[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05177353A - Arc sensor for automatic welding - Google Patents

Arc sensor for automatic welding

Info

Publication number
JPH05177353A
JPH05177353A JP35897991A JP35897991A JPH05177353A JP H05177353 A JPH05177353 A JP H05177353A JP 35897991 A JP35897991 A JP 35897991A JP 35897991 A JP35897991 A JP 35897991A JP H05177353 A JPH05177353 A JP H05177353A
Authority
JP
Japan
Prior art keywords
welding
deviation
waveform
arc
inference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35897991A
Other languages
Japanese (ja)
Inventor
Hideki Shiozaki
秀喜 塩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP35897991A priority Critical patent/JPH05177353A/en
Publication of JPH05177353A publication Critical patent/JPH05177353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Arc Welding In General (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To obtain a correction value at the coordinate system of welding control in accordance with the potional deviation by detecting the deviation of the target position from an arc current waveform when any welding condition is applied without preparing the programming of arithmetic processing at every welding condition. CONSTITUTION:The arc sensor for automatic welding is provided with a current waveform storage device 5 for storing the waveform of an arc current of one period of weaving, a neural network system 6 for detecting the deviation of the target position from inference operation based on the data of the stored waveform of the storage device 5 and a fuzzy inference device 7 for calculating the correction value of the deviation of the target position at the coordinate system of welding control from the execution of an inference rule based on the detected result of the neural network system 6 and the welding conditions such as the welding direction and the welding posture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動溶接のねらい位置
のずれを検出する自動溶接用アークセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an arc sensor for automatic welding, which detects a deviation of the intended position of automatic welding.

【0002】[0002]

【従来の技術】従来、溶接ロボットにより例えば図2に
示すような溶接ワークとしての部材(継手)1,2のす
み肉溶接を行う場合、ロボットの溶接機制御,アーム制
御に基づき、溶接線l方向の移動とウイービングパター
ンに基づく実線wのウイービング移動とにより溶接トー
チ3が移動するとともに、このトーチ3から心線4が等
速で突き出され、溶接線lに沿って溶接が進む。
2. Description of the Related Art Conventionally, when performing fillet welding of members (joints) 1 and 2 as welding works as shown in FIG. 2 by a welding robot, for example, the welding line 1 is controlled based on the control of the welding machine and the arm of the robot. The welding torch 3 moves due to the movement in the direction and the weaving movement of the solid line w based on the weaving pattern, and the core wire 4 is projected from the torch 3 at a constant speed, and welding proceeds along the welding line l.

【0003】このとき、最適な溶接状態に保つには、ウ
イービングのセンタが溶接線lに沿い,かつ心線4の長
さが適度になるように、溶接のねらい位置を制御する必
要がある。そして、このねらい位置の制御には自動溶接
用アークセンサが用いられ、このセンサは溶接中に心線
4,溶接ワーク間を流れるアーク電流からねらい位置の
ずれを検出する。
At this time, in order to maintain the optimum welding state, it is necessary to control the welding aiming position so that the center of the weaving is along the welding line 1 and the length of the core wire 4 is appropriate. An arc sensor for automatic welding is used to control the aiming position, and this sensor detects the deviation of the aiming position from the arc current flowing between the core wire 4 and the welding work during welding.

【0004】なお、この検出結果が図2の溶接ワークの
座標系(X,Y,Z)で得られるときは、この検出結果
を溶接ロボットの座標系,すなわち同図の溶接制御の座
標系(x,y,z)に変換し、変換後の結果により、例
えば溶接ロボットのアーム位置を修正する。
When the detection result is obtained in the coordinate system (X, Y, Z) of the welding work of FIG. 2, the detection result is obtained in the coordinate system of the welding robot, that is, the coordinate system of the welding control shown in FIG. x, y, z), and the arm position of the welding robot is corrected according to the result after the conversion.

【0005】[0005]

【発明が解決しようとする課題】従来の自動溶接用アー
クセンサの場合、アーク電流の検出値に基づく具体的な
数値演算処理からねらい位置のずれを溶接制御の座標系
(x,y,z)で検出してその修正値を求めるため、個
々の溶接条件に応じた莫大な演算処理のプログラムを必
要とし、しかも、溶接条件が少しでも変わると正しく検
出されない問題点がある。本発明は、演算処理の莫大な
プログラミングを用意することなく、種々の溶接条件で
のねらい位置のずれを溶接制御の座標系で正確に検出で
きる汎用性の高い自動溶接用アークセンサを提供するこ
とを目的とする。
In the case of the conventional automatic arc sensor for welding, the deviation of the aimed position from the specific numerical calculation processing based on the detected value of the arc current is used for the welding control coordinate system (x, y, z). Therefore, a huge amount of calculation processing program corresponding to each welding condition is required to detect the correction value and the correction value is not detected correctly even if the welding condition changes even a little. The present invention provides a highly versatile arc sensor for automatic welding, which can accurately detect the deviation of the aiming position under various welding conditions in a coordinate system for welding control without preparing enormous programming of arithmetic processing. With the goal.

【0006】[0006]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明の自動溶接用アークセンサにおいては、ウ
イービングの1周期のアーク電流の波形を記憶する電流
波形記憶装置と、この記憶装置の記憶波形のデータに基
づく推論演算からねらい位置のずれを検出するニューラ
ルネットワーク装置と、この装置の検出結果と溶接方
向,溶接姿勢等の溶接条件とに基づく推論ルールの実行
から溶接制御の座標系でのねらい位置のずれの修正値を
算出するファジー推論装置とを備える。
In order to achieve the above object, in the arc sensor for automatic welding of the present invention, a current waveform storage device for storing the waveform of the arc current of one cycle of weaving, and this storage device. Neural network device that detects the deviation of the target position from the inference operation based on the data of the stored waveform of the robot, and the execution of the inference rule based on the detection result of this device and the welding conditions such as the welding direction and the welding posture, and the coordinate system for the welding control. And a fuzzy inference device that calculates a correction value for the deviation of the target position.

【0007】[0007]

【作用】前記のように構成された本発明の自動溶接用ア
ークセンサの場合、電流波形記憶装置の1周期のアーク
電流波形のデータに基づき、ニューラルネットワーク装
置がねらい位置のずれを推論して検出する。さらに、こ
の検出結果と溶接条件とに基づき、ファジー推論装置が
溶接制御の座標系でのねらい位置のずれの修正値を推論
して求める。
In the case of the arc sensor for automatic welding of the present invention configured as described above, the neural network device infers and detects the deviation of the aimed position based on the arc current waveform data of one cycle of the current waveform storage device. To do. Further, based on the detection result and the welding condition, the fuