[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05170437A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH05170437A
JPH05170437A JP3340911A JP34091191A JPH05170437A JP H05170437 A JPH05170437 A JP H05170437A JP 3340911 A JP3340911 A JP 3340911A JP 34091191 A JP34091191 A JP 34091191A JP H05170437 A JPH05170437 A JP H05170437A
Authority
JP
Japan
Prior art keywords
oxide superconductor
thin film
cuo
infinite
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3340911A
Other languages
Japanese (ja)
Inventor
Yoshiaki Terajima
喜昭 寺島
Toshie Sato
利江 佐藤
Sumio Ikegawa
純夫 池川
Tadao Miura
忠男 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3340911A priority Critical patent/JPH05170437A/en
Publication of JPH05170437A publication Critical patent/JPH05170437A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce an ACuO2 type oxide superconductor having an infinite CuO2 layered structure, especially an oxide superconductor capable of producing a thin film suitable for application to an electronic device without using a high pressure process. CONSTITUTION:Atoms or molecules for a monoatomic layer of A1-xMxO and atoms or molecules for a monoatomic layer of CuO are alternately deposited on a substrate heated to 510-700 deg.C by a thin film forming method in an oxidizing atmosphere to produce the objective oxide superconductor represented by a formula (A1-xMx)Cu1Oy, [where A is at least one of alkaline earth metals, M is at least one among rare earth elements, Ag and alkaline earth metals, 0<(x)<1 and (y) is the amt. of oxygen].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体の製造
方法に係り、特に結晶構造が単純なACuO2 型の酸化物超
電導体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an oxide superconductor, and more particularly to a method for manufacturing an ACuO 2 type oxide superconductor having a simple crystal structure.

【0002】[0002]

【従来の技術】酸化物超電導体としては、超電導状態へ
の転移温度Tc が約 90Kの Y系酸化物超電導体(Y1 Ba2
Cu3 O7-δ(0<δ<1))、同約110KのBi系酸化物超電導
体(Bi2 Sr2 Ca2 Cu3 Oz )等が知られており、実用化
に向けて研究が進められている。しかし、これらの酸化
物超電導体の結晶構造は複雑で、例えば Y系の超電導体
の場合、単位結晶は BaO層、 CuO層、 BaO層、 CuO
2 層、 Y層、 CuO2 層の 6層からなっており、またBi系
の超電導体ではそれ以上の数の層からなっている。
2. Description of the Related Art As an oxide superconductor, a Y-based oxide superconductor (Y 1 Ba 2 ) having a transition temperature T c to the superconducting state of about 90K is used.
Cu 3 O 7-δ (0 <δ <1)), Bi-based oxide superconductor (Bi 2 Sr 2 Ca 2 Cu 3 O z ) of about 110 K are known, and research toward practical application Is being promoted. However, the crystal structure of these oxide superconductors is complicated. For example, in the case of Y-based superconductors, the unit crystal is BaO layer, CuO layer, BaO layer, CuO layer.
It consists of 6 layers, 2 layers, Y layer, and CuO 2 layer, and more than that in Bi type superconductor.

【0003】ところで、酸化物超電導体を電子デバイス
へ応用するためには、薄膜化することが必須となるが、
Y系やBi系等の酸化物超電導体では、上記したように結
晶構造が複雑であることから、良質な薄膜を作製するこ
とが困難で、膜中に結晶欠陥が生じたり、また膜表面が
粗くなり易いという欠点があった。このような欠点は、
電子デバイスへの応用にとって大きな障害となってい
た。
By the way, in order to apply an oxide superconductor to an electronic device, it is essential to make it thin.
In Y-based and Bi-based oxide superconductors, since the crystal structure is complicated as described above, it is difficult to produce a high-quality thin film, crystal defects occur in the film, and the film surface is It had a drawback that it became coarse. Such drawbacks are
It has been a major obstacle to application to electronic devices.

