[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05178900A - Production of powdery hemoglobin - Google Patents

Production of powdery hemoglobin

Info

Publication number
JPH05178900A
JPH05178900A JP3358118A JP35811891A JPH05178900A JP H05178900 A JPH05178900 A JP H05178900A JP 3358118 A JP3358118 A JP 3358118A JP 35811891 A JP35811891 A JP 35811891A JP H05178900 A JPH05178900 A JP H05178900A
Authority
JP
Japan
Prior art keywords
hemoglobin
solution
carbon monoxide
increase
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3358118A
Other languages
Japanese (ja)
Other versions
JP3194050B2 (en
Inventor
Hayashi O
林 王
Satoru Tokuyama
悟 徳山
Osamu Nakachi
理 仲地
Hidetoshi Tsuchida
英俊 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Research Institute for Production Development
Original Assignee
Research Institute for Production Development
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Production Development, Nippon Oil and Fats Co Ltd filed Critical Research Institute for Production Development
Priority to JP35811891A priority Critical patent/JP3194050B2/en
Publication of JPH05178900A publication Critical patent/JPH05178900A/en
Application granted granted Critical
Publication of JP3194050B2 publication Critical patent/JP3194050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain the subject compound for oxygen transporting agent, artificial blood, etc., capable of suppressing increase of ratio of methemoglobin formation, free from increase of osmotic pressure and viscosity by bringing hemoglobin solution into contact with CO to form coordination complex of hemoglobin and CO and subjecting the coordination complex to lyophilization. CONSTITUTION:A hemoglobin solution taken out from human erythrocyte is put in a vial and the vial is sealed with rubber plug and an injection needle is thrust from a rubber plug of vial bottle therein and the bottle is cooled with ice and carbon monoxide gas excluding oxygen is introduced into the bottle and brought into contact with hemoglobin to form a coordination complex of the hemoglobin and carbon monoxide and a reduction type nicotine amide adeninedinucleotide (NADH) is added to the resultant CO-bound hemoglobin solution and the solution is frozen with liquid nitrogen under nitrogen atmosphere and subjected to lyophilization under reduced pressure to provide the objective powdery hemoglobin suppressed to <=4% in increase of ratio of methemoglobin formation and free from increase of osmotic pressure and viscosity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸素運搬剤、例えば人
工血液の原料として用いられるヘモグロビンの粉末化に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder of oxygen carrier, for example, hemoglobin used as a raw material for artificial blood.

【0002】[0002]

【従来の技術】従来、糖類およびアミノ酸類を3%以上
の濃度でヘモグロビン溶液に添加し、真空脱気、または
窒素もしくはアルゴンガスのバブリングによってヘモグ
ロビンに結合している酸素を脱離させ、このデオキシ体
ヘモグロビン(deoxyHb)溶液を凍結乾燥する方法[例え
ばSurgery Gynecology Obstetrics, 148, 69-75(1979);
Biopolymers, 22, 2367-2381(1983); Cryobiology, 25,
277-284(1988); Haematologia, 18, 45-52(1985) 及び
特開昭61-1620 号公報]は知られている。
2. Description of the Related Art Conventionally, sugars and amino acids have been added to a hemoglobin solution at a concentration of 3% or more, and oxygen bound to hemoglobin has been desorbed by vacuum deaeration or bubbling of nitrogen or argon gas. A method of freeze-drying a body hemoglobin (deoxyHb) solution [eg, Surgery Gynecology Obstetrics, 148, 69-75 (1979);
Biopolymers, 22, 2367-2381 (1983); Cryobiology, 25,
277-284 (1988); Haematologia, 18, 45-52 (1985) and JP-A-61-1620].

