JPH05170434A - Production of low-sodium red mud - Google Patents
Production of low-sodium red mudInfo
- Publication number
- JPH05170434A JPH05170434A JP3339054A JP33905491A JPH05170434A JP H05170434 A JPH05170434 A JP H05170434A JP 3339054 A JP3339054 A JP 3339054A JP 33905491 A JP33905491 A JP 33905491A JP H05170434 A JPH05170434 A JP H05170434A
- Authority
- JP
- Japan
- Prior art keywords
- red mud
- bauxite
- silica
- sodalite
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/04—Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
- C01F7/06—Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
- C01F7/066—Treatment of the separated residue
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はボーキサイトをアルカリ
水溶液またはアルミン酸アルカリ溶液(以下アルミネー
ト液という)で高圧高温溶解処理することにより、アル
ミナ分等をボーキサイトから抽出し、析出により水酸化
アルミニウムを製造するという、いわゆるバイヤー工程
に於て発生する不溶解残渣、すなわち赤泥に関するもの
である。さらに詳しくは、低廉なセメント原料などとし
て最適である低ソ−ダ赤泥の製造方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a method for dissolving bauxite in an alkaline aqueous solution or an alkaline aluminate solution (hereinafter referred to as an aluminate solution) under high pressure and high temperature to extract alumina components and the like from bauxite, and to precipitate aluminum hydroxide by precipitation. The present invention relates to red mud, which is an insoluble residue generated in the so-called buyer process of manufacturing. More specifically, it relates to a method for producing low soda red mud, which is optimal as an inexpensive cement raw material.
【0002】[0002]
【従来の技術】水酸化アルミニウム・アルミナの製造方
法としては、ボーキサイトをアルミネート液と混合し高
圧高温条件下でアルミナ分を抽出した後、不溶解残渣を
分離したアルミネート液に水酸化アルミニウムを種子と
して添加し、該溶液を加水分解する、いわゆるバイヤー
方法により行うのが一般的である。その高圧高温溶解時
に生成し、不溶解残渣として排出されるものは赤泥と呼
ばれ、アルミナ1ton当たり約700〜800kgと
多量に生成するので、その有効活用がバイヤー方法を採
用している企業にとって永年の課題であったがその有効
利用が困難なため、多額の費用をかけて産業廃棄物とし
て全量捨てる他なかった。しかしながら環境規制が強化
されつつある為、早急に赤泥の有効な利用対策の確立が
求められている。バイヤー方法の原料であるボーキサイ
トには第1成分として水酸化アルミニウム、第2成分と
して酸化鉄、その他の成分としてはシリカ、チタニア等
が含まれる。このボーキサイトを高圧高温溶解処理する
と、水酸化アルミニウム分・シリカ分などがアルミネー
ト液中に部分的に溶け出す。溶出した水酸化アルミニウ
ムは種子が加えられ、析出せしめられるまではアルミネ
−ト液中で比較的安定であり、アルミネート液に溶け出
すことのできるシリカ分は反応性シリカ(R−SiO
2 )と呼び、その反応性シリカは溶解時に短時間で過飽
和状態となり易く、濃度が高くなると、アルミネ−ト液
中では安定でなく、ソーダライトとして晶析し易い。2. Description of the Related Art As a method for producing aluminum hydroxide / alumina, bauxite is mixed with an aluminate solution, the alumina content is extracted under high pressure and high temperature conditions, and then aluminum hydroxide is added to the aluminate solution from which the insoluble residue is separated. It is generally carried out by a so-called Bayer method in which the solution is added as seeds and the solution is hydrolyzed. What is produced during high-pressure and high-temperature dissolution and discharged as insoluble residue is called red mud, which produces a large amount of about 700 to 800 kg per ton of alumina, so its effective utilization is for companies that employ the buyer method. Although it has been a problem for many years, it is difficult to use it effectively, so there is no choice but to dispose of the entire amount as industrial waste at a large cost. However, as environmental regulations are being tightened, there is an urgent need to establish effective measures to utilize red mud. Bauxite, which is a raw material for the Bayer method, contains aluminum hydroxide as the first component, iron oxide as the second component, and silica, titania, etc. as the other components. When this bauxite is subjected to high pressure and high temperature dissolution treatment, aluminum hydroxide, silica, etc. are partially dissolved in the aluminate solution. The eluted aluminum hydroxide is relatively stable in the aluminate solution until seeds are added and precipitated, and the silica content that can be dissolved in the aluminate solution is reactive silica (R-SiO 2).
2 ), the reactive silica is likely to be supersaturated in a short time when dissolved, and when the concentration is high, it is not stable in the aluminate solution and is easily crystallized as sodalite.
【0003】ソ−ダライトは高温で安定であり、Al2
O3 、SiO2 、Na2 O等からなる物質であり、晶析
に際しアルミネ−ト液中のシリカを取り込む。即ち液中
にシリカ分が存在しない限りソーダライトは生成できな
い。Sodalite is stable at high temperatures, and Al 2
O 3, SiO 2, an Na 2 consisting of O, etc. material, aluminate upon crystallization - capturing silica preparative liquid. That is, sodalite cannot be produced unless silica is present in the liquid.