【0004】一方、 CuO2 層と A1-x Lnx 層(Aはアルカ
リ土類元素を、Lnは希土類元素等を示す)とが交互に重
なっただけの簡単な結晶構造(以下、無限 CuO2 レイア
ー構造と記す)を有する、ACuO2 型の酸化物超電導体
((A1-x Lnx )Cu1 Oy )が知られている。しかし、上
記結晶構造の酸化物超電導体は、 25000気圧というよう
な高圧中でのみ合成されており、高圧合成以外では組成
が(A1-x Lnx )Cu1 Oy であっても、無限 CuO2 レイア
ー構造とは異なる、例えば 2重の CuOチェーンを持つ結
晶構造となり、超電導体にはならないという問題があっ
た。
On the other hand, a simple crystal structure in which CuO 2 layers and A 1-x Ln x layers (A is an alkaline earth element, Ln is a rare earth element, etc.) are alternately stacked (hereinafter referred to as infinite CuO An ACuO 2 type oxide superconductor ((A 1-x Ln x ) Cu 1 O y ) having a two- layer structure is known. However, the oxide superconductor having the above crystal structure is synthesized only under high pressure such as 25000 atm, and even if the composition is (A 1-x Ln x ) Cu 1 O y , it is infinite. There was a problem that the structure was different from the CuO 2 layer structure, for example, it had a double CuO chain crystal structure and could not be a superconductor.

【0005】[0005]

【発明が解決しようとする課題】上述したように、無限
CuO2 レイアー構造を有するACuO2 型の酸化物超電導体
は、結晶構造的には電子デバイスへの応用に有利と考え
られているものの、従来の製造方法では数万気圧以上の
高圧中でのみしか合成されておらず、高圧合成以外では
超電導体とはならないという欠点を有していた。このよ
うなことから、ACuO2 型の酸化物超電導体を一般的な方
法で製造可能にすることが強く望まれていた。
As described above, infinite
Although the ACuO 2 type oxide superconductor having a CuO 2 layer structure is considered to be advantageous for application to electronic devices in terms of crystal structure, the conventional manufacturing method can only be used at a high pressure of tens of thousands of atmospheric pressure or more. It was not synthesized, and had the drawback that it could not be a superconductor except by high-pressure synthesis. Therefore, it has been strongly desired to manufacture an ACuO 2 type oxide superconductor by a general method.

【0006】本発明は、このような課題に対処してなさ
れたもので、高圧プロセスを用いることなく、無限 CuO
2 レイアー構造の酸化物超電導体、特に電子デバイスへ
の応用に適した薄膜を製造することを可能にした酸化物
超電導体の製造方法を提供することを目的としている。
[0006] The present invention has been made to address such a problem, and can achieve infinite CuO without using a high pressure process.
It is an object of the present invention to provide a method for producing an oxide superconductor having a two- layer structure, which makes it possible to produce a thin film suitable for application to an electronic device, in particular.

【0007】[0007]

【課題を解決するための手段】本発明の酸化物超電導体
の製造方法は、(A1-x Mx )Cu1 Oy 酸化物超電導体
(ただし、 Aはアルカリ土類元素から選ばれる少なくと
も 1種の元素を、 Mは希土類元素、Agおよびアルカリ類
元素から選ばれる少なくとも 1種の元素を示し、xは 0
< x< 1を満足する数を、 yは酸素量を示す)を製造す
るにあたり、 510℃〜 700℃に加熱した基板上に、 A
1-x Mx O 1原子層分の原子あるいは分子とCuO 1原子
層分の原子あるいは分子とを、薄膜形成法により酸化雰
囲気中で交互に堆積させることを特徴としている。
Means for Solving the Problems The method for producing an oxide superconductor according to the present invention is (A 1-x M x ) Cu 1 O y oxide superconductor (where A is at least selected from alkaline earth elements). One element, M is at least one element selected from rare earth elements, Ag and alkali elements, and x is 0
<X <1, y is the amount of oxygen) is manufactured on the substrate heated to 510 ℃ to 700 ℃.
It is characterized in that atoms or molecules of 1-x M x O 1 atomic layer and CuO 1 atomic layer of atoms or molecules are alternately deposited in an oxidizing atmosphere by a thin film forming method.