【0003】しかしながら、これらの方法では、ヘモグ
ロビンの変性を阻止するために、多量の糖類やアミノ酸
類を添加する必要がある。糖類やアミノ酸類など添加物
の濃度が低い場合にはヘモグロビンのメト化抑制があま
り期待できなく、逆に添加物の濃度が高すぎても再分散
ヘモグロビン溶液の溶液物性が大きく変わり、例えば浸
透圧や粘度は著しく上昇するという欠点がある。特に再
分散させて高濃度のヘモグロビン溶液を調製する場合、
この問題が一層に顕著となる。人工血液の原料として用
いられるヘモグロビンを調製する場合、多量の糖類やア
ミノ酸類の含有は、浸透圧や粘度の上昇を招くばかりで
なく、そのもの自身が不純物として働くので望ましくな
い。
However, in these methods, it is necessary to add a large amount of sugars and amino acids in order to prevent denaturation of hemoglobin. When the concentration of additives such as sugars and amino acids is low, suppression of methemoglobin formation can not be expected so much, and on the contrary, even if the concentration of additives is too high, the solution physical properties of the redispersed hemoglobin solution change significantly, for example, osmotic pressure. There is a drawback that the viscosity and the viscosity increase remarkably. Especially when redispersing to prepare a high concentration hemoglobin solution,
This problem becomes more prominent. When preparing hemoglobin used as a raw material for artificial blood, the inclusion of a large amount of sugars and amino acids not only causes an increase in osmotic pressure and viscosity, but also acts as an impurity itself, which is not desirable.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、前記
従来方法で問題となっている多量の糖類やアミノ酸類の
添加という欠点を克服し、ヘモグロビンのメト化進行を
効果的に抑制し、粉末化ヘモグロビンを簡単な操作で、
しかも大量に生産でき、工業的にも実施するのに有利な
方法を提供することにある。
The object of the present invention is to overcome the drawback of the addition of a large amount of sugars and amino acids, which has been a problem in the above-mentioned conventional method, and effectively suppress the progress of methemoglobin formation. Powdered hemoglobin can be easily operated,
Moreover, it is to provide a method that can be mass-produced and is advantageous for industrial implementation.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために鋭意研究を重ねた結果、ヘモグロビ
ンの色素である中心金属(ヘム)を一酸化炭素と接触さ
せ配位体を形成させ、或いは必要に応じメト化ヘモグロ
ビンの還元剤、例えば還元型ニコチンアミドアデニンジ
ヌクレオチド(NADH) 、アスコルビン酸などをヘモグロ
ビン溶液に添加しておけば、この溶液を凍結乾燥させる
ことにより、ヘモグロビンの物理化学性能及び生物活性
が変化しないということを見出し、この知見に基づいて
本発明をなすに至った。
Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that a central metal (heme), which is a pigment of hemoglobin, is brought into contact with carbon monoxide to form a coordination compound. Or, if necessary, a reducing agent for methemoglobin, such as reduced nicotinamide adenine dinucleotide (NADH), ascorbic acid, etc., is added to the hemoglobin solution, and the solution is lyophilized to give hemoglobin. It was found that the physicochemical performance and biological activity of sucrose did not change, and the present invention was completed based on this finding.

【0006】即ち、本発明は、ヘモグロビン溶液に一酸
化炭素を接触させて、ヘモグロビンと一酸化炭素の配位
体を形成させた後、これを凍結、乾燥させる工程からな
る粉末状ヘモグロビンの製造方法であり、必要に応じて
凍結乾燥工程の前に還元剤を添加する。
That is, the present invention is a method for producing powdered hemoglobin, which comprises the steps of bringing carbon monoxide into contact with a hemoglobin solution to form a coordination complex of hemoglobin and carbon monoxide, and then freezing and drying the same. And optionally a reducing agent is added before the freeze-drying step.

【0007】本発明において用いられるヘモグロビン溶
液は、既知の方法(日本化学会編、続生化学実験講座、
第8巻「血液」上、東京化学同人、1987年; Methods in
Enzymology, Vol. 76, 1981, Academic Press, New Yo
rk; The Chromatography ofHemoglobin, 1983, Dekker
New York; 特開平2-503676号公報など) で赤血球から
取り出すことができる。赤血球は、人もしくは牛、馬、
豚など動物由来のいずれも利用できる。具体的には赤血
球を連続遠心機を用い、生理食塩水で洗浄し、混在する
白血球などを除去する。この洗浄赤血球に、蒸留水など
の低張溶液を添加して、溶血を行う。この溶血液を、孔
径 1.0μm から0.05μm まで数種類のメンブレンフィル
ターで濾過することによって、赤血球膜物質及び血液型
物質を除去する。必要に応じて限外濾過により濃縮を行
い、ヘモグロビンの濃度を調整する。
The hemoglobin solution used in the present invention can be prepared by a known method (edited by the Chemical Society of Japan, sequel biochemistry experiment course,
Volume 8, "Blood", Tokyo Kagaku Dojin, 1987; Methods in
Enzymology, Vol. 76, 1981, Academic Press, New Yo
rk; The Chromatography of Hemoglobin, 1983, Dekker
New York; Japanese Patent Laid-Open No. 2-503676, etc.). Erythrocytes are human or cow, horse,
Any animal origin such as pig can be used. Specifically, erythrocytes are washed with a physiological saline using a continuous centrifuge to remove mixed leukocytes and the like. A hypotonic solution such as distilled water is added to the washed red blood cells to perform hemolysis. Erythrocyte membrane substances and blood group substances are removed by filtering the hemolyzed blood with several kinds of membrane filters having pore sizes of 1.0 μm to 0.05 μm. If necessary, concentration is carried out by ultrafiltration to adjust the hemoglobin concentration.