【0004】したがって、通常のバイヤー工程におい
て、不溶解残渣として排出される赤泥の中には、第2成
分であった酸化鉄と、溶解時に晶析したソーダライトと
が主成分として含まれる。この赤泥の組成は原料ボーキ
サイトの組成の違いによって若干異なるが、Fe2 O3
が40〜50重量%、ソーダライトが20〜50重量%
の範囲にある。その他には石英、TiO2 、アルミナ水
和物、石灰石がそれぞれ数重量%含まれている。この組
成のような、単一では有用な成分からなる赤泥が投棄さ
れているのは、有効に利用するには含まれる成分の種類
が多く、含有割合が少なすぎるからであり、各成分毎分
別するには技術的に困難が伴う上に、たとえ出来たとし
ても現時点ではコスト的に見合わない。したがって、赤
泥を有効に利用する対策としては、各成分が混在のまま
で活用できる用途を探さなくてはならない。従来から各
成分混在のままの赤泥を活かす用途としてはセメント用
副原料としての利用方法が考えられてきた。ポルトラン
ドセメント用副原料特に鉄源として望ましい特性は
(1)セメント中の鉄含有量が3〜6重量%となるよう
に配合されているので、酸化鉄の含有量が高いこと、
(2)一般用ポルトランドセメントはアルカリ分(Na
2 O+0.658K2 O)が1%以下、低アルカリポル
トランドセメントのそれは0.6%以下となるように配
合調製されており、原料として用いられる粘土からも混
入するので、アルカリ分はできる限り低いこと、(3)
金属粒子などを含まないこと、(4)重金属をはじめと
した有害物質を含まないことなどである。赤泥はアルカ
リ分を多く含む点を除いては鉄源としての条件に適合す
る。赤泥中のK2 Oは無視できる程度の含有量であるの
で、そのままセメント用副原料として利用するために
は、前述の(2)より赤泥中のNa2 O分としては少な
くとも1重量%以下にする必要がある。Therefore, in the usual buyer process, the red mud discharged as an insoluble residue contains iron oxide, which was the second component, and sodalite crystallized during dissolution as the main components. The composition of this red mud is slightly different depending on the composition of the raw bauxite, but Fe 2 O 3
40-50% by weight, sodalite 20-50% by weight
Is in the range. In addition, quartz, TiO 2 , hydrated alumina, and limestone are contained in several% by weight, respectively. Red mud consisting of a single useful component, such as this composition, is dumped because there are too many types of components and the content ratio is too small for effective use. It is technically difficult to separate, and even if it is possible, it is not worth the cost at this time. Therefore, in order to effectively use red mud, it is necessary to search for a use in which each component can be used in a mixed state. Conventionally, a method of utilizing as an auxiliary raw material for cement has been considered for the purpose of utilizing the red mud with each component mixed. Desirable characteristics as an auxiliary raw material for Portland cement, especially as an iron source, are (1) high iron oxide content because the iron content in the cement is 3 to 6% by weight.
(2) Portland cement for general use has an alkaline content (Na
2 O + 0.658K 2 O) is 1% or less, and that of low-alkali Portland cement is 0.6% or less, and since it is also mixed from clay used as a raw material, the alkali content is as low as possible. That, (3)
It does not contain metal particles, and (4) does not contain harmful substances such as heavy metals. Red mud complies with the conditions as an iron source except that it contains a large amount of alkali. Since the content of K 2 O in the red mud is negligible, in order to use it as it is as an auxiliary raw material for cement, the Na 2 O content in the red mud should be at least 1% by weight from the above (2). Must be:
【0005】赤泥低ソーダ化に極めて有効な対策は、赤
泥中に全くソーダライトが含まれないようにする事であ
る。というのは、赤泥中のNa2 Oの大部分がソーダラ
イトに含まれて存在しているからである。したがって赤
泥中にソーダライトが含まれないようにするために種々
の方法が考案されてきた。例えばソーダライトの構成分
であるシリカをボーキサイトから予め抽出し、除くこと
によりソーダライトの生成を抑えようとする方法(特公
昭58ー3969)、粉砕ボーキサイトの粒度が細かい
ほど反応性シリカ含有量が高いことと、アルミナ分とシ
リカ分の溶出速度差が大きいこととを利用した方法(特
開昭63−190709)などがある。An extremely effective measure for reducing red mud soda is to prevent red mud from containing sodalite at all. This is because most of Na 2 O in red mud is present in sodalite. Therefore, various methods have been devised to prevent sodalite from being contained in red mud. For example, silica, which is a constituent of sodalite, is extracted from bauxite in advance and the production of sodalite is suppressed by removing it (Japanese Patent Publication Sho 58-3969). The finer the particle size of ground bauxite, the more reactive silica content There is a method (Japanese Patent Application Laid-Open No. 63-190709) which utilizes the fact that it is high and the difference in elution rate between the alumina content and the silica content is large.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、これら
の方法では、反応性シリカを十分に抽出するには不適切
な条件であったため、赤泥中にソーダライトが残存する
結果となり、赤泥中のアルカリ分含有量が3重量%以上
となり、セメント用副原料としてそのまま利用するには
Na2 O分の低減が不十分であった。バイヤー工程の高
圧高温溶解時に、ボーキサイトからのアルミナ分の溶
出、シリカ分の溶出、ソーダライトの生成がどの様に起
こっているかを模式的に示すと図1の通りである。溶解
反応器にボーキサイトとアルミネート液の混合スラリー
が流入すると始めに反応性シリカ分が溶出を開始する。
これと前後してアルミナ分も溶け出すが、このアルミナ
分は液中に溶存し、種子を加え析出させるまで、アルミ
ネート液中で比較的安定な状態にある。However, in these methods, since the conditions were unsuitable for extracting the reactive silica sufficiently, sodalite remained in the red mud, which resulted in the red mud remaining in the red mud. The alkali content was 3% by weight or more, and reduction of the Na 2 O content was insufficient to use it as an auxiliary raw material for cement as it was. FIG. 1 is a schematic diagram showing how the alumina component, the silica component, and the sodalite are eluted from the bauxite during the high-pressure high-temperature dissolution in the Bayer process. When the mixed slurry of bauxite and aluminate liquid flows into the dissolution reactor, the reactive silica component begins to elute.
Around this time, the alumina content also dissolves out, but this alumina content is dissolved in the solution and remains relatively stable in the aluminate solution until seeds are added and precipitated.
【0007】しかしながら反応性シリカが溶出し、液中
シリカ濃度が上昇し完全に抽出しないうちに、安定し溶
存しておれなくなり、ソーダライトとして晶析し易い傾
向が強まる。晶析したソーダライトは高温で安定であ
り、Siを必須構成分とするので、晶析の際アルミネー
ト液中の反応性シリカを取り込むので反応性シリカ濃度
は著しく低下する。したがって反応性シリカが完全に溶
出した後その全量がソーダライトとして晶析させるよう
な商業的選択が必要になる。つまり、反応性シリカ溶出
反応とソーダライト晶析反応とを完全に分けて行うこと
により、セメント用副原料としてそのまま利用できる低
ソ−ダ赤泥の製造方法を確立することが本発明の課題で
ある。However, the reactive silica elutes, the silica concentration in the liquid rises, and before it is completely extracted, it becomes stable and insoluble, and the tendency to crystallize as sodalite increases. The crystallized sodalite is stable at high temperature and contains Si as an essential constituent, so that the reactive silica in the aluminate solution is taken in during the crystallization, so that the reactive silica concentration is significantly reduced. Therefore, it is necessary to make a commercial selection such that after the reactive silica is completely eluted, the total amount thereof is crystallized as sodalite. That is, it is an object of the present invention to establish a method for producing low-soda red mud that can be used as it is as an auxiliary raw material for cement by completely separating the reactive silica elution reaction and the sodalite crystallization reaction. is there.
【0008】[0008]
【課題を解決するための手段】本発明者等は低ソ−ダ赤
泥の製造方法の確立について鋭意研究した結果、通常の
バイヤー工程に工夫を加えることにより、セメント用副
原料として適した品質水準の低ソ−ダ赤泥と、従来のバ
イヤー工程による場合と全く変わらない品質の水酸化ア
ルミニウムおよびソ−ダライトを製造する方法を見出
し、本発明を完成するに至った。本発明の要旨はバイヤ
ー工程の前段処理工程として、バイヤー工程の場合より
アルカリ濃度が高いアルミン酸アルカリ溶液を用いてボ
ーキサイト中の主成分の中で反応性シリカ分のみをでき
る限り抽出し、抽出液と不溶解残渣とに固液分離し、該
抽出液に種子を添加しソ−ダライトを晶析せしめる脱硅
工程を循環する工程と、該不溶解残渣をボーキサイトと
全く同様にバイヤー工程で処理し、水酸化アルミニウム
またはアルミナを製造する本工程とからなることを特徴
とする低ソ−ダ赤泥の製造方法にある。Means for Solving the Problems As a result of earnest studies on establishment of a method for producing low soda red mud, the present inventors have found that a quality suitable as an auxiliary raw material for cement can be obtained by devising a normal buyer process. The present invention has been completed by finding a method for producing aluminum hydroxide and sodalite having a low level of soda red mud and the quality which is completely the same as that obtained by the conventional buyer process. The gist of the present invention is, as a pretreatment step of the buyer step, extracting as much as possible the reactive silica component among the main components of bauxite using an alkaline aluminate solution having a higher alkali concentration than in the case of the buyer step, and then extracting the extracted solution. Solid-liquid separation into an insoluble residue and a step of circulating a desiliconization step in which seeds are added to the extract to crystallize sodalite, and the insoluble residue is treated in a Bayer step in exactly the same manner as bauxite. And a main step of producing aluminum hydroxide or alumina, which is a method for producing low soda red mud.
【0009】以下、本発明の詳細について述べる。まず
はバイヤー工程の前段処理工程である脱硅工程について
述べる。この脱珪工程ではバイヤー工程よりアルカリ濃
度即ち代表的にはNaOH濃度が高いアルミネ−ト液を
循環使用する。というのは前述のようにボーキサイト中
の主成分の中で反応性シリカのみをできる限り多く抽出
出来る最適濃度に設定するためである。この循環アルミ
ネート液のNaOH濃度が高くなるほど反応性シリカの
溶解能は高くなる。たとえば図2に示す通り、シリカの
最大溶解能(溶液の状態如何に拘らず、溶かし込めるシ
リカの最大量を示す。)はNaOH濃度が150g/l
ではSiO2 濃度は4g/l程度であるが、200g/
lであると8g/l程度であり、250g/lになると
12g/l程度にまで増大する。アルミネ−ト液のシリ
カ溶解能が高まれば、シリカ溶存安定性(いかに晶析せ
ずに溶存状態に留まれるかの度合を示す。)も高くな
り、ソーダライトとして晶析しにくくなり、結果的にシ
リカ分の抽出のみが行えることになる。したがって循環
アルミネート液NaOH濃度は高いほうが良い。The details of the present invention will be described below. First, the silicon removal process, which is the pre-treatment process of the buyer process, will be described. In this desiliconization process, an aluminum liquor having a higher alkali concentration, that is, typically a higher NaOH concentration, is circulated and used than in the Bayer process. This is because, as described above, the reactive silica is the only major component in the main component of bauxite, and the optimum concentration is set so that as much as possible can be extracted. The higher the NaOH concentration of this circulating aluminate solution, the higher the solubility of reactive silica. For example, as shown in FIG. 2, the maximum solubility of silica (indicates the maximum amount of silica that can be dissolved regardless of the state of the solution) is 150 g / l in NaOH concentration.