【0008】[0008]

【作用】本発明の酸化物超電導体の製造方法において
は、 510℃〜 700℃に加熱した基板上に、 A1-x Mx O
の 1原子層と CuOの 1原子層とを交互に堆積している。
こうすることによって、隣接する 2種の酸化物層が互い
に反応して、基板面に対して垂直方向に A1-x Mx 層と
CuO2 層とが並んだ、無限 CuO2 レイアー構造を有する
(A1-x Mx )Cu1 Oy が形成され、c軸が膜面に垂直に
配向した酸化物超電導体薄膜となる。また、基板温度が
700℃以下と低いために、 2重の CuOチェーンを持つ結
晶構造、あるいは( A1-x Lnx 2 Cu1 O3 に変化する
ことはない。したがって、従来のように数万気圧以上の
高圧中でなくても、無限 CuO2 レイアー構造の酸化物超
電導体を再現性よく作製することが可能となる。
In the method for producing an oxide superconductor according to the present invention, A 1-x M x O 2 is formed on a substrate heated at 510 ° C to 700 ° C.
1 atomic layer of CuO and 1 atomic layer of CuO are deposited alternately.
By doing so, two adjacent oxide layers react with each other to form an A 1-x M x layer perpendicular to the substrate surface.
Infinite CuO 2 layer structure with CuO 2 layer side by side
(A 1-x M x ) Cu 1 O y is formed and becomes an oxide superconductor thin film in which the c-axis is oriented perpendicular to the film surface. Also, if the substrate temperature is
Since it is as low as 700 ℃ or less, it does not change to the crystal structure with double CuO chain or (A 1-x Ln x ) 2 Cu 1 O 3 . Therefore, it is possible to reproducibly produce an oxide superconductor having an infinite CuO 2 layer structure without using a high pressure of tens of thousands of atmospheres or more as in the conventional case.

【0009】[0009]

【実施例】次に、本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0010】図1は、本発明の酸化物超電導体の製造方
法を実施するためのスパッタリング装置の一構成例を示
す図である。同図において、1は成膜室であり、この成
膜室1内には、基板2を保持する基板ホルダ3と、マグ
ネトロンスパッタ用の円板ターゲット4、5、6とが対
向配置されている。基板ホルダ3はヒータ7を有してお
り、また各円板ターゲット4、5、6の前方にはそれぞ
れシャッタ8、9、10が設置されている。各円板ター
ゲット4、5、6には、それぞれスパッタ用電源11、
12、13が接続されている。なお、符号14はガス供
給系、15は排気系である。
FIG. 1 is a diagram showing an example of the structure of a sputtering apparatus for carrying out the method for producing an oxide superconductor according to the present invention. In FIG. 1, reference numeral 1 denotes a film forming chamber in which a substrate holder 3 holding a substrate 2 and disk targets 4, 5 and 6 for magnetron sputtering are arranged to face each other. .. The substrate holder 3 has a heater 7, and shutters 8, 9, and 10 are installed in front of the disk targets 4, 5, and 6, respectively. Each of the disk targets 4, 5, 6 has a sputtering power source 11,
12 and 13 are connected. Reference numeral 14 is a gas supply system and 15 is an exhaust system.

【0011】実施例1 図1に示すスパッタリング装置を用いて、無限 CuO2
イアー構造を有する酸化物超電導体として、(Sr1-x Nd
x )Cu1 Oy の薄膜を作製した。
Example 1 Using the sputtering apparatus shown in FIG. 1, as an oxide superconductor having an infinite CuO 2 layer structure, (Sr 1-x Nd
x ) A Cu 1 O y thin film was prepared.

【0012】基板2としては、20mmφ×0.3mmtの SrTiO
3 の (100)面を使用した。この基板2を基板ホルダ3に
設置し、ヒータ7により基板温度を 510℃〜 700℃とし
た後,ガス供給系14より純度 99.999%の(Ar+50%O2
ガスを供給しつつ、成膜室1内のガス圧力を 0.9Paとし
た。ターゲット4、5、6としては、SrCO3 焼結体、Nd
金属、Cu金属の 3種を用い、それぞれに各電源11、1
2、13からRF電力、RF電力、DC電力を供給し、以下の
手順で成膜した。
The substrate 2 is SrTiO of 20 mmφ × 0.3 mmt.
The (100) plane of 3 was used. This substrate 2 is placed on the substrate holder 3 and the temperature of the substrate is set to 510 ° C to 700 ° C by the heater 7, and then the purity of 99.999% (Ar + 50% O 2 ) is supplied from the gas supply system 14.
The gas pressure in the film forming chamber 1 was set to 0.9 Pa while supplying the gas. The targets 4, 5 and 6 are SrCO 3 sintered body and Nd.
3 types of metal and Cu metal are used, and each power source 11 and 1
RF power, RF power, and DC power were supplied from Nos. 2 and 13, and a film was formed by the following procedure.

【0013】まず、SrCO3 ターゲット4とNdターゲット
5上のシャッタ8、9を同時に開け、 2元同時スパッタ
リングによって上記 SrTiO3 (100)基板2上に、Sr1-x
Ndx O を 1原子層分堆積した。次いで、上記 2種のター
ゲット4、5のシャッタ8、9を閉じた後、Cuターゲッ
ト6上のシャッター10を開け、 CuOを 1原子層分堆積
した。以上の操作を 100回繰り返し行うことにより、膜
厚34nmの(Sr1-x Ndx )Cu1 Oy 薄膜を成膜した。
First, the shutters 8 and 9 on the SrCO 3 target 4 and the Nd target 5 are simultaneously opened, and Sr 1-x is formed on the SrTiO 3 (100) substrate 2 by the two-source simultaneous sputtering.
One atomic layer of Nd x O was deposited. Next, after closing the shutters 8 and 9 of the two types of targets 4 and 5, the shutter 10 on the Cu target 6 was opened, and CuO was deposited for one atomic layer. By repeating the above operation 100 times, a (Sr 1-x Nd x ) Cu 1 O y thin film having a film thickness of 34 nm was formed.

【0014】なお、Nd元素によるSr元素の置換量x は、
SrCO3 ターゲット4とNdターゲット5に供給する電力を
調整することによって制御した。また、 1原子層ずつ成
膜するスパッタ条件は、置換量x が0.13の場合、SrCO3
ターゲット4およびNdターゲット5にRF電力をそれぞれ
110Wおよび 40Wで同時に 110秒、Cuターゲット6にDC電
力を 51Wで13秒であった。
The substitution amount x of the Sr element by the Nd element is
It was controlled by adjusting the power supplied to the SrCO 3 target 4 and the Nd target 5. Also, the sputtering conditions for forming one atomic layer at a time are SrCO 3 when the substitution amount x is 0.13.
RF power to target 4 and Nd target 5, respectively
110 W and 40 W simultaneously for 110 seconds, and DC power to the Cu target 6 was 51 W for 13 seconds.

【0015】このようにして得たSr0.87Nd0.13Cu1 Oy
薄膜の結晶構造をX線回折により評価し、膜の表面状態
をSEMで評価した。また、電気抵抗の温度依存性を通
常の4端子法により測定した。
Sr 0.87 Nd 0.13 Cu 1 O y thus obtained
The crystal structure of the thin film was evaluated by X-ray diffraction, and the surface condition of the film was evaluated by SEM. In addition, the temperature dependence of the electrical resistance was measured by the usual 4-terminal method.

【0016】図2に、基板温度 600℃で作製した、Sr
0.87Nd0.13Cu1 Oy 薄膜の成膜直後のX線回折パターン
を示す。無限 CuO2 レイアー構造の (001)と (002)の回
折ピークだけが観測され、この実施例で作製した薄膜は
無限 CuO2 レイアー構造単相であることが判明した。ま
た、膜面は鏡面で、 2万倍のSEM像でも表面に析出物
や凹凸は観測されなかった。図3には、この薄膜の電気
抵抗の温度依存性を示す。上記Sr0.87Nd0.13Cu1 Oy
膜の超電導転移温度Tc は 38Kであった。
FIG. 2 shows Sr, which was produced at a substrate temperature of 600 ° C.
The X-ray-diffraction pattern just after forming a 0.87 Nd 0.13 Cu 1 O y thin film is shown. Only the (001) and (002) diffraction peaks of the infinite CuO 2 layer structure were observed, and it was found that the thin film prepared in this example had an infinite CuO 2 layer structure single phase. In addition, the film surface was a mirror surface, and no precipitate or unevenness was observed on the surface even in a SEM image of 20,000 times. FIG. 3 shows the temperature dependence of the electrical resistance of this thin film. The superconducting transition temperature T c of the Sr 0.87 Nd 0.13 Cu 1 O y thin film was 38K.