【0008】本発明に利用するヘモグロビン溶液の調製
工程には、濃縮前にアルカリ溶液や緩衝液などを加え、
pH 5.5〜 8.0、浸透圧50〜300mOsm のヘモグロビン溶液
を調製することができる。ヘモグロビンと一酸化炭素と
の配位体形成は、一酸化炭素をヘモグロビン溶液に導入
し、接触させることによって行う。反応は0〜37℃の間
で行うのが望ましく、さらに望ましくは0〜10℃の間で
行う。0℃以下の温度ではヘモグロビン溶液の流動性が
低下し、ゲル状になるため、配位体の形成が著しく遅く
なるので不適当である。また、37℃を超えるとヘモグロ
ビンの酸化など変性が促進されるので望ましくない。一
酸化炭素の純度には特に制限が無いが、50%以上の濃度
が望ましい。50%未満の場合は、反応効率が悪くなるの
で望ましくない。不活性ガス例えば窒素やアルゴンなど
不純物を含んでいてもかまわない。一酸化炭素に含まれ
る酸素は除去しなくてもよいが、反応効率を高めるため
に脱酸素剤(例えば、1gの亜二チオン酸ナトリウムと
10mgのアントラキノン−β−スルホン酸を100mlの蒸留
水に溶解した溶液) を通すことによって、酸素を除去し
た一酸化炭素ガスを用いるのが望ましい。反応の進行
は、ヘモグロビンと一酸化炭素との配位体を形成した時
に現れるUVスペクトルの419nm 及び569nm の吸収で確
認することができる。
In the step of preparing the hemoglobin solution used in the present invention, an alkaline solution or a buffer solution is added before concentration,
A hemoglobin solution having a pH of 5.5 to 8.0 and an osmotic pressure of 50 to 300 mOsm can be prepared. Coordination between hemoglobin and carbon monoxide is performed by introducing carbon monoxide into a hemoglobin solution and bringing them into contact with each other. The reaction is preferably performed at 0 to 37 ° C, more preferably 0 to 10 ° C. At a temperature of 0 ° C. or lower, the fluidity of the hemoglobin solution is reduced and the solution becomes gelled, which is not suitable because the formation of the coordinator is significantly delayed. Further, if the temperature exceeds 37 ° C, denaturation such as oxidation of hemoglobin is promoted, which is not desirable. The purity of carbon monoxide is not particularly limited, but a concentration of 50% or more is desirable. If it is less than 50%, the reaction efficiency is deteriorated, which is not desirable. It may contain an inert gas, for example, impurities such as nitrogen and argon. Oxygen contained in carbon monoxide does not have to be removed, but in order to increase the reaction efficiency, a deoxidizer (for example, 1 g of sodium dithionite and
It is preferred to use carbon monoxide gas deoxygenated by passing 10 mg of anthraquinone-β-sulfonic acid in 100 ml of distilled water). The progress of the reaction can be confirmed by the absorption at 419 nm and 569 nm in the UV spectrum that appears when a coordination between hemoglobin and carbon monoxide is formed.

【0009】メト化ヘモグロビンの還元剤(以下、単に
還元剤と呼ぶ)は、例えば還元型ニコチンアミドアデニ
ンジヌクレオチド(NADH) 、チトクロームb5還元酵素
系、アスコルビン酸、グルタチオンなどを用いることが
できる。還元剤を、予め蒸留水または緩衝液などを溶解
した後、溶液状態でヘモグロビンに添加するのが望まし
い。還元剤の溶液は−40〜10℃の温度で保存することが
望ましい。ヘモグロビン溶液に添加する還元剤の濃度
は、0.1 〜50mM、望ましくは 1.0〜20mMである。
As the reducing agent for methemoglobin (hereinafter simply referred to as reducing agent), reduced nicotinamide adenine dinucleotide (NADH), cytochrome b 5 reductase system, ascorbic acid, glutathione, etc. can be used. It is desirable that the reducing agent is dissolved in distilled water or a buffer solution in advance and then added to hemoglobin in a solution state. The reducing agent solution is preferably stored at a temperature of -40 to 10 ° C. The concentration of the reducing agent added to the hemoglobin solution is 0.1 to 50 mM, preferably 1.0 to 20 mM.

【0010】還元剤の添加はヘモグロビンと一酸化炭素
との配位体形成前または配位体形成後いずれでもよい
が、配位体形成時、メト化ヘモグロビンの生成を抑制す
るために、還元剤を一酸化炭素との配位体形成前に添加
するのが望ましい。
The reducing agent may be added either before or after the formation of a coordination body of hemoglobin and carbon monoxide, but in order to suppress the production of methaemoglobin during the formation of the coordination body, the reducing agent is added. Is preferably added before the formation of the coordination body with carbon monoxide.

【0011】本発明において、一酸化炭素との配位体が
形成されたヘモグロビン溶液の凍結は、−10℃以下で行
うことができ、例えば液体窒素やドライアイス/メタノ
ールの寒剤もしくは低温フリーザーなどいずれの方法を
用いても良い。凍結操作は、なるべく不活性ガス、例え
ば窒素またはアルゴン雰囲気下で行うのが望ましい。ロ
ータリーエバポレーターや他の装置を利用して、ヘモグ
ロビンを入れたフラスコを旋回し、溶液を均一に器具の
内壁に分散させながら凍結させるようにする。次いでフ
ラスコを凍結乾燥器に取り付け、内温度−30〜−85℃、
真空度1〜100mtorr、望ましくは1〜10mtorr で凍結乾
燥を行う。凍結乾燥時には外温度を0〜25℃、望ましく
は10〜20℃に保つように注意する。乾燥時間をコントロ
ールすることによって得られた粉末状ヘモグロビンの含
水量を15%以下に調整することができる。処理量や要求
する目的物の含水量によって5〜24時間を要する。得ら
れた赤色の粉末化ヘモグロビンは4℃で暗所保存するの
が望ましい。
In the present invention, the hemoglobin solution in which the coordination with carbon monoxide is formed can be frozen at -10 ° C or lower, for example, liquid nitrogen, a dry ice / methanol freezing agent, or a low temperature freezer. You may use the method of. The freezing operation is preferably carried out under an atmosphere of an inert gas such as nitrogen or argon. Using a rotary evaporator or other device, swirl the flask containing the hemoglobin so that the solution is evenly dispersed on the inner wall of the device and frozen. Then, the flask was attached to a freeze dryer, and the internal temperature was -30 to -85 ° C,
Freeze-drying is performed at a vacuum degree of 1 to 100 mtorr, preferably 1 to 10 mtorr. Care should be taken to maintain the outside temperature at 0 to 25 ° C, preferably 10 to 20 ° C during freeze-drying. The water content of the powdered hemoglobin obtained by controlling the drying time can be adjusted to 15% or less. It takes 5 to 24 hours depending on the treatment amount and the water content of the desired product. The red powdered hemoglobin obtained is preferably stored in the dark at 4 ° C.

【0012】本発明における粉末化ヘモグロビンの再分
散には溶媒として、例えば蒸留水または pH5.5〜8.0 の
リン酸塩、炭酸水素塩、トリス塩、HEPES などの緩衝液
が用いられる。粉末化ヘモグロビンに蒸留水または緩衝
液を加えて、0 〜15℃でのインキュベーションでヘモグ
ロビンを再分散することができる。必要に応じて攪拌や
振動を与えることによって再分散を促すことができる。
得られたヘモグロビン溶液は必要に応じてフィルター濾
過などの方法で除菌することができる。
For redispersion of the powdered hemoglobin in the present invention, as a solvent, for example, distilled water or a buffer solution having a pH of 5.5 to 8.0 such as phosphate, hydrogen carbonate, Tris salt and HEPES is used. Distilled water or buffer can be added to powdered hemoglobin to redisperse hemoglobin by incubation at 0-15 ° C. Redispersion can be promoted by applying stirring or vibration as necessary.
The obtained hemoglobin solution can be sterilized by a method such as filter filtration, if necessary.

【0013】[0013]

【発明の効果】本発明の方法により、ヘモグロビンの粉
末化操作において、メト化ヘモグロビン(metHb)の生成
は非常に低く、メト化率(metHb%) の上昇を4%以下に
抑えることができる。しかも得られた粉末状ヘモグロビ
ンには余分な糖類やアミノ酸類が存在せず、それに伴う
再分散溶液の溶液物性の変化、例えば浸透圧や粘度の上
昇という従来法の欠点を克服する。得られた粉末化ヘモ
グロビンは人工血液用の原料として極めて好適である。
EFFECTS OF THE INVENTION According to the method of the present invention, the amount of methaemoglobin (metHb) produced is extremely low in the operation of powdering hemoglobin, and the increase in the meteoric ratio (metHb%) can be suppressed to 4% or less. In addition, the obtained powdered hemoglobin does not contain extra sugars and amino acids, and thus the drawbacks of the conventional method such as changes in the physical properties of the redispersion solution, such as an increase in osmotic pressure and viscosity, can be overcome. The obtained powdered hemoglobin is extremely suitable as a raw material for artificial blood.

【0014】[0014]

【実施例】次に、実施例及び比較例によって本発明をさ
らに詳細に説明する。ヘモグロビン溶液の濃度、メト化
率などの諸性能の測定は、288 型全自動pH/血液ガス電
解質分析装置、2500型COオキシメーター(チバ・コー
ニング社製)を用いた。 酸素結合−解離曲線の測定はヘモックスアナライザー
(TCS メディカルプロダクト社製)を用いた。浸透圧の
測定はONE-TEN 型オズモメータ(フィスケ社製)を用い
た。粘度の測定は回転粘度計バイオレオライザー(東京
計器製)を用い、粘度測定の温度は37℃で、粘度計の回
転速度は10r.p.m.であった。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. For the measurement of various properties such as the concentration of the hemoglobin solution and the rate of methemoglobin, a Model 288 fully automatic pH / blood gas electrolyte analyzer, Model 2500 CO oximeter (manufactured by Ciba Corning) was used. A hemox analyzer (manufactured by TCS Medical Products) was used to measure the oxygen bond-dissociation curve. The osmotic pressure was measured using an ONE-TEN type Osmometer (manufactured by Fiske Corp.). The viscosity was measured using a rotational viscometer Bio-Rheolyzer (manufactured by Tokyo Keiki Co., Ltd.), the viscosity measurement temperature was 37 ° C., and the rotation speed of the viscometer was 10 rpm.

【0015】実施例1 期間切れヒト赤血球から取り出した濃度16.0g/dlのヘモ
グロビン溶液(浸透圧289mOsm 、粘度1.55mPa x s)100m
l を250ml のバイアル瓶に入れ、密封した。バイアル瓶
のゴム栓から注射針を刺入れ、氷で冷却し、酸素を除い
た一酸化炭素ガスを導入することによって、ヘモグロビ
ンを一酸化炭素の配位体(CO化ヘモグロビン) にした。
一酸化炭素との反応の進行は 419nmと569nm のUVスペク
トルの吸収から確認し、約15分間で反応が完了した。
Example 1 A hemoglobin solution having a concentration of 16.0 g / dl extracted from a human erythrocyte that had expired (osmotic pressure 289 mOsm, viscosity 1.55 mPa xs) 100 m
l was placed in a 250 ml vial and sealed. An injection needle was inserted from the rubber stopper of the vial bottle, cooled with ice, and oxygen-free carbon monoxide gas was introduced to convert hemoglobin into a carbon monoxide coordinator (CO hemoglobin).
The progress of the reaction with carbon monoxide was confirmed by the absorption of UV spectra at 419 nm and 569 nm, and the reaction was completed in about 15 minutes.

【0016】得られたCO化ヘモグロビン溶液を20mlずつ
4個の250ml の茄子型フラスコに移し、それぞれのフラ
スコにNADHを0、2.0 、5.0 及び10.0mMの濃度にするよ
うに添加した。窒素雰囲気下、フラスコを回転させなが
ら液体窒素に浸漬し、CO化ヘモグロビン溶液を器具の壁
に膜状に付着するように均一に凍結した。フラスコを凍
結乾燥器(バーチス社、25SL型) に取り付け、−85℃、
2〜10mtorr で凍結乾燥した。外温度は17〜20℃に保っ
た。20時間の凍結乾燥後、赤色の粉末状ヘモグロビンが
得られた。
20 ml each of the obtained CO-hemoglobin solution was transferred to four 250 ml eggplant type flasks, and NADH was added to each flask so as to have a concentration of 0, 2.0, 5.0 and 10.0 mM. Under a nitrogen atmosphere, the flask was immersed in liquid nitrogen while rotating, and the CO-hemoglobin solution was uniformly frozen so as to adhere to the wall of the device in a film form. Attach the flask to a lyophilizer (Vertis, 25SL type), -85 ℃,
Lyophilized at 2-10 mtorr. The outside temperature was kept at 17 to 20 ° C. After freeze-drying for 20 hours, red powdered hemoglobin was obtained.

【0017】得られた添加NADH量の違うそれぞれの粉末
状ヘモグロビン全体に蒸留水を加え総体積を20mlにする
ように調整した。4℃で穏やかに振動を与えることによ
ってヘモグロビンを再分散した。溶液のヘモグロビン濃
度、メト化率(metHb%) 、総ヘモグロビン濃度に占める
一酸化炭素配位体の百分率(COHb%)、pH、浸透圧、粘度
を測定した。粉末状ヘモグロビンを再分散したヘモグロ
ビン溶液、及び粉末化前のヘモグロビン溶液のメト化率
などの性能を表1にまとめた。また、粉末化前(点線)
と粉末化後(実線)の対応するヘモグロビン溶液(NADH
濃度2mM) のUVスペクトルを図1に示す。スペクトル
の解析から、粉末化後のヘモグロビンの変性(メト化の
上昇)が殆ど認められなかった。
Distilled water was added to each of the obtained powdery hemoglobins having different amounts of added NADH to adjust the total volume to 20 ml. Hemoglobin was redispersed by gentle shaking at 4 ° C. The hemoglobin concentration of the solution, the methoterization rate (metHb%), the percentage of the carbon monoxide coordination compound in the total hemoglobin concentration (COHb%), pH, osmotic pressure, and viscosity were measured. Table 1 summarizes the performance such as the methation rate of the hemoglobin solution in which the powdered hemoglobin is redispersed and the hemoglobin solution before pulverization. Also, before pulverization (dotted line)
And the corresponding hemoglobin solution (NADH) after pulverization (solid line)
The UV spectrum at a concentration of 2 mM) is shown in FIG. From the analysis of the spectrum, denaturation of hemoglobin after powdering (increase in methemoglobin) was hardly observed.

【0018】[0018]

【表1】 [Table 1]

【0019】実施例2 実施例1と同様な方法で調製した濃度31.6、15.8、7.9g
/dl のヘモグロビン溶液をそれぞれ20mlずつ3個のバイ
アル瓶に入れ、NADHをそれぞれ2.0mM にするように添加
した。実施例1と同様に、溶液を一酸化炭素と接触させ
てヘモグロビンをCO化させた後、液体窒素で凍結させ、
−85℃、2〜10mtorr で24時間凍結乾燥した。赤色の粉
末状ヘモグロビンが得られた。粉末状ヘモグロビンの再
分散には、pH7.32のリン酸塩緩衝液(濃度10mM) を用
い、実施例1と同様にヘモグロビンの再分散を行った。
得られたヘモグロビン溶液の濃度、メト化率などを測定
し、表2に示した。
Example 2 Concentrations 31.6, 15.8 and 7.9 g prepared in the same manner as in Example 1
20 ml of each / dl hemoglobin solution was placed in each of three vials, and NADH was added to each vial at 2.0 mM. In the same manner as in Example 1, the solution was brought into contact with carbon monoxide to CO-convert hemoglobin, and then frozen with liquid nitrogen,
Lyophilization was performed at -85 ° C and 2 to 10 mtorr for 24 hours. A red powdered hemoglobin was obtained. For redispersion of the powdered hemoglobin, a phosphate buffer solution (concentration: 10 mM) having a pH of 7.32 was used, and the hemoglobin was redispersed in the same manner as in Example 1.
The concentration of the obtained hemoglobin solution, the methation ratio, etc. were measured and are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】実施例3 期間切れヒト赤血球から取り出した濃度10.3g/dlのヘモ
グロビン溶液(トリス塩緩衝液、pH7.33) 80mlを、実施
例1の方法で一酸化炭素の配位体を形成させた後、NADH
が3mMになるように添加した。溶液を1000mlのフラスコ
に移し、実施例1と同様に、24時間凍結乾燥を行い、11
gの赤色粉末状ヘモグロビンを得た。得られた粉末状ヘ
モグロビン10g(トリス塩、NaClなどを含有) に蒸留水
を加えて、溶液の体積を20mlにするように調整した。4
℃で15分間穏やかに攪拌した後、濃度37.5g/dl、メト化
率4.5 %、pH7.36、浸透圧378mOsm のヘモグロビン溶液
が得られた。
Example 3 80 ml of a hemoglobin solution (Tris salt buffer, pH 7.33) having a concentration of 10.3 g / dl taken out from the expired human red blood cells was used to form a carbon monoxide coordination compound by the method of Example 1. After the NADH
Was added to 3 mM. The solution was transferred to a 1000 ml flask and freeze-dried for 24 hours in the same manner as in Example 1.
g of red powdered hemoglobin was obtained. Distilled water was added to 10 g of the obtained powdery hemoglobin (containing Tris salt, NaCl, etc.) to adjust the volume of the solution to 20 ml. Four
After gently stirring at ℃ for 15 minutes, a hemoglobin solution having a concentration of 37.5 g / dl, a methotization rate of 4.5%, a pH of 7.36 and an osmotic pressure of 378 mOsm was obtained.

【0022】氷冷却下、上記溶液を60Wの白色光で照射
しながら、酸素ガスを1時間吹き込むことによってヘモ
グロビンに結合している一酸化炭素を脱離させた。ヘモ
グロビンの酸素化配位体(オキシ体ヘモグロビン)の形
成は 415nmの可視スペクトル吸収から確認された。常法
に従い、ヘモックスアナライザーで溶液の酸素運搬性能
を測定した。粉末化前(点線)と、粉末化後(実線)の
ヘモグロビンの酸素結合−解離曲線を図2に示した。図
2に示すように、酸素運搬性能が殆ど変わらないことが
明らかとなった。
Carbon monoxide bound to hemoglobin was desorbed by blowing oxygen gas for 1 hour while irradiating the solution with white light of 60 W under ice cooling. The formation of oxygenated coordinator of hemoglobin (oxyhemoglobin) was confirmed by visible spectrum absorption at 415 nm. According to a conventional method, the oxygen transport performance of the solution was measured with a hemox analyzer. The oxygen bond-dissociation curves of hemoglobin before pulverization (dotted line) and after pulverization (solid line) are shown in FIG. As shown in FIG. 2, it was clarified that the oxygen carrying performance hardly changed.

【0023】実施例4 期間切れヒト赤血球から取り出した濃度16.0g/dlのヘモ
グロビン溶液(浸透圧187mOsm)80mlに、アスコルビン酸
を25mMの濃度で添加した後、実施例1と同様の方法で一
酸化炭素の配位体を形成させた。溶液を1000mlのフラス
コに移し、実施例1と同様に、42時間凍結乾燥を行っ
た。実施例1と同様な方法で再分散を行った。得られた
ヘモグロビン溶液の濃度、メト化率および浸透圧はそれ
ぞれ14.5g/dl、5.5 %、および205mOsm であった。
Example 4 Ascorbic acid was added at a concentration of 25 mM to 80 ml of a hemoglobin solution (osmolarity: 187 mOsm) having a concentration of 16.0 g / dl taken out from the expired human red blood cells, and then monoxide was added in the same manner as in Example 1. A carbon coordination complex was formed. The solution was transferred to a 1000 ml flask and freeze-dried for 42 hours as in Example 1. Redispersion was performed in the same manner as in Example 1. The resulting hemoglobin solution had a concentration, a rate of methemoglobin and an osmotic pressure of 14.5 g / dl, 5.5%, and 205 mOsm, respectively.

【0024】比較例1 実施例1のヘモグロビンの一酸化炭素配位体(CO化Hb)
をデオキシ体ヘモグロビン(deoxyHb) に変えた以外は実
施例1に準じて、凍結乾燥を行った。16.0g/dlのヘモグ
ロビン溶液20mlを250ml のフラスコに入れ、窒素ガスを
吹き込むことによって、結合している酸素を脱離させ、
デオキシ体ヘモグロビンとした。デオキシ体ヘモグロビ
ンの生成はUVスペクトルの430nm 付近の吸収から確認
した。窒素雰囲気下で液体を液体窒素で凍結した後、凍
結乾燥やその他の操作を実施例1に準じて行った。2.78
gの茶色の粉末状ヘモグロビンが得られた。得られた粉
末を蒸留水に再分散すると、不溶物が観測された。再分
散したヘモグロビン溶液の性質を表3に示した。メト化
ヘモグロビン(metHb)は55.4%であった。
Comparative Example 1 Carbon monoxide coordination compound (CO-containing Hb) of hemoglobin of Example 1
Was lyophilized in the same manner as in Example 1 except that the deoxyhemoglobin (deoxyHb) was used instead of the above. 20 ml of 16.0 g / dl hemoglobin solution was put into a 250 ml flask, and the bound oxygen was desorbed by blowing nitrogen gas.
Deoxy hemoglobin was used. The production of deoxy-hemoglobin was confirmed by the absorption around 430 nm in the UV spectrum. After the liquid was frozen in liquid nitrogen under a nitrogen atmosphere, freeze-drying and other operations were carried out according to Example 1. 2.78
g of brown powdered hemoglobin was obtained. When the obtained powder was redispersed in distilled water, insoluble matter was observed. The properties of the redispersed hemoglobin solution are shown in Table 3. Metho-hemoglobin (metHb) was 55.4%.

【0025】比較例2 比較例1で得られたデオキシ体ヘモグロビン溶液に、NA
DHを2mMの濃度で添加した以外は、実施例1の操作に準
じて凍結乾燥を行った。得られた粉末を蒸留水に再分散
すると、不溶物が観測された。再分散ヘモグロビン溶液
の性質を表3に示した。メト化ヘモグロビン(metHb)は
49.0%であった。
Comparative Example 2 NAO was added to the deoxy-hemoglobin solution obtained in Comparative Example 1.
Lyophilization was performed according to the procedure of Example 1 except that DH was added at a concentration of 2 mM. When the obtained powder was redispersed in distilled water, insoluble matter was observed. The properties of the redispersed hemoglobin solution are shown in Table 3. Methemoglobin (metHb)
It was 49.0%.

【0026】比較例3 比較例1で得られたデオキシ体ヘモグロビン溶液に、NA
DHの代わりにスクロースを4%の濃度で添加した以外
は、実施例1の操作に準じて凍結乾燥を行った。赤色の
粉末状ヘモグロビンが得られた。得られた粉末状ヘモグ
ロビン全体に蒸留水を加えて、総体積を20mlにするよう
に調整した。4℃で穏やかに振動を与えることによっ
て、ヘモグロビンを再分散した。再分散したヘモグロビ
ン溶液の性質を表3に示した。メト化ヘモグロビン(me
tHb)は7.9 %で、溶液の浸透圧は405mOsm であり、粘度
は2.19mPa x s であった。得られたヘモグロビン溶液の
浸透圧と粘度は高く、人工血液の原料として不適であっ
た。
Comparative Example 3 NAO was added to the deoxy-hemoglobin solution obtained in Comparative Example 1.
Lyophilization was performed according to the procedure of Example 1 except that sucrose was added at a concentration of 4% instead of DH. A red powdered hemoglobin was obtained. Distilled water was added to the whole obtained powdery hemoglobin to adjust the total volume to 20 ml. Hemoglobin was redispersed by gentle shaking at 4 ° C. The properties of the redispersed hemoglobin solution are shown in Table 3. Methaemoglobin (me
tHb) was 7.9%, the osmotic pressure of the solution was 405 mOsm, and the viscosity was 2.19 mPa xs. The hemoglobin solution obtained had high osmotic pressure and viscosity, and was unsuitable as a raw material for artificial blood.

【0027】[0027]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of drawings]

【図1】粉末化前後のヘモグロビンのUVスペクトルで
ある。図において、実線は粉末化後のスペクトル、点線
は粉末化前のスペクトルである。
FIG. 1 is a UV spectrum of hemoglobin before and after powderization. In the figure, the solid line is the spectrum after pulverization and the dotted line is the spectrum before pulverization.

【図2】粉末化前後のヘモグロビンの酸素結合−解離曲
線である。図において、実線は粉末化後のグラフ、点線
は粉末化前のグラフである。
FIG. 2 is an oxygen bond-dissociation curve of hemoglobin before and after pulverization. In the figure, the solid line is the graph after pulverization and the dotted line is the graph before pulverization.

フロントページの続き (72)発明者 土田 英俊 東京都練馬区関町南2−10−10Continued Front Page (72) Inventor Hidetoshi Tsuchida 2-10-10 Sekimachi Minami, Nerima-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ヘモグロビン溶液に一酸化炭素を接触さ
せて、ヘモグロビンと一酸化炭素との配位体を形成させ
た後、これを凍結乾燥させることを特徴とする粉末状ヘ
モグロビンの製造方法。
1. A method for producing a powdered hemoglobin, which comprises contacting carbon monoxide with a hemoglobin solution to form a coordinator of hemoglobin and carbon monoxide, and then freeze-drying this.
【請求項2】 凍結乾燥工程の前にメト化ヘモグロビン
の還元剤を添加することを特徴とする請求項1記載の粉
末状ヘモグロビンの製造方法。
2. The method for producing powdered hemoglobin according to claim 1, wherein a reducing agent for methaemoglobin is added before the freeze-drying step.
JP35811891A 1991-12-27 1991-12-27 Method for producing powdered hemoglobin Expired - Fee Related JP3194050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35811891A JP3194050B2 (en) 1991-12-27 1991-12-27 Method for producing powdered hemoglobin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35811891A JP3194050B2 (en) 1991-12-27 1991-12-27 Method for producing powdered hemoglobin

Publications (2)

Publication Number Publication Date
JPH05178900A true JPH05178900A (en) 1993-07-20
JP3194050B2 JP3194050B2 (en) 2001-07-30

Family

ID=18457639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35811891A Expired - Fee Related JP3194050B2 (en) 1991-12-27 1991-12-27 Method for producing powdered hemoglobin

Country Status (1)

Country Link
JP (1) JP3194050B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114377155A (en) * 2022-01-14 2022-04-22 吴诗熳 Contrast agent, preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102427188B1 (en) * 2018-05-04 2022-07-28 주식회사 엘지에너지솔루션 Battery module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114377155A (en) * 2022-01-14 2022-04-22 吴诗熳 Contrast agent, preparation method and application thereof
WO2023133928A1 (en) * 2022-01-14 2023-07-20 吴诗熳 Contrast agent, preparation method for contrast agent, and application of contrast agent

Also Published As

Publication number Publication date
JP3194050B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
US6323320B1 (en) Acellular red blood cell substitute
JP2809735B2 (en) Lyophilization of cells
US6083909A (en) Haemoglobin-hydroxyethyl starch conjugates as oxygen carriers
US4473552A (en) Anaerobic method for preserving whole blood, tissue and components containing living mammalian cells
EP0948337B1 (en) Treatment of hemoglobin containing erythrocytes with nitric oxide
US5464814A (en) Acellular red blood cell substitute
JP2000516963A (en) Erythrocyte long-term preservation method using oxygen removal and additives
EP0143832A1 (en) Modified crosslinked stroma-free tetrameric hemoglobin.
FR2600255A1 (en) ACELLULAR SUBSTITUTE OF THE HEMATIES
JPS63503381A (en) Synthetic, plasma-free, transfusion-ready platelet storage medium
US5153004A (en) Freezing and thawing of erythrocytes
CN107137699A (en) The method of deoxidation and preparation technology of a kind of natural hemoglobin class blood substitute
JP3194050B2 (en) Method for producing powdered hemoglobin
CA2383977C (en) Stably preserving oxygen infusion
DE602004002834T2 (en) Artificial oxygen carrier and manufacturing method therefor
CA2710181C (en) Method for preserving sperm and applications thereof
WO2021041784A1 (en) Hemoglobin-based nanoparticles for oxygen delivery
RU2819064C1 (en) Method of producing powdered oxyhaemoglobin from arterial blood of cattle
JP4254662B2 (en) Artificial oxygen carrier and manufacturing method thereof
WO2024122618A1 (en) Method for preparing composition containing growth factor
WO2024108768A1 (en) Preparation method for hemoglobin oxygen carrier polyhb-sod-cat-ca
JPH049398A (en) Renewal of hemoglobin solution
Rozenberg et al. HEMOGLOBIN FREE OF STROMA AND PROCOAGULANTS, AND STUDY OF ITS PROPERTIES
MESSMER Oxygen-carrying blood substitutes
CN116942631A (en) Nano bionic red blood cell, construction method and application thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080601

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees