform compression, and also reduces the loss of compressing leaked gas, and also during capacity control. This has the effect of enabling highly efficient operation.

【0046】請求項6の多気筒回転式圧縮機は、休筒制
御弁を用いた休筒機構付の圧縮要素を有する多気筒回転
式圧縮機において、前記休筒機構付の圧縮要素の吐出側
と他の圧縮要素の吐出側との間に設けられ、第1の制御
弁を有する第1のバイパス通路と前記休筒機構付の圧縮
要素はその押しのけ量を他の圧縮要素の押しのけ量より
小さくした構成にしたので、休筒シリンダ内に漏れ入る
ガスを減少させ、圧縮仕事ロスを軽減し、容量制御時に
も高効率な運転を行えるという効果を奏する。
A multi-cylinder rotary compressor according to claim 6 is a multi-cylinder rotary compressor having a compression element with a cylinder deactivation mechanism using a cylinder deactivation control valve, wherein the discharge side of the compression element with the cylinder deactivation mechanism. And the discharge side of the other compression element, the first bypass passage having the first control valve and the compression element with the cylinder deactivating mechanism have a displacement smaller than that of the other compression element. With this configuration, it is possible to reduce the amount of gas that leaks into the cylinder deactivation cylinder, reduce compression work loss, and perform highly efficient operation during capacity control.

【0047】請求項7の多気筒回転式圧縮機は、休筒機
構付の圧縮要素を有し、前記休筒機構付の圧縮要素の吸
入側と密閉容器内とを連通させるバイパス通路を備えた
多気筒回転式圧縮機において、前記休筒機構付の圧縮要
素は、そのベーンスプリングのバネ力を他の圧縮要素の
ベーンスプリングのバネ力より大きくした構成にしたの
で、休筒運転時に、休筒側圧縮要素のベーンが、ローリ
ングピストンと離れることなく、異音を発生しない。
A multi-cylinder rotary compressor according to a seventh aspect of the present invention includes a compression element with a cylinder deactivation mechanism, and a bypass passage for connecting the suction side of the compression element with the cylinder deactivation mechanism and the inside of a closed container. In the multi-cylinder rotary compressor, the compression element with the cylinder deactivation mechanism is configured such that the spring force of its vane spring is larger than the spring force of the vane springs of the other compression elements. The vane of the side compression element does not separate from the rolling piston, and no abnormal noise is generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による多気筒回転式圧縮機
の縦断面図である。
FIG. 1 is a vertical sectional view of a multi-cylinder rotary compressor according to a first embodiment of the present invention.

【図2】この発明の実施例1による多気筒回転式圧縮機
の横断面図である。
FIG. 2 is a cross-sectional view of the multi-cylinder rotary compressor according to the first embodiment of the present invention.

【図3】この発明の実施例2による多気筒回転式圧縮機
の縦断面図である。
FIG. 3 is a vertical sectional view of a multi-cylinder rotary compressor according to a second embodiment of the present invention.

【図4】この発明の実施例3による多気筒回転式圧縮機
のモデル図である。
FIG. 4 is a model diagram of a multi-cylinder rotary compressor according to a third embodiment of the present invention.

【図5】この発明の実施例3による多気筒回転式圧縮機
の断面図である。
FIG. 5 is a sectional view of a multi-cylinder rotary compressor according to a third embodiment of the present invention.

【図6】この発明の実施例4による多気筒回転式圧縮機
のモデル図である。
FIG. 6 is a model diagram of a multi-cylinder rotary compressor according to a fourth embodiment of the present invention.

【図7】この発明の実施例5による多気筒回転式圧縮機
のモデル図である。
FIG. 7 is a model diagram of a multi-cylinder rotary compressor according to a fifth embodiment of the present invention.

【図8】この発明の実施例6による多気筒回転式圧縮機
のモデル図である。
FIG. 8 is a model diagram of a multi-cylinder rotary compressor according to a sixth embodiment of the present invention.

【図9】この発明の実施例7による多気筒回転式圧縮機
のモデル図である。
FIG. 9 is a model diagram of a multi-cylinder rotary compressor according to a seventh embodiment of the present invention.

【図10】この発明の実施例8による多気筒回転式圧縮
機の縦断面図である。
FIG. 10 is a vertical sectional view of a multi-cylinder rotary compressor according to an eighth embodiment of the present invention.

【図11】この発明の実施例9による休筒側圧縮要素の
断面図である。
FIG. 11 is a cross-sectional view of an inactive cylinder side compression element according to Embodiment 9 of the present invention.

【図12】従来の多気筒回転式圧縮機の冷凍サイクル図
である。
FIG. 12 is a refrigeration cycle diagram of a conventional multi-cylinder rotary compressor.

【図13】従来の多気筒回転式圧縮機の縦断面図であ
る。
FIG. 13 is a vertical cross-sectional view of a conventional multi-cylinder rotary compressor.

【符号の説明】[Explanation of symbols]

3 休筒シリンダ 6 高圧ガス配管 11 低圧ガス配管 13 休筒用の圧縮要素吸込パイプ 14 二方弁 15 チャンバ 27 開口部 29 バイパスパイプ 40 休筒制御弁 41 第1バイパス通路 42 第1制御弁 43 第2バイパス通路 44 第2制御弁 45 逆止弁 46 逆止弁 57 バイパス通路 62 ベーンスプリング 3 Cylinder Cylinder 6 High Pressure Gas Pipe 11 Low Pressure Gas Pipe 13 Compression Cylinder Suction Pipe for Cylinder Cylinder 14 Two-way Valve 15 Chamber 27 Opening 29 Bypass Pipe 40 Cylinder Cylinder Control Valve 41 First Bypass Passage 42 First Control Valve 43 No. 2 bypass passage 44 second control valve 45 check valve 46 check valve 57 bypass passage 62 vane spring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 及川 智明 静岡市小鹿三丁目18番1号 三菱電機株式 会社静岡製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomoaki Oikawa 3-18-1, Oga, Shizuoka City Shizuoka Manufacturing Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 休筒機構付のシリンダを有する多気筒回
転式圧縮機において、前記休筒機構付のシリンダ内の吐
出部の近傍に設けられた開口部と、この開口部から吸入
側へ連通する通路と、この通路の開閉を行う弁機構とを
備えた多気筒回転式圧縮機。
1. In a multi-cylinder rotary compressor having a cylinder with a cylinder deactivation mechanism, an opening provided in the vicinity of a discharge part in the cylinder with the cylinder deactivation mechanism and a communication from this opening to a suction side. A multi-cylinder rotary compressor having a passage for opening and a valve mechanism for opening and closing the passage.
【請求項2】 休筒機構付のシリンダを有する多気筒回
転式圧縮機において、前記休筒機構付のシリンダ内の吸
入側と密閉容器内とを連通させるバイパス通路を備えた
多気筒回転式圧縮機。
2. A multi-cylinder rotary compressor having a cylinder with a cylinder deactivation mechanism, comprising: a multi-cylinder rotary compressor provided with a bypass passage that connects the suction side in the cylinder with the cylinder deactivation mechanism and the closed container. Machine.
【請求項3】 休筒制御弁を用いた休筒機構付の圧縮要
素を有する多気筒回転式圧縮機において、前記休筒機構
付の圧縮要素の吐出側と他の圧縮要素の吐出側との間に
設けられ、第1の制御弁を有する第1のバイパス通路
と、前記休筒機構付の圧縮要素の吐出側と吸入側および
前記休筒制御弁との間に設けられ、第2の制御弁を有す
る第2のバイパス通路とを備え、通常運転時は前記休筒
制御弁、第1の制御弁は開、前記第2の制御弁は閉で、
容量制御時は前記休筒制御弁は閉、第1の制御弁及び前
記第2の制御弁は開または前記休筒制御弁は開、第1の
制御弁は閉、前記第2の制御弁は開とすることを特徴と
する多気筒回転式圧縮機。
3. A multi-cylinder rotary compressor having a compression element with a cylinder deactivation mechanism using a cylinder deactivation control valve, wherein a discharge side of the compression element with the cylinder deactivation mechanism and a discharge side of another compression element. A first bypass passage having a first control valve provided between the discharge side and the suction side of the compression element with the cylinder deactivation mechanism and the cylinder deactivation control valve; A second bypass passage having a valve, and during normal operation, the cylinder deactivation control valve, the first control valve is open, and the second control valve is closed,
During capacity control, the cylinder deactivation control valve is closed, the first control valve and the second control valve are open or the cylinder deactivation control valve is open, the first control valve is closed, and the second control valve is A multi-cylinder rotary compressor characterized by being opened.
【請求項4】 休筒制御弁を用いた休筒機構付の圧縮要
素を有する多気筒回転式圧縮機において、前記休筒機構
付の圧縮要素の吐出側と他の圧縮要素の吐出側との間に
設けられ、第1の制御弁を有する第1のバイパス通路
と、前記休筒機構付の圧縮要素の吐出側と前記休筒制御
弁の上流側との間に設けられ、第2の制御弁を有する第
2のバイパス通路とを備え、通常運転時は前記休筒制御
弁、第1の制御弁は開、前記第2の制御弁は閉で、容量
制御時は前記休筒制御弁及び第1の制御弁は閉、前記第
2の制御弁は開とすることを特徴とする多気筒回転式圧
縮機。
4. A multi-cylinder rotary compressor having a compression element with a cylinder deactivation mechanism using a cylinder deactivation control valve, wherein a discharge side of the compression element with the cylinder deactivation mechanism and a discharge side of another compression element. A first bypass passage having a first control valve provided between the discharge side of the compression element with the cylinder deactivation mechanism and the upstream side of the cylinder deactivation control valve; A second bypass passage having a valve, the cylinder deactivation control valve, the first control valve is open, the second control valve is closed during normal operation, and the cylinder deactivation control valve during capacity control. A multi-cylinder rotary compressor, wherein the first control valve is closed and the second control valve is opened.
【請求項5】 独立して冷媒吸入通路が設けられた圧縮
要素を有する多気筒回転式圧縮機において、前記一方の
圧縮要素の吐出側と他方の圧縮要素の吐出側との間に設
けられ、第1の制御弁を有する第1のバイパス通路と、
前記一方の圧縮要素の吐出側と吸入側との間に設けら
れ、第2の制御弁を有する第2のバイパス通路とを備
え、通常運転時は前記第1の制御弁は開、前記第2の制
御弁は閉で、容量制御時は第1の制御弁は閉、前記第2
の制御弁は開とすることを特徴とする多気筒回転式圧縮
機。
5. A multi-cylinder rotary compressor having a compression element in which a refrigerant suction passage is independently provided, the multi-cylinder rotary compressor being provided between a discharge side of the one compression element and a discharge side of the other compression element, A first bypass passage having a first control valve;
A second bypass passage having a second control valve is provided between the discharge side and the suction side of the one compression element, and the first control valve is open during the normal operation, and the second bypass passage is provided. Control valve is closed, the first control valve is closed during capacity control, and the second control valve is closed.
The control valve of is a multi-cylinder rotary compressor characterized by being opened.
【請求項6】 休筒制御弁を用いた休筒機構付の圧縮要
素を有する多気筒回転式圧縮機において、前記休筒機構
付の圧縮要素の吐出側と他の圧縮要素の吐出側との間に
設けられ、第1の制御弁を有する第1のバイパス通路
と、前記休筒機構付の圧縮要素はその押しのけ量を他の
圧縮要素の押しのけ量より小さくしたことを特徴とする
多気筒回転式圧縮機。
6. In a multi-cylinder rotary compressor having a compression element with a cylinder deactivation mechanism using a cylinder deactivation control valve, a discharge side of the compression element with the cylinder deactivation mechanism and a discharge side of another compression element. A multi-cylinder rotation characterized in that a first bypass passage provided between and having a first control valve and the compression element with the cylinder deactivation mechanism have a displacement amount smaller than displacement amounts of other compression elements. Type compressor.
【請求項7】 休筒機構付の圧縮要素を有し、前記休筒
機構付の圧縮要素の吸入側と密閉容器内とを連通させる
バイパス通路を備えた多気筒回転式圧縮機において、前
記休筒機構付の圧縮要素は、そのベーンスプリングのバ
ネ力を他の圧縮要素のベーンスプリングのバネ力より大
きくしたことを特徴とする多気筒回転式圧縮機。
7. A multi-cylinder rotary compressor having a compression element with a cylinder deactivation mechanism and comprising a bypass passage communicating the suction side of the compression element with the cylinder deactivation mechanism and the inside of a closed container. The multi-cylinder rotary compressor is characterized in that the compression element with a cylinder mechanism has the spring force of its vane spring made larger than the spring force of the vane spring of other compression elements.
JP4107532A 1991-10-23 1992-04-27 Multi-cylinder rotary compressor Expired - Fee Related JP2803456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4107532A JP2803456B2 (en) 1991-10-23 1992-04-27 Multi-cylinder rotary compressor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27530091 1991-10-23
JP3-275300 1991-10-23
JP4107532A JP2803456B2 (en) 1991-10-23 1992-04-27 Multi-cylinder rotary compressor

Publications (2)

Publication Number Publication Date
JPH05172076A true JPH05172076A (en) 1993-07-09
JP2803456B2 JP2803456B2 (en) 1998-09-24

Family

ID=26447558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4107532A Expired - Fee Related JP2803456B2 (en) 1991-10-23 1992-04-27 Multi-cylinder rotary compressor

Country Status (1)

Country Link
JP (1) JP2803456B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171897A (en) * 2003-12-11 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device
EP1605167A1 (en) * 2003-03-18 2005-12-14 Toshiba Carrier Corporation Rotary sealed compressor and refrigeration cycle apparatus
EP1520990A3 (en) * 2003-09-30 2006-01-11 SANYO ELECTRIC Co., Ltd. Rotary compressor
KR100565338B1 (en) * 2004-08-12 2006-03-30 엘지전자 주식회사 Capacity variable type twin rotary compressor and driving method thereof and airconditioner with this and driving method thereof
KR100585809B1 (en) * 2004-12-28 2006-06-07 엘지전자 주식회사 Modulation type multi rotary compressor and operation method
KR100585810B1 (en) * 2004-12-28 2006-06-07 엘지전자 주식회사 Modulation type rotary compressor with double shell and operation method
JP2008509325A (en) * 2004-08-06 2008-03-27 エルジー エレクトロニクス インコーポレイティド Variable displacement rotary compressor and method of operating the same
US7607902B2 (en) 2005-08-25 2009-10-27 Toshiba Carrier Corporation Closed compressor and refrigerating cycle apparatus
WO2012042894A1 (en) * 2010-09-30 2012-04-05 パナソニック株式会社 Positive displacement compressor
WO2012169181A1 (en) * 2011-06-07 2012-12-13 パナソニック株式会社 Rotary compressor
CN103423163A (en) * 2012-05-24 2013-12-04 广东美芝制冷设备有限公司 Rotary compressor, and jet refrigeration circulating apparatus comprising it
EP2322804A4 (en) * 2008-09-08 2016-09-28 Mitsubishi Heavy Ind Ltd Multiple-stage compressor
JP2018507339A (en) * 2016-02-02 2018-03-15 クワントン メイヂー コンプレッサー カンパニー リミテッド Variable capacity compressor and refrigeration apparatus including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4447859B2 (en) * 2003-06-20 2010-04-07 東芝キヤリア株式会社 Rotary hermetic compressor and refrigeration cycle apparatus
JP4248984B2 (en) 2003-09-19 2009-04-02 東芝キヤリア株式会社 Permanent magnet motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246487A (en) * 1987-03-31 1988-10-13 Mitsubishi Electric Corp Multicylinder rotary compressor
JPS6460795A (en) * 1987-08-31 1989-03-07 Toshiba Corp Rotary compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246487A (en) * 1987-03-31 1988-10-13 Mitsubishi Electric Corp Multicylinder rotary compressor
JPS6460795A (en) * 1987-08-31 1989-03-07 Toshiba Corp Rotary compressor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605167A1 (en) * 2003-03-18 2005-12-14 Toshiba Carrier Corporation Rotary sealed compressor and refrigeration cycle apparatus
EP1605167A4 (en) * 2003-03-18 2011-03-16 Toshiba Carrier Corp Rotary sealed compressor and refrigeration cycle apparatus
US7841838B2 (en) 2003-03-18 2010-11-30 Toshiba Carrier Corporation Rotary closed type compressor and refrigerating cycle apparatus
US7462021B2 (en) 2003-09-30 2008-12-09 Sanyo Electric Co., Ltd. Rotary compressor, and car air conditioner and heat pump type water heater using the compressor
EP1520990A3 (en) * 2003-09-30 2006-01-11 SANYO ELECTRIC Co., Ltd. Rotary compressor
EP1972786A3 (en) * 2003-09-30 2009-06-10 Sanyo Electric Co., Ltd. Rotary compressor, car air conditioner and water heater including the compressor
JP4663978B2 (en) * 2003-12-11 2011-04-06 東芝キヤリア株式会社 Refrigeration cycle equipment
JP2005171897A (en) * 2003-12-11 2005-06-30 Toshiba Kyaria Kk Refrigerating cycle device
JP2008509325A (en) * 2004-08-06 2008-03-27 エルジー エレクトロニクス インコーポレイティド Variable displacement rotary compressor and method of operating the same
KR100565338B1 (en) * 2004-08-12 2006-03-30 엘지전자 주식회사 Capacity variable type twin rotary compressor and driving method thereof and airconditioner with this and driving method thereof
KR100585810B1 (en) * 2004-12-28 2006-06-07 엘지전자 주식회사 Modulation type rotary compressor with double shell and operation method
KR100585809B1 (en) * 2004-12-28 2006-06-07 엘지전자 주식회사 Modulation type multi rotary compressor and operation method
US7607902B2 (en) 2005-08-25 2009-10-27 Toshiba Carrier Corporation Closed compressor and refrigerating cycle apparatus
EP2322804A4 (en) * 2008-09-08 2016-09-28 Mitsubishi Heavy Ind Ltd Multiple-stage compressor
WO2012042894A1 (en) * 2010-09-30 2012-04-05 パナソニック株式会社 Positive displacement compressor
WO2012169181A1 (en) * 2011-06-07 2012-12-13 パナソニック株式会社 Rotary compressor
JPWO2012169181A1 (en) * 2011-06-07 2015-02-23 パナソニック株式会社 Rotary compressor
CN103423163A (en) * 2012-05-24 2013-12-04 广东美芝制冷设备有限公司 Rotary compressor, and jet refrigeration circulating apparatus comprising it
JP2018507339A (en) * 2016-02-02 2018-03-15 クワントン メイヂー コンプレッサー カンパニー リミテッド Variable capacity compressor and refrigeration apparatus including the same

Also Published As

Publication number Publication date
JP2803456B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
JPH05172076A (en) Multicylinder rotary compressor
JPH01247786A (en) Two-cylinder type rotary compressor
US20090104060A1 (en) Compressor
JP2904572B2 (en) Multi-cylinder rotary compressor
US4990073A (en) Two-cylinder rotary compressor having improved valve cover structure
US6336800B1 (en) Rotary compressor
KR100360861B1 (en) Apparatus for preventing vacuum compression of scroll compressor
JPH10141271A (en) Rotary compressor
JPH01253583A (en) Low-pressure type rotary compressor
KR100332801B1 (en) Apparatus for preventing vacuum compression of scroll compressor
KR100408246B1 (en) Gas discharge structure of rotary twin compressor
JPH0584394B2 (en)
KR100504920B1 (en) Safety apparatus for scroll compressor
KR100317379B1 (en) Apparatus for preventing vacuum compression of scroll compressor
JPH01277695A (en) Two-cylinder type rotary compressor
JPH06167285A (en) Scroll compressor
JPH03260391A (en) Closed type rotary compressor
JPH0225037B2 (en)
JP2790515B2 (en) 2-cylinder rotary compressor
JPH07217569A (en) Rotary compressor
JPH05133363A (en) Closed type compressor
KR100595581B1 (en) Modulation apparatus for vain compressor
JP2000291573A (en) Scroll compressor
JP4044793B2 (en) Scroll compressor
JPH025781A (en) Scroll type compressor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees