[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0517143Y2 - - Google Patents

Info

Publication number
JPH0517143Y2
JPH0517143Y2 JP18723985U JP18723985U JPH0517143Y2 JP H0517143 Y2 JPH0517143 Y2 JP H0517143Y2 JP 18723985 U JP18723985 U JP 18723985U JP 18723985 U JP18723985 U JP 18723985U JP H0517143 Y2 JPH0517143 Y2 JP H0517143Y2
Authority
JP
Japan
Prior art keywords
furnace
core tube
transparent
electric furnace
furnace core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18723985U
Other languages
Japanese (ja)
Other versions
JPS6295731U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18723985U priority Critical patent/JPH0517143Y2/ja
Publication of JPS6295731U publication Critical patent/JPS6295731U/ja
Application granted granted Critical
Publication of JPH0517143Y2 publication Critical patent/JPH0517143Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tunnel Furnaces (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は主に高真空高温状態で各種材料の物理
的乃至化学的性質を調べたり、新材料の研究開
発、例えばウエハー等の加熱処理や結晶成長、高
温ガスフロー中の試料の表面状態観察下での気相
成長、速い昇温、安定な温度保持を要する生産炉
等各種用途に応じて使用される透明電気炉に関す
るもので、特にすぐれた均熱特性を有するゴール
ドミラー管を採用した高真空熱処理装置の省エネ
に適合した改良型を提供するものである。
[Detailed description of the invention] (Field of industrial application) This invention is mainly used to investigate the physical and chemical properties of various materials under high vacuum and high temperature conditions, research and development of new materials, such as heat treatment of wafers, etc. This is particularly excellent for transparent electric furnaces used for various purposes such as crystal growth, vapor phase growth while observing the surface condition of samples during high-temperature gas flow, and production furnaces that require rapid temperature rise and stable temperature maintenance. The present invention provides an improved type of high-vacuum heat treatment equipment that is suitable for energy saving and employs a gold mirror tube that has excellent heat uniformity characteristics.

(従来の技術) 従来に於いては、高真空、高温状態で各種材料
の物理的、化学的性質を調べ、新材料の研究開発
を行う際に高真空熱処理装置を用いることにより
電気炉内の均熱帯を長く採り、又装置全体を小型
簡略化することを要求するものであつた。
(Conventional technology) In the past, the physical and chemical properties of various materials were investigated under high vacuum and high temperature conditions, and high vacuum heat treatment equipment was used to conduct research and development of new materials. This required a long soaking zone and the overall size of the device to be simplified.

又、この種の従来装置に使用している第1図に
示した電気炉1は通常の断熱材を使用せず円筒形
パイレツクスガラスの内面に金の薄膜を塗布せし
めたゴールドミラー管を採用し螺線状のインコネ
ルシースのヒーターのピツチを両端で密にする等
して電気炉の均熱帯を長く採るために特別の工夫
がなされたものであつた。
In addition, the electric furnace 1 shown in Figure 1 used in this type of conventional equipment does not use ordinary heat insulating material, but instead uses a gold mirror tube with a thin gold film coated on the inner surface of cylindrical Pyrex glass. Special measures were taken to extend the soaking period of the electric furnace by making the pitches of the spiral-shaped Inconel sheath heater tighter at both ends.

然しながらこの透明電気炉は炉芯管2として全
長L0に亘り透明石英円筒を使用しているので該
透明電気炉1からの熱が透明石英管材の熱伝導、
石英管内の輻射、ガス雰囲気中による対流伝導等
により、真空シールされている金属フランジ3の
温度を上昇させ、そこからリークして真空度が低
下してしまう等の欠点があつた。
However, since this transparent electric furnace uses a transparent quartz cylinder over the entire length L0 as the furnace core tube 2 , the heat from the transparent electric furnace 1 is transferred by heat conduction through the transparent quartz tube material.
Radiation in the quartz tube, convection conduction in the gas atmosphere, etc. raise the temperature of the vacuum-sealed metal flange 3, causing leaks from there and lowering the degree of vacuum.

この時の炉内の温度分布特性は縦軸炉内温度
(℃)、横軸炉内距離(mm)に採ると第4図中点線
で示す如くなる。従つてこの欠点を防止する為に
電気炉1と金属フランジ3との距離を十分長く採
り又金属フランジ個所を水冷構造にする等工夫し
ても装置全体のスペースを多く必要とし構造が煩
雑化するものであり、当然のことながらその熱の
損失によつて電気炉1内の均熱帯も短かくなるも
のであつた。
The temperature distribution characteristics in the furnace at this time are as shown by the dotted line in FIG. 4 when the vertical axis is the temperature inside the furnace (° C.) and the horizontal axis is the distance inside the furnace (mm). Therefore, even if measures are taken to prevent this drawback, such as by making the distance between the electric furnace 1 and the metal flange 3 sufficiently long, or by providing a water-cooled structure for the metal flange, the entire device will require a lot of space and the structure will become complicated. Naturally, the soaking zone in the electric furnace 1 was shortened due to the loss of heat.

(技術的課題) 而して、本考案は従来技術の欠点に鑑みなされ
たもので、金属フランジ部への熱伝導、輻射、対
流等による温度上昇及びそれに伴う真空度の低下
を防止し、石英炉芯管が短いものを採用してもそ
の金属フランジ部の上昇温度が少なく熱の損失も
少なくなり電気炉内の均熱帯も十分長く設定し得
る電気炉を提案することを技術的課題とするもの
である。
(Technical Issues) The present invention was developed in view of the shortcomings of the prior art, and it prevents the temperature increase due to heat conduction, radiation, convection, etc. to the metal flange part and the accompanying decrease in the degree of vacuum, and The technical challenge is to propose an electric furnace in which even if a short furnace core tube is adopted, the temperature rise at the metal flange part is small, heat loss is reduced, and the soaking zone inside the electric furnace can be set sufficiently long. It is something.

(技術的手段) 本考案では上記の技術的課題を解決するために
特に炉芯管である通常の透明石英管を電気炉内に
挿入した部分である中心部を従来通りの構成にし
てその両端部を熱伝導率の小さい不透明石英材を
採用することによつて、金属フランジ部の温度上
昇をカツトしたものであり、具体的には図示(第
2図乃至第4図)の実施例に示す如く下記の構成
となる。
(Technical means) In order to solve the above-mentioned technical problem, the present invention has created a core tube, which is a normal transparent quartz tube inserted into an electric furnace, with a conventional configuration, and both ends of the core tube. By using an opaque quartz material with low thermal conductivity for the metal flange part, the temperature rise in the metal flange part is reduced. The configuration is as follows.

10は高真空熱処理装置であり大別して高真空
排気ユニツト11、炉芯管12、透明電気炉1
3、温度コントローラー14とから構成してあ
る。
Reference numeral 10 denotes a high vacuum heat treatment apparatus, which is roughly divided into a high vacuum exhaust unit 11, a furnace core tube 12, and a transparent electric furnace 1.
3 and a temperature controller 14.

前記高真空排気ユニツト11は真空度略10-6
Torrまで排気可能なロータリ拡散ポンプ15を
採用してあり該高真空排気ユニツト11のガスケ
ツト16と炉芯管12に真空シールを施して取付
た金属フランジ17とをフレキシブル配管18を
介して連結してある。19及び20は真空バルブ
である。
The high vacuum exhaust unit 11 has a vacuum degree of approximately 10 -6
A rotary diffusion pump 15 capable of evacuation up to Torr is employed, and a gasket 16 of the high vacuum evacuation unit 11 and a metal flange 17 attached to the furnace core tube 12 with a vacuum seal are connected via a flexible pipe 18. be. 19 and 20 are vacuum valves.