【0017】また、基板温度を変更して、上記実施例と
同様なスパッタリング法により成膜を行ったところ、基
板温度が 510℃未満では成膜後の膜は非晶質で、また 7
00℃を超えると 2重の CuOチェーンを持つ結晶構造のも
のが混在し、粗い膜表面を有する薄膜しか得られなかっ
た。なお、基板温度を 510℃〜 700℃の範囲に加熱した
際には、前述の無限 CuO2 レイアー構造単相の薄膜がい
ずれも得られた。
When the substrate temperature was changed and a film was formed by the same sputtering method as in the above embodiment, the film formed was amorphous when the substrate temperature was lower than 510 ° C.
At temperatures above 00 ° C, crystals with double CuO chains were mixed and only thin films with a rough film surface were obtained. When the substrate temperature was heated in the range of 510 ° C to 700 ° C, the above-mentioned infinite CuO 2 layer single-phase thin film was obtained.

【0018】実施例2 実施例1におけるSrCO3 ターゲットとNdターゲットを、
Sr0.5 Ca0.5 O1 焼結体ターゲットとAg金属ターゲット
に代え、基板温度 640℃で実施例1と同様の手順によ
り、Sr0.44Ca0.45Ag0.1 O の 1原子層分と CuOの 1原子
層分とを交互に堆積させ、Sr0.44Ca0.45Ag0.1 Cu1.01 O
y 薄膜を成膜した。
Example 2 The SrCO 3 target and Nd target in Example 1 were
By replacing the Sr 0.5 Ca 0.5 O 1 sintered target and the Ag metal target with the same procedure as in Example 1 at a substrate temperature of 640 ° C., one atomic layer of Sr 0.44 Ca 0.45 Ag 0.1 O and one atomic layer of CuO were formed. And are deposited alternately, and Sr 0.44 Ca 0.45 Ag 0.1 Cu 1.01 O
y A thin film was formed.

【0019】このようにして得たSr0.44Ca0.45Ag0.1 Cu
1.01 Oy 薄膜の結晶構造および膜の表面状態を実施例1
と同様にして評価したところ、結晶構造は無限 CuO2
イアー構造単相であり、また表面状態も実施例1と同様
に良好なものであった。また、上記Sr0.44Ca0.45Ag0.1
Cu1.01 Oy 薄膜のTc は 31Kであった。
Sr 0.44 Ca 0.45 Ag 0.1 Cu thus obtained
Example 1 The crystal structure of the 1.01 O y thin film and the surface state of the film are shown in Example 1.
When evaluated in the same manner as above, the crystal structure was an infinite CuO 2 layer structure single phase, and the surface condition was good as in Example 1. In addition, the above Sr 0.44 Ca 0.45 Ag 0.1
The T c of the Cu 1.01 O y thin film was 31K.

【0020】比較例1 Ndターゲットをスパッタしない以外は、実施例1と同様
と同様にして、Sr1 Cu1 Oy 薄膜を成膜した。このSr1
Cu1 Oy 薄膜は、実施例1と同様に、基板温度が 510℃
〜 700℃の範囲では無限 CuO2 レイアー構造となった
が、電気抵抗の温度依存性は半導体的で、超電導体とは
ならなかった。
Comparative Example 1 A Sr 1 Cu 1 O y thin film was formed in the same manner as in Example 1 except that the Nd target was not sputtered. This Sr 1
As with Example 1, the Cu 1 O y thin film had a substrate temperature of 510 ° C.
An infinite CuO 2 layer structure was formed in the range of ~ 700 ℃, but the temperature dependence of the electrical resistance was semiconducting and did not become a superconductor.

【0021】比較例2 基板温度を 600℃とし、スパッタガス圧力と、SrCO3
ーゲットおよびNdターゲットへの供給電力は実施例1と
同一条件としたが、組成を合せるためにCuターゲットへ
の供給電力を減少させて、 3元同時スパッタリングによ
って組成的には実施例1と同一の薄膜を成膜した。
Comparative Example 2 The substrate temperature was 600 ° C., the sputtering gas pressure and the power supplied to the SrCO 3 target and the Nd target were the same as in Example 1, but the power supplied to the Cu target was adjusted to match the composition. And a thin film identical in composition to Example 1 was formed by ternary co-sputtering.

【0022】このようにして得た薄膜のX線回折パター
ンには、無限 CuO2 レイアー構造の回折ピークは観測さ
れなかった。また、この膜の室温での電気抵抗は大き
く、温度の低下と共にそれは増加し、超電導状態は示さ
なかった。
No diffraction peak of the infinite CuO 2 layer structure was observed in the X-ray diffraction pattern of the thin film thus obtained. Also, the electric resistance of this film at room temperature was large, and it increased with the decrease of temperature, and did not show the superconducting state.

【0023】なお、上記実施例においては、本発明の製
造方法をスパッタリング法により実施した例について説
明したが、本発明はこれに限定されるものではなく、蒸
着法、クラスターイオンビーム法、CVD法等の各種の
薄膜形成法を適用することが可能である。ただし、薄膜
形成法の種類によっては、成膜時に活性酸素の供給を必
要とする場合もある。
In the above-mentioned embodiment, an example in which the manufacturing method of the present invention is carried out by the sputtering method has been described, but the present invention is not limited to this, and the vapor deposition method, the cluster ion beam method, the CVD method. It is possible to apply various thin film forming methods such as. However, depending on the type of thin film formation method, there are cases where it is necessary to supply active oxygen during film formation.

【0024】また、本発明の製造方法においては、膜組
成を基本的には(A1-x Mx )Cu1 Oy を満足させること
によって、超電導体を得ることができる。すなわち、上
記式中の Mはキャリア導入のための元素であり、 M元素
による A元素の置換量x の値が 0より大きく 1より小さ
い値とすることにより超電導体が得られる。 M元素とし
て、Nd、Pr等の希土類元素を用いると n型の超電導体が
得られ、Agまたは K、Na等のアルカリ類元素を用いると
p型の超電導体が得られる。また、 yの値は酸素量を表
し、おおよそ 2程度の値である。
In the manufacturing method of the present invention, a superconductor can be obtained by basically satisfying the film composition of (A 1-x M x ) Cu 1 O y . That is, M in the above formula is an element for introducing carriers, and a superconductor can be obtained by setting the substitution amount x of the A element by the M element to a value larger than 0 and smaller than 1. If a rare earth element such as Nd or Pr is used as the M element, an n-type superconductor is obtained, and if an alkaline element such as Ag or K or Na is used.
A p-type superconductor is obtained. The value of y represents the amount of oxygen, which is about 2.

【0025】[0025]

【発明の効果】以上説明したように、本発明の酸化物超
電導体の製造方法によれば、数万気圧以上の高圧プロセ
スを用いることなく、簡単な結晶構造を有する無限 CuO
2 レイアー構造の酸化物超電導体を再現性よく作製する
ことが可能となる。また、本発明により得られる酸化物
超電導体薄膜は、結晶性および膜表面の平滑性に優れる
ため、電子デバイスへの応用が容易となる。
As described above, according to the method for producing an oxide superconductor of the present invention, an infinite CuO having a simple crystal structure is used without using a high pressure process of tens of thousands of atmospheres or more.
It is possible to manufacture an oxide superconductor having a two- layer structure with good reproducibility. In addition, the oxide superconductor thin film obtained by the present invention is excellent in crystallinity and film surface smoothness, and therefore can be easily applied to an electronic device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で用いたスパッタ装置の構成を
模式的に示す図である。
FIG. 1 is a diagram schematically showing a configuration of a sputtering apparatus used in an example of the present invention.

【図2】本発明の一実施例で得られた酸化物超電導体薄
膜のX線回折パターンを示す図である。
FIG. 2 is a diagram showing an X-ray diffraction pattern of an oxide superconductor thin film obtained in one example of the present invention.

【図3】本発明の一実施例で得られた酸化物超電導体薄
膜の電気抵抗の温度依存性を示す図である。
FIG. 3 is a diagram showing temperature dependence of electric resistance of an oxide superconductor thin film obtained in one example of the present invention.

【符号の説明】[Explanation of symbols]

1……成膜室 2……基板 3……基板ホルダ 4、5、6…ターゲット 7……ヒータ 8、9、10…シャッタ 1 ... Film forming chamber 2 ... Substrate 3 ... Substrate holder 4, 5, 6 ... Target 7 ... Heater 8, 9, 10 ... Shutter

フロントページの続き (72)発明者 三浦 忠男 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内Continuation of the front page (72) Inventor Tadao Miura 1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Stock company Toshiba Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (A1-x Mx )Cu1 Oy 酸化物超電導体
(ただし、 Aはアルカリ土類元素から選ばれる少なくと
も 1種の元素を、 Mは希土類元素、Agおよびアルカリ類
元素から選ばれる少なくとも 1種の元素を、 xは 0< x
< 1を満足する数を示し、 yは酸素量を表す)を製造す
るにあたり、 510℃〜 700℃に加熱した基板上に、 A1-x Mx O 1原
子層分の原子あるいは分子と CuO 1原子層分の原子ある
いは分子とを、薄膜形成法により酸化雰囲気中で交互に
堆積させることを特徴とする酸化物超電導体の製造方
法。
1. An (A 1-x M x ) Cu 1 O y oxide superconductor (where A is at least one element selected from alkaline earth elements, M is a rare earth element, Ag and an alkaline element). At least one element selected from x is 0 <x
<1 indicates a number that satisfies <1, y represents the amount of oxygen), and in the production of a substrate heated to 510 ℃ ~ 700 ℃, A 1-x M x O 1 atomic layer of atoms or molecules and CuO A method for manufacturing an oxide superconductor, characterized in that atoms or molecules for one atomic layer are alternately deposited in an oxidizing atmosphere by a thin film forming method.
JP3340911A 1991-12-24 1991-12-24 Production of oxide superconductor Withdrawn JPH05170437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3340911A JPH05170437A (en) 1991-12-24 1991-12-24 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3340911A JPH05170437A (en) 1991-12-24 1991-12-24 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH05170437A true JPH05170437A (en) 1993-07-09

Family

ID=18341443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3340911A Withdrawn JPH05170437A (en) 1991-12-24 1991-12-24 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH05170437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245388A (en) * 2012-05-28 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245388A (en) * 2012-05-28 2013-12-09 Nippon Telegr & Teleph Corp <Ntt> Manufacturing method of superconductor

Similar Documents

Publication Publication Date Title
US5968877A (en) High Tc YBCO superconductor deposited on biaxially textured Ni substrate
CA2560771C (en) Biaxially-textured film deposition for superconductor coated tapes
EP0446145B1 (en) Process for preparing high-temperature superconducting thin films
US5061971A (en) Bi-based oxide superconducting tunnel junctions and manufacturing method for the same
EP0410868A2 (en) Superconducting thin film of compound oxide and process for preparing the same
JPH02145761A (en) Manufacture of thin superconductor film
JPH05170437A (en) Production of oxide superconductor
US5389606A (en) Process for producing thin films of inorganic oxides of controlled stoichiometry
JPS63239742A (en) Manufacture for film superconductor
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JPH01208327A (en) Production of thin film of superconductor
US5240904A (en) Process for preparing a-axis oriented superconducting oxide thin films
CN113838965B (en) Preparation method of independent high-temperature superconducting film
JPS63236794A (en) Production of superconductive thin film of oxide
JPH02175613A (en) Production of oxide superconducting thin film
JP2669052B2 (en) Oxide superconducting thin film and method for producing the same
JP3038758B2 (en) Method for producing oxide superconducting thin film
JPH05170448A (en) Production of thin ceramic film
JPH01260717A (en) Method and apparatus for manufacture of metal oxide superconducting material layer
JP2541037B2 (en) Oxide superconducting thin film synthesis method
JPH0680419A (en) Production of oxide superconductor thin film and superconducting tunnel junction and superconducting element
JPH03275504A (en) Oxide superconductor thin film and its production
JPH03505024A (en) Epitaxial deposition
JPH01313332A (en) Production of thin oxide superconducting film
JPH07100609B2 (en) Method of manufacturing thin film superconductor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311