Then, the SiO 2 concentration is about 4 g / l, but 200 g / l
When it is 1, it is about 8 g / l, and when it is 250 g / l, it increases to about 12 g / l. If the silica-dissolving ability of the aluminate solution is increased, the silica-dissolving stability (indicating the degree of staying in the dissolved state without being crystallized) is also increased, and it becomes difficult to crystallize as sodalite. Therefore, only the silica content can be extracted. Therefore, it is better that the concentration of the circulating aluminate solution NaOH is higher.
【0010】しかしながら、NaOH濃度が高くなると
液粘度が上昇し固液分離に時間を要するという問題があ
る。このため、循環アルミネート液のNaOH濃度は1
80g/lから500g/l、望ましくは200g/l
から300g/lが良い。この液濃度が決定されると、
下記の式(1)からボーキサイト仕込量が規定される。However, there is a problem that when the NaOH concentration becomes high, the liquid viscosity increases and it takes time for solid-liquid separation. Therefore, the concentration of NaOH in the circulating aluminate solution is 1
80g / l to 500g / l, preferably 200g / l
To 300 g / l is recommended. Once this liquid concentration is determined,
The bauxite charging amount is defined by the following formula (1).
【0011】[0011]
【数2】 [Equation 2]
【0012】ボーキサイト仕込量は望ましくは式(1)
で求められたボーキサイト量の50%から95%の範囲
が良い。その際の抽出温度は90℃から150℃、望ま
しくは100℃から120℃の範囲がよい。抽出温度は
90℃未満だと反応性シリカが溶出するのに時間がかか
り、実用的ではない。また150℃以上になるとソーダ
ライトの生成が促進され、好ましくない。また抽出時間
は、循環アルミネ−ト液のNaOH濃度と抽出温度にも
関係するが図3を基に求めた時間の±30%以内、望ま
しくは±15%以内が良い。またシリカと同時にボーキ
サイトからアルミナ分も溶出するが基本的にはその影響
は問題とはならない。The bauxite charging amount is preferably expressed by the formula (1).
The range of 50% to 95% of the bauxite amount obtained in 1. is preferable. The extraction temperature at that time is 90 ° C to 150 ° C, preferably 100 ° C to 120 ° C. If the extraction temperature is less than 90 ° C, it takes time for the reactive silica to elute, which is not practical. On the other hand, when the temperature is 150 ° C. or higher, the production of sodalite is accelerated, which is not preferable. The extraction time is also within ± 30% of the time calculated based on FIG. 3, and preferably within ± 15%, although it depends on the NaOH concentration of the circulating aluminum liquor and the extraction temperature. Alumina is also eluted from bauxite at the same time as silica, but the effect is basically not a problem.
【0013】次にソーダライト晶析条件について述べ
る。シリカを十分に溶出させるために、バイヤー工程の
場合よりNaOH濃度が高いアルミネ−ト液を用いた。
そのためシリカ溶存安定性が著しく増大するが、ソーダ
ライトの生成は起きにくくなる。そこでソーダライト晶
析工程については珪酸塩鉱物を種子として添加し、脱硅
反応を誘起することが望ましい。種子としては合成ソー
ダライトまたはバイヤー工程のスケール・ゼオライトな
どが望ましい。種子添加率は比表面積で5m2 /lから
200m2 /l、望ましくは30m2/lから80m2
/lの範囲にはいるように添加する。その際の温度は1
10℃から200℃、望ましくは120℃から180℃
である。晶析の時間は液のNaOH濃度にも関係するが
基本的には図4より求めた脱硅時間が良い。この時間は
シリカ溶出時間ほど厳密に管理する必要はないが、でき
るだけ液中シリカ濃度を低下させた方がよい。Next, the sodalite crystallization conditions will be described. In order to sufficiently elute silica, an alumina solution having a higher NaOH concentration than that used in the Bayer process was used.
Therefore, the stability of dissolved silica is remarkably increased, but sodalite is less likely to be produced. Therefore, in the sodalite crystallization step, it is desirable to add silicate minerals as seeds to induce the desulfurization reaction. As seeds, synthetic sodalite or scale zeolite in the Bayer process is preferable. Seed addition rate is from 5 m 2 / l at a specific surface area of 200m 2 / l, preferably 80 m 2 from 30 m 2 / l
Add so that it falls within the range of 1 / l. The temperature at that time is 1
10 ° C to 200 ° C, preferably 120 ° C to 180 ° C
Is. The crystallization time is related to the NaOH concentration of the solution, but basically the desalting time obtained from FIG. 4 is good. This time does not have to be controlled as strictly as the silica elution time, but it is better to lower the silica concentration in the liquid as much as possible.
【0014】脱硅工程を図示すればたとえば図5のよう
なプロセスが考えられる。即ち粉砕機にてボーキサイト
を粉砕1し、シリカ抽出槽に送る2。ここで前述の条件
で十分なシリカ溶出を行った後、固液分離3する。この
分離には通常のケリーフィルター、フィルタープレスな
どを用いても構わない。この脱硅工程の不溶解残渣はバ
イヤー本工程のアルミナ抽出反応工程に、該抽出液はソ
ーダライト晶析工程4へ送られ、可溶性シリカはソーダ
ライトとして系外へ排出される。この前段処理工程で用
いられたアルミネ−ト液ではバイヤー本工程よりはNa
OH濃度が高く、処理温度および処理時間ともに厳しく
管理されている。また、アルミネ−ト液が前段処理工程
から持ち出されるのは、可溶性シリカ溶出処理時のボー
キサイト不溶解残渣に付着している量に限られる。この
持ち出しによる液不足分はバイヤー本工程の循環アルミ
ネ−ト液を煮詰めて使ってもさしつかえない。If the desilvering process is illustrated, for example, a process as shown in FIG. 5 can be considered. That is, the bauxite is crushed 1 with a crusher and sent to the silica extraction tank 2. Here, after sufficient elution of silica under the above-mentioned conditions, solid-liquid separation 3 is performed. An ordinary Kelly filter, filter press or the like may be used for this separation. The undissolved residue of the silica removal step is sent to the alumina extraction reaction step of the Buyer main step, the extract is sent to the sodalite crystallization step 4, and the soluble silica is discharged out of the system as sodalite. In the aluminum solution used in this pretreatment step, Na
The OH concentration is high and the processing temperature and processing time are strictly controlled. Further, the amount of the aluminate solution taken out from the pretreatment step is limited to the amount adhering to the bauxite insoluble residue during the soluble silica elution treatment. The liquid shortage due to this carry-out can be used by boiling the circulating aluminum solution used in the buyer's process.
【0015】バイヤー本工程に送られたボーキサイト不
溶解残渣はアルミナ分を抽出6され、その際の不溶解残
渣は低ソ−ダ赤泥として排出され、続いて該低ソ−ダ赤
泥分離液は水酸化アルミニウムが晶析8させられる。こ
のようにして出来た低ソ−ダ赤泥は十分な水洗滌だけで
Na2 O分が1重量%以下になる。この様に赤泥にソー
ダライトを含ませないようにした本発明により不要な赤
泥が発生することなく、またアルミネート液中へのコン
タミネーションもないので非常に有効な方法である。The alumina content of the bauxite insoluble residue sent to the buyer is extracted 6 and the insoluble residue at that time is discharged as low soda red mud, followed by the low soda red mud separation liquid. Aluminum hydroxide is crystallized. The low-soda red mud thus produced has a Na 2 O content of 1% by weight or less after sufficient washing with water. As described above, according to the present invention in which sodalite is not contained in red mud, unnecessary red mud is not generated, and contamination in the aluminate solution is not generated, which is a very effective method.
【0016】[0016]
【実施例】次に実施例により、本発明の内容を具体的に
説明するが、本発明方法はこれに限定されるものではな
い。 (実施例1)粉砕したオ−ストラリア産ボーキサイト
(反応性シリカ含有量2.8重量%)約300gをNa
OH濃度250g/l、Al2 O3 濃度180g/lの
組成を持つアルミネート液1000ccに加え、105
℃で攪拌しつつ、熱処理した。約90分後、このスラリ
ーをただちに加圧濾過によって固液分離し、抽出液と不
溶解残渣とに分けた。抽出液には粉砕したボーキサイト
溶解工程の配管スケールなどを加え、130℃でソーダ
ライトを析出させ、固液分離し、ソーダライトとしてS
iO2 を除いた。一方、不溶解残渣はバイヤー工程に送
り、NaOH濃度150g/l、Al2O3 濃度60g
/lの組成を持つアルミネート液に抽出後のAl2 O3
濃度/NaOH濃度が0.8となるように加え、140
℃で約1時間アルミナ分の抽出を行った。これを抽出
後、不溶解残渣と液とを分離し、液は水酸化アルミニウ
ムの析出に用いた。この液のSiO2 濃度は0.5g/
lであり、水酸化アルミニウムの析出には支障の無いレ
ベルであった。不溶解残渣として排出された赤泥は水洗
し、湿式分析したところ、Na2 O分は0.9重量%し
か含まれていなかった。EXAMPLES The contents of the present invention will now be specifically described with reference to examples, but the method of the present invention is not limited thereto. (Example 1) About 300 g of ground australian bauxite (reactive silica content 2.8% by weight) was added to Na.
Add 105 cc of aluminate solution having a composition of 250 g / l OH concentration and 180 g / l Al 2 O 3 concentration to give 105
It heat-processed, stirring at (degree C). After about 90 minutes, this slurry was immediately subjected to solid-liquid separation by pressure filtration, and separated into an extract and an insoluble residue. A pulverized bauxite dissolution process pipe scale or the like is added to the extract, and sodalite is precipitated at 130 ° C., solid-liquid separation is performed, and S is used as sodalite.
iO 2 was removed. On the other hand, the undissolved residue is sent to the buyer process, where the NaOH concentration is 150 g / l and the Al 2 O 3 concentration is 60 g.
Al 2 O 3 after extraction into an aluminate solution with a composition of 1 / l
Concentration / NaOH concentration of 0.8, 140
Extraction of the alumina component was carried out at ℃ for about 1 hour. After extracting this, the insoluble residue and the liquid were separated, and the liquid was used for precipitation of aluminum hydroxide. The SiO 2 concentration of this solution is 0.5 g /
It was 1, which was a level that did not hinder the precipitation of aluminum hydroxide. When the red mud discharged as an insoluble residue was washed with water and subjected to wet analysis, it contained only 0.9% by weight of Na 2 O.
【0017】(実施例2)粉砕したインドネシア産ボー
キサイト(反応性シリカ含有量3.7重量%)約200
gを、NaOH濃度200g/l、Al2 O3 濃度14
0g/lの組成を持つアルミネート液1000ccに加
え、105℃で攪拌しつつ、熱処理した。約1時間後、
このスラリーをただちに加圧濾過によって固液分離し、
抽出液と不溶解残渣とに分けた。抽出液には粉砕したボ
ーキサイト溶解工程の配管スケールなどを加え、130
℃でソーダライトを析出させ、固液分離し、ソーダライ
トとしてSiO2 を除いた。一方、不溶解残渣はバイヤ
ー工程に送られ、NaOH濃度150g/l、Al2 O
3 濃度60g/lの組成を持つアルミネート液に、抽出
後のAl2 O3 濃度/NaOH濃度が0.8となるよう
に加え、140℃で約1時間アルミナ分の抽出を行っ
た。これを抽出後、不溶解残渣と抽出液とに分離し、抽
出液は水酸化アルミニウムの析出に用いた。この液のS
iO2 濃度は0.6g/lであり、水酸化アルミニウム
の析出には支障の無いレベルであった。不溶解残渣とし
て排出された赤泥は水洗し、湿式分析したところ、Na
2 O分は0.8重量%しか含まれていなかった。(Example 2) About 200 crushed Indonesian bauxite (reactive silica content 3.7% by weight)
g, NaOH concentration 200 g / l, Al 2 O 3 concentration 14
It was added to 1000 cc of an aluminate solution having a composition of 0 g / l, and heat-treated while stirring at 105 ° C. About an hour later,
Immediately, this slurry is subjected to solid-liquid separation by pressure filtration,
Separated into extract and insoluble residue. To the extract, add a crushed bauxite dissolution process pipe scale, etc.
Sodalite was precipitated at ℃, solid-liquid separation was performed, and SiO 2 was removed as sodalite. On the other hand, the undissolved residue is sent to the buyer process, where the NaOH concentration is 150 g / l and Al 2 O.
The aluminate solution having a composition of 3 g of 60 g / l was added so that the Al 2 O 3 concentration / NaOH concentration after extraction would be 0.8, and the alumina component was extracted at 140 ° C. for about 1 hour. After extracting this, it was separated into an insoluble residue and an extract, and the extract was used for precipitation of aluminum hydroxide. S of this liquid
The iO 2 concentration was 0.6 g / l, which was a level that did not hinder the precipitation of aluminum hydroxide. The red mud discharged as an insoluble residue was washed with water and wet-analyzed.
The 2 O content was only 0.8% by weight.
【0018】(実施例3)実施例1で得られたソーダ低
含有赤泥300重量部と普通ポルトランドセメント10
0重量部と水50重量部を(水セメント比0.5)、ミ
キサーに投入し、約3分間混練して得たモルタルセメン
トを10mm×10mm×40mmの型に流し込んだ。
これを振動機で1分間加振して締め固めを実施した。そ
ののち数時間、常温の室内に放置した。そののち20±
1℃相対湿度90%以上の恒温湿潤箱にいれて20時間
養生を行った。この成形体を脱枠し、28日間20±1
℃の水中で標準養生を行った。こうして得られた成形体
を破砕し、目開き300μmの篩を通過し、150μm
を通過しない程度の試料粉を得た。この試料粉をAST
M C 289の方法に従い溶出テストを行い、溶解シ
リカ量(Sc)とアルカリ濃度減少量(Rc)との関連
を調べたところ、Sc=80.1mMol/l、Rc=
106.5mMol/lであり、低ソーダ赤泥はアルカ
リ骨材反応を起こさない骨材であることがわかった。Example 3 300 parts by weight of red mud containing low soda obtained in Example 1 and 10 parts of ordinary Portland cement
Mortar cement obtained by adding 0 parts by weight and 50 parts by weight of water (water cement ratio 0.5) to a mixer and kneading for about 3 minutes was poured into a mold of 10 mm × 10 mm × 40 mm.
This was vibrated for 1 minute with a vibrator to carry out compaction. After that, it was left in a room at room temperature for several hours. Then 20 ±
It was put in a constant temperature humid box at 1 ° C. and a relative humidity of 90% or more and cured for 20 hours. This molded body is deframed and left for 20 days ± 1
Standard curing was performed in water at ℃. The molded body thus obtained is crushed and passed through a sieve with an opening of 300 μm to obtain 150 μm.
A sample powder was obtained which did not pass through. This sample powder is AST
An elution test was performed according to the method of MC 289, and the relationship between the amount of dissolved silica (Sc) and the amount of alkali concentration decrease (Rc) was examined. Sc = 80.1 mMol / l, Rc =
It was 106.5 mMol / l, and it was found that low soda red mud is an aggregate that does not cause an alkaline aggregate reaction.
【0019】(比較例1)粉砕したインドネシア産ボー
キサイト(反応性シリカ含有量3.7重量%)約130
gを、NaOH濃度150g/l、Al2 O3 濃度60
g/lの組成を持つアルミネート液1000ccに加
え、140℃で攪拌しつつ、熱処理した。約1時間後、
このスラリーをただちに加圧濾過によって固液分離し、
抽出液と不溶解残渣とに分けた。抽出液は水酸化アルミ
ニウムの析出に用いた。この液のSiO2 濃度はボーキ
サイト処理前と同じ0.5g/lであり、水酸化アルミ
ニウムの析出には支障の無いレベルであった。不溶解残
渣として排出された赤泥は水洗し、湿式分析したとこ
ろ、Na2 O分を約8重量%含んでいた。(Comparative Example 1) About 130 crushed bauxite from Indonesia (reactive silica content 3.7% by weight)
g, NaOH concentration 150 g / l, Al 2 O 3 concentration 60
It was added to 1000 cc of aluminate liquid having a composition of g / l, and heat-treated while stirring at 140 ° C. About an hour later,
Immediately, this slurry is subjected to solid-liquid separation by pressure filtration,
Separated into extract and insoluble residue. The extract was used for the precipitation of aluminum hydroxide. The SiO 2 concentration of this solution was 0.5 g / l, which was the same as before the bauxite treatment, and was at a level that did not hinder the precipitation of aluminum hydroxide. The red mud discharged as an insoluble residue was washed with water and wet-analyzed, and as a result, it contained about 8% by weight of Na 2 O.
【0020】(比較例2)比較例1で得られた通常の赤
泥300重量部と普通ポルトランドセメント100重量
部と水50重量部を(水セメント比0.5)、ミキサー
に投入し、約3分間混練して得たモルタルセメントを1
0mm×10mm×40mmの型に流し込んだ。これを
振動機で1分間加振して締め固めを実施した。これを数
時間、常温の室内に放置した。そののち20±1℃相対
湿度90%以上の恒温湿潤箱にいれて20時間養生を行
った。この成形体を脱枠し、28日間20±1℃の水中
で標準養生を行った。こうして得られた成形体を破砕
し、目開き300μmの篩を通過し、150μmを通過
しない程度の試料粉を得た。この試料粉をASTM C
289の方法に従い、溶出試験を行い、溶解シリカ量
(Sc)とアルカリ濃度減少量(Rc)との関連を調べ
たところ、Sc=235.3mMol/l、Rc=7
0.5mMol/lであり、通常の赤泥はアルカリ骨材
反応を起こす反応性骨材であることが判った。(Comparative Example 2) 300 parts by weight of the normal red mud obtained in Comparative Example 1, 100 parts by weight of ordinary Portland cement and 50 parts by weight of water (water cement ratio 0.5) were charged into a mixer, and about 1 mortar cement obtained by kneading for 3 minutes
It was poured into a mold of 0 mm × 10 mm × 40 mm. This was vibrated for 1 minute with a vibrator to carry out compaction. This was left in a room at room temperature for several hours. After that, it was placed in a constant temperature humid box at 20 ± 1 ° C. and a relative humidity of 90% or more and cured for 20 hours. This molded body was deframed and subjected to standard curing in water at 20 ± 1 ° C. for 28 days. The molded body thus obtained was crushed and passed through a sieve having an opening of 300 μm to obtain a sample powder having a size not passing through 150 μm. This sample powder is designated as ASTM C
According to the method of 289, an elution test was conducted to examine the relationship between the amount of dissolved silica (Sc) and the amount of decrease in alkali concentration (Rc). Sc = 235.3 mMol / l, Rc = 7
It was 0.5 mMol / l, and it was found that ordinary red mud is a reactive aggregate that causes an alkaline aggregate reaction.
【0021】[0021]
【発明の効果】本発明により、多額の費用をかけて投棄
している赤泥の商業的な活用が可能になったため、バイ
ヤー方法を採用している企業において永年の課題であ
り、環境規制強化からその操業の将来の大きなガンとな
っていた赤泥対策が確立出来た。また赤泥と共に投棄さ
れていたソ−ダライトが副産物として回収され、ゼオラ
イト等の原料として有効に活用出来るなど、バイヤー工
程の経済性向上にも大きい効果を示す。Industrial Applicability According to the present invention, since the red mud that is dumped at a large cost can be used commercially, it has been a long-standing problem for companies that employ the buyer method, and environmental regulations have been tightened. Therefore, the red mud countermeasure, which has been a big cancer in the future, can be established. In addition, sodalite that had been dumped with red mud is recovered as a by-product and can be effectively used as a raw material for zeolite and the like, which is a great effect in improving the economic efficiency of the buyer process.
【図1】バイヤー法ボーキサイト溶解工程における、ボ
ーキサイト中反応性シリカとアルミナ分の液中への溶出
状況およびソーダライトの生成反応を模式的に示す。FIG. 1 schematically shows the state of elution of reactive silica and alumina in bauxite into a liquid and the reaction of sodalite formation in the Bayer method bauxite dissolution step.
【図2】アルミネート液のNaOH濃度に対するシリカ
溶解能を示す。FIG. 2 shows the ability of an aluminate solution to dissolve silica with respect to the NaOH concentration.
【図3】アルミネート液のNaOH濃度に対するシリカ
溶出に要する時間を示す。FIG. 3 shows the time required for silica elution with respect to the NaOH concentration of an aluminate solution.
【図4】ソーダライトの晶析に要する時間を示す。FIG. 4 shows the time required for crystallization of sodalite.
【図5】代表的な低ソ−ダ赤泥製造工程を示す。FIG. 5 shows a typical low soda red mud production process.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年4月8日[Submission date] April 8, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】符号の説明[Correction target item name] Explanation of code
【補正方法】追加[Correction method] Added
【補正内容】[Correction content]
【符号の説明】 1 ボーキサイト粉砕 2 反応性シリカ抽出 3 固液分離 4 ソーダライト晶析 5 固液分離 6 アルミナ抽出 7 固液分離 8 水酸化アルミニウム析出 9 固液分離[Explanation of symbols] 1 Bauxite grinding 2 Reactive silica extraction 3 Solid-liquid separation 4 Sodalite crystallization 5 Solid-liquid separation 6 Alumina extraction 7 Solid-liquid separation 8 Aluminum hydroxide precipitation 9 Solid-liquid separation
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】図面[Document name to be corrected] Drawing
【補正対象項目名】図5[Name of item to be corrected] Figure 5
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【図5】 [Figure 5]
Claims (3)
溶解処理し、不溶解残渣として赤泥を排出し、赤泥分離
溶液から水酸化アルミニウムを析出せしめ、これを焼成
してアルミナを製造するバイヤー工程において、 ボーキサイトをバイヤー工程の場合よりアルカリ濃度が
高いアルミン酸アルカリ溶液で処理して可溶性シリカ分
をできる限り抽出し、抽出液と不溶解残渣とに固液分離
し、該抽出液に種子を添加してソーダライトとして晶析
分離する脱硅工程を循環する前段処理工程と、該不溶解
残渣をボーキサイトと全く同様にバイヤー工程で処理す
る本工程とからなることを特徴とする低ソーダ赤泥の製
造方法。1. A buyer process for dissolving bauxite in an alkaline aluminate solution, discharging red mud as an insoluble residue, precipitating aluminum hydroxide from the red mud separation solution, and calcining this to produce alumina. , Bauxite is treated with an alkaline aluminate solution having a higher alkali concentration than in the Bayer process to extract soluble silica as much as possible, solid-liquid separation is performed into an extract and an insoluble residue, and seeds are added to the extract. Production of low-soda red mud, characterized in that it comprises a pretreatment step of circulating a silica removal step of crystallization and separation as sodalite, and a main step of treating the insoluble residue in a buyer step just like bauxite. Method.