前記透明電気炉13は外側を透明のパイレツク
ス管の内壁に金の薄膜を塗布したゴールドミラー
管21を採用し、内側で赤外線を略95%以上反射
せしめ、同時に外部へは可視光線を透過すべく成
してあり、その両端にある支持部22,23間の
全長は略Lを有している。
The transparent electric furnace 13 uses a gold mirror tube 21, which is a transparent Pyrex tube coated with a thin gold film on the inner wall, so that it reflects approximately 95% or more of infrared rays on the inside, and at the same time transmits visible rays to the outside. The total length between the supporting portions 22 and 23 at both ends thereof is approximately L.

24は透明電気炉13内に挿入し螺線状に捲回
して成る発熱体ヒーターで、ニツケル線等でシー
スヒーターの外被覆部を溶接し略籠型に形成する
と共に、透明電気炉13の両端近傍を密にし中心
部である試料加熱部は粗にそのピツチを変えるな
ど均熱特性を良くするため適宜工夫してある。
Reference numeral 24 denotes a heating element heater which is inserted into the transparent electric furnace 13 and wound in a spiral manner. Appropriate measures have been taken to improve heat uniformity, such as by making the sample heating area denser in the vicinity and roughly changing the pitch of the sample heating area in the center.

又、前記発熱体ヒーター24は耐熱金属インコ
ネルにシースされたニクロム線等を採用し中間
で、酸化マグネシユウムで絶縁し、先端にてヒー
ター部とインコネルとを溶着して無誘導巻に構成
してある。
The heating element heater 24 employs a nichrome wire or the like sheathed in a heat-resistant metal Inconel, insulated with magnesium oxide in the middle, and welded the heater part and Inconel at the tip to form a non-inductively wound structure. .

従つて透明電気炉13の発熱体ヒーター24か
ら発する赤外線によつて炉芯管12内に載置した
試料の加熱均熱効果を高めると共に加熱中でも炉
内試料の形状、色の変化等を肉眼で観察すべく成
してある。又前記炉芯管12を透明電気炉13内
に挿入した部分を透明石英材から構成すると共
に、炉芯管12の透明電気炉13の支持部22,
23より外部へ張出した両端部分を不透明石英材
から成る不透明炉芯管25A,25Bに形成して
架台26に固定した前記支持部22,23の位置
で透明石英材から成る炉芯管12と熱溶着等によ
つて一体化してある。この両端部分の不透明炉芯
管25A,25Bの夫々の全長即ち支持部22か
ら金属フランジ17までの距離は長さlを有して
おり又他端側の金属フランジ27と支持部23ま
での距離は略同一の長さlを有している。
Therefore, the infrared rays emitted from the heating element heater 24 of the transparent electric furnace 13 enhance the heating and soaking effect of the sample placed in the furnace core tube 12, and even during heating, changes in the shape and color of the sample inside the furnace can be observed with the naked eye. It is made for observation. Further, the part where the furnace core tube 12 is inserted into the transparent electric furnace 13 is made of transparent quartz material, and the supporting portion 22 of the transparent electric furnace 13 of the furnace core tube 12,
Opaque furnace core tubes 25A and 25B made of opaque quartz are formed with both end portions projecting outward from 23, and the furnace core tube 12 made of transparent quartz is heated at the positions of the supports 22 and 23, which are fixed to a pedestal 26. They are integrated by welding or the like. The total length of each of the opaque furnace core tubes 25A and 25B at both ends, that is, the distance from the support part 22 to the metal flange 17, has a length l, and the distance from the metal flange 27 at the other end to the support part 23. have substantially the same length l.

28及び29は夫々金属フランジ17,27を
架台26上に支持固定せしめた支持枠であり、前
記炉芯管12を略水平に保持してある。
Reference numerals 28 and 29 denote support frames in which the metal flanges 17 and 27 are supported and fixed on the frame 26, respectively, and hold the furnace core tube 12 substantially horizontally.

30は前記金属フランジ27に設けた試料出入
口であり、該金属フランジ27は前記不透明炉芯
管25Bに真空シールを施して取付けてある。
Reference numeral 30 denotes a sample inlet/outlet provided in the metal flange 27, and the metal flange 27 is attached to the opaque furnace core tube 25B with a vacuum seal applied thereto.

前記温度コントローラー14はマイコンを内臓
して、そのプログラム回路によつて透明電気炉1
3内に温度を希望するプログラム例えば昇温、保
持、降温に従つて自動的にコントロールすべく成
してある。
The temperature controller 14 has a built-in microcomputer, and the transparent electric furnace 1 is controlled by its program circuit.
3, the temperature is automatically controlled according to a desired program such as heating, holding, and cooling.

次に炉芯管12の両端部分に従来の透明石英材
を採用した場合と本実施例の如く不透明石英材を
採用した場合との対比について説明する。
Next, a comparison between the case where a conventional transparent quartz material is used for both ends of the furnace core tube 12 and the case where an opaque quartz material is used as in this embodiment will be explained.

透明石英材と不透明石英材(共に東芝セラミツ
クス製を採用)との熱伝導率は、 透明石英材 0.057cal/cm sec℃(800℃) 不透明石英材 0.053cal/cm sec℃(800℃) であり、このときの金属フランジ19,27の温
度上昇は炉内温度800℃に於いて、 透明石英材の場合、 全長 1000mm、l=200mmで約100℃ 不透明石英材の場合、 全長 800mm、l=100mmで約100℃ 従つて不透明石英材を採用した場合には両端部
分の夫々の長さlが短かくても金属フランジ1
9,27の温度上昇は少なく又水冷も不要とな
る。
The thermal conductivity of transparent quartz material and opaque quartz material (both manufactured by Toshiba Ceramics) is 0.057 cal/cm sec°C (800°C) for transparent quartz material and 0.053 cal/cm sec°C (800°C) for opaque quartz material. At this time, the temperature rise of the metal flanges 19 and 27 is approximately 100°C at a furnace temperature of 800°C, in the case of transparent quartz material, total length 1000 mm, l = 200 mm, and in the case of opaque quartz material, total length 800 mm, l = 100 mm. Therefore, if opaque quartz material is used, even if the length l of both ends is short, the metal flange 1
9 and 27, the temperature rise is small and water cooling is not necessary.

又、長さLを有する透明電気炉14内の均熱帯
の長さは雰囲気空気中、コントローラーKeep温
度が800℃に於いて、 透明石英材の場合 炉長L=508mmのとき炉長の48%が±5℃、炉
長の30%が±2℃であり、 不透明石英材の場合、 炉長L=508mmに於いて炉長の70%が±5℃、
及び炉長の50%が±2℃との範囲内にある。(第
4図参照) (作用) 上記の技術的手段は下記の如く作用する。
In addition, the length of the soaking zone in the transparent electric furnace 14 having length L is 48% of the furnace length in the case of transparent quartz material when the furnace length L = 508 mm when the controller keep temperature is 800°C in the air atmosphere. is ±5℃, 30% of the furnace length is ±2℃, and in the case of opaque quartz material, at furnace length L = 508 mm, 70% of the furnace length is ±5℃,
and 50% of the furnace length is within the range of ±2°C. (See Figure 4) (Operation) The above technical means operates as follows.

先ず、試料出入口30を開蓋してそこから炉芯
管12内の略中央に加熱用試料を載置し、然る
後、試料出入口30を閉蓋する。
First, the sample inlet/outlet 30 is opened and a heating sample is placed therein approximately in the center of the furnace core tube 12, and then the sample inlet/outlet 30 is closed.

次いで真空バルブ19,20等を開成して、高
真空排気ユニツト11のロータリ拡散ポンプ15
等を作動せしめて炉芯管12内を高真空度、略
10-6Torrにまで排気する。このとき、炉芯管1
2内を他のガス雰囲気に設定するために稀ガス類
等を充填せしめても良い。
Next, the vacuum valves 19, 20, etc. are opened, and the rotary diffusion pump 15 of the high vacuum exhaust unit 11 is opened.
etc. to create a high vacuum inside the furnace core tube 12.
Exhaust to 10 -6 Torr. At this time, the furnace core tube 1
In order to set the inside of 2 to another gas atmosphere, a rare gas or the like may be filled.

然る後、真空バルブ19,20等を閉成して温
度コントローラー14の作動によつて発熱体ヒー
ター24に電流を流しその赤外線等の輻射熱によ
つて試料を加熱する。
Thereafter, the vacuum valves 19, 20, etc. are closed, and the temperature controller 14 is operated to cause current to flow through the heating element heater 24, and the sample is heated by radiant heat such as infrared rays.

然る時、輻射熱はゴールドミラー管21によつ
て内部へ反射せしめられて外部に透過しないので
効率良く試料を加熱することが出来、又可視光線
は全て外部へ透過するので加熱中炉内試料の形状
や色の変化を観察することが出来る。
At this time, the radiant heat is reflected inside by the gold mirror tube 21 and does not pass through to the outside, so the sample can be heated efficiently.Also, all visible light is transmitted to the outside, so the sample inside the furnace is heated. You can observe changes in shape and color.

一方、炉芯管12の両端部分に形成した不透明
炉芯管25A,25Bを照射する発熱体ヒーター
24からの輻射熱はその熱伝導性が悪いので不透
明炉芯管25A,25Bから金属フランジ17,
27へ伝わる熱は少なくなる。
On the other hand, since the radiant heat from the heating element heater 24 that irradiates the opaque furnace core tubes 25A, 25B formed at both ends of the furnace core tube 12 has poor thermal conductivity, the radiant heat from the opaque furnace core tubes 25A, 25B is transferred from the metal flange 17
Less heat is transferred to 27.

従つて全長lの短かい不透明炉芯管25A,2
5Bを採用しても金属フランジ17,27の温度
上昇は少なく熱の損失も少ないので、その透明電
気炉13内の均熱帯域を広くすることが出来、常
時一定した真空度を維持することも出来る。
Therefore, the short opaque furnace core tube 25A, 2 with a total length l
Even if 5B is adopted, the temperature rise of the metal flanges 17, 27 is small and there is little heat loss, so the soaking zone in the transparent electric furnace 13 can be widened and a constant degree of vacuum can be maintained at all times. I can do it.

又、特別に水冷装置を金属フランジ17,27
部分に附加せしめる必要もない。
In addition, the water cooling device is specially equipped with metal flanges 17, 27.
There is no need to add it to the part.

(効果) 而して、本考案は下記の如き特有の効果を有す
るものである。
(Effects) The present invention has the following unique effects.

特に、炉芯管12の両端部分に小さな熱伝導率
を有する不透明石英材から成る炉芯管を採用した
ので、炉芯管12の熱伝導、炉内での輻射熱、ガ
ス雰囲気中での対流、熱伝導等による金属フラン
ジ17,27の温度上昇を防止することが出来、
炉内での熱損失も少なくなりその均熱帯域も十分
に長く設定することが出来る等の多大なる利点が
ある。
In particular, since a furnace core tube made of opaque quartz material with low thermal conductivity is adopted at both ends of the furnace core tube 12, heat conduction of the furnace core tube 12, radiant heat in the furnace, convection in the gas atmosphere, It is possible to prevent the temperature rise of the metal flanges 17, 27 due to heat conduction, etc.
There are great advantages such as less heat loss in the furnace and the soaking zone can be set to be sufficiently long.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術を示すものである。第2図乃
至第4図は本考案の実施例を示し、第2図は高真
空熱処理装置の全体構成図、第3図は透明電気炉
の要部の構造図、第4図は縦軸に炉内温度(℃)
横軸に炉内距離(mm)を採つた温度分布特性を示
す説明図である。 12……炉芯管、13……透明電気炉、25
A,25B……不透明炉芯管、17,27……金
属フランジ。
FIG. 1 shows the prior art. Fig. 2 to Fig. 4 show an embodiment of the present invention, Fig. 2 is an overall configuration diagram of a high vacuum heat treatment equipment, Fig. 3 is a structural diagram of main parts of a transparent electric furnace, and Fig. 4 is a vertical axis. Furnace temperature (℃)
FIG. 2 is an explanatory diagram showing temperature distribution characteristics with the distance within the furnace (mm) taken on the horizontal axis. 12...Furnace core tube, 13...Transparent electric furnace, 25
A, 25B... Opaque furnace core tube, 17, 27... Metal flange.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 炉芯管12の透明電気炉13内に挿入した部分
を透明石英材より構成すると共に、その両端部分
の金属フランジ17,27へ連らなる処の透明電
気炉13から外へ張出した部分を熱伝導率の小さ
な不透明石英材より構成した高真空熱処理装置。
The part of the furnace core tube 12 inserted into the transparent electric furnace 13 is made of transparent quartz material, and the parts extending outside from the transparent electric furnace 13 that connect to the metal flanges 17 and 27 at both ends are heated. High vacuum heat treatment equipment made of opaque quartz material with low conductivity.
JP18723985U 1985-12-06 1985-12-06 Expired - Lifetime JPH0517143Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18723985U JPH0517143Y2 (en) 1985-12-06 1985-12-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18723985U JPH0517143Y2 (en) 1985-12-06 1985-12-06

Publications (2)

Publication Number Publication Date
JPS6295731U JPS6295731U (en) 1987-06-18
JPH0517143Y2 true JPH0517143Y2 (en) 1993-05-10

Family

ID=31137536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18723985U Expired - Lifetime JPH0517143Y2 (en) 1985-12-06 1985-12-06

Country Status (1)

Country Link
JP (1) JPH0517143Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135543A (en) * 1999-08-26 2001-05-18 Nikko Consulting & Engineering Co Ltd Device for heat treatment
JP6151552B2 (en) * 2013-04-26 2017-06-21 高砂工業株式会社 Rotary kiln seal structure and rotary kiln

Also Published As

Publication number Publication date
JPS6295731U (en) 1987-06-18

Similar Documents

Publication Publication Date Title
JP3479020B2 (en) Heat treatment equipment
JPH0583172B2 (en)
JPH06295915A (en) Manufacturing device for semiconductor device and manufacture of semiconductor device
JP2781616B2 (en) Semiconductor wafer heat treatment equipment
JPH0517143Y2 (en)
KR101289013B1 (en) The vacuum heat treatment apparatus which is possible to control a rapid temperature and the atmosphere
JP2004214283A (en) Semiconductor device manufacturing apparatus
JP3240180B2 (en) Heat treatment equipment
JPS6024377A (en) Method and device for producing deposited film
JPH06221677A (en) Gas heater
JP3112672B1 (en) Vertical heating device
CN220324417U (en) Semiconductor film annealing device
McRitchie et al. Design of a High‐Temperature Resistance Furnace
JPS60186023A (en) Steam treating device
JP2557137B2 (en) Heating equipment for semiconductor manufacturing
JP2001093841A (en) Apparatus for thermally treating at high temperature and under high vacuum
JPH01130523A (en) Vertical furnace for heat-treating semiconductor
JPS5824711B2 (en) Furnace temperature control device
JPS5881930A (en) Softening furnace for wire material
JPH05343388A (en) Heat treatment apparatus
JPH063795B2 (en) Heat treatment equipment for semiconductor manufacturing
JPH03207861A (en) Heater
JPH0566974U (en) Infrared rapid thermal processing equipment
JP2777643B2 (en) Semiconductor wafer heat treatment apparatus and semiconductor wafer heat treatment apparatus
JP2002357483A (en) Manufacturing method for temperature detector