のNaOH濃度が180g/l〜550g/lであるこ
とを特徴とする請求項1記載の低ソーダ赤泥の製造方
法。2. The method for producing low soda red mud according to claim 1, wherein the alkali aluminate solution used in the silica removing step has a NaOH concentration of 180 g / l to 550 g / l.
式(1)で求められる量の40%〜100%であること
を特徴とする請求項1記載の低ソーダ赤泥の製造方法。 【数1】 3. The method for producing low-soda red mud according to claim 1, wherein the amount of bauxite charged in the silica removing step is 40% to 100% of the amount calculated by the following formula (1). [Equation 1]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33905491A JP3269649B2 (en) | 1991-12-20 | 1991-12-20 | Method for producing aluminum hydroxide or alumina and low soda red mud |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33905491A JP3269649B2 (en) | 1991-12-20 | 1991-12-20 | Method for producing aluminum hydroxide or alumina and low soda red mud |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05170434A true JPH05170434A (en) | 1993-07-09 |
JP3269649B2 JP3269649B2 (en) | 2002-03-25 |
Family
ID=18323824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33905491A Expired - Fee Related JP3269649B2 (en) | 1991-12-20 | 1991-12-20 | Method for producing aluminum hydroxide or alumina and low soda red mud |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3269649B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6528028B2 (en) | 1999-12-28 | 2003-03-04 | Showa Denko K.K. | Process for treating bauxite in which a desilication product and an insoluble residure are separately precipitated |
JP2006045053A (en) * | 2004-07-05 | 2006-02-16 | Showa Denko Kk | Method for manufacturing aluminum salt solution, aluminum salt solution, aluminum salt, purifying facility using aluminum salt solution, and article manufactured using aluminum salt solution |
JP2007516922A (en) * | 2003-12-24 | 2007-06-28 | マウント・アスパイアリング・ジオケミストリー・コンサルタンツ・プロプライエタリー・リミテッド | Porous granular material for fluid treatment, cementitious composition and method for producing them |
-
1991
- 1991-12-20 JP JP33905491A patent/JP3269649B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6528028B2 (en) | 1999-12-28 | 2003-03-04 | Showa Denko K.K. | Process for treating bauxite in which a desilication product and an insoluble residure are separately precipitated |
JP2007516922A (en) * | 2003-12-24 | 2007-06-28 | マウント・アスパイアリング・ジオケミストリー・コンサルタンツ・プロプライエタリー・リミテッド | Porous granular material for fluid treatment, cementitious composition and method for producing them |
JP2006045053A (en) * | 2004-07-05 | 2006-02-16 | Showa Denko Kk | Method for manufacturing aluminum salt solution, aluminum salt solution, aluminum salt, purifying facility using aluminum salt solution, and article manufactured using aluminum salt solution |
Also Published As
Publication number | Publication date |
---|---|
JP3269649B2 (en) | 2002-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101045559A (en) | Method for producing sodium chromate non-calcium calcined by ferrochrome mine | |
CN1156399C (en) | Alumina producing process with hydraulic duralumin-type bauxite concentrate | |
WO1999043615A1 (en) | Recovery of products from non-metallic products derived from aluminum dross | |
US20100284881A1 (en) | Dephosphorization material, dephosphorization apparatus, and dephosphorization by-product | |
CA2295298C (en) | Treatment of aluminum dross | |
US20100129282A1 (en) | High-purity calcium compounds | |
US4815516A (en) | Method for recovering casting refractory compositions from investment casting shell molds | |
EP1089797B1 (en) | Dextran starch and flocculant combination for improving red mud clarification | |
JPH05170434A (en) | Production of low-sodium red mud | |
US4661328A (en) | Alumina from high silica bauxite | |
AU597773B2 (en) | Methylated starch compositions and their use as flocculating agents for bauxite residues | |
US4044095A (en) | Process for recovery of alumina from high-silica ore | |
US8394290B2 (en) | Recovery of alumina trihydrate during the Bayer process using scleroglucan | |
US2692816A (en) | Process for preparing magnesium hydroxide | |
US2604379A (en) | Alumina extraction | |
US4031182A (en) | Recovery of aluminum from alunite ore using acid leach to purify the residue for bayer leach | |
US3630351A (en) | Methods of upgrading alumina-bearing materials | |
US4229423A (en) | Method of producing magnesium hydroxide | |
JP3293155B2 (en) | Method for producing aluminum hydroxide | |
AU597113B2 (en) | Process for purifying alumina | |
AU669445B2 (en) | Production of alumina | |
JP4349711B2 (en) | Bauxite processing method | |
US3440005A (en) | Process for removing chromium and silicon values from aluminate solutions | |
JPH08168799A (en) | Method of neutralizing bauxite dissolution residual | |
Gould | Alumina from Low-Grade Bauxite. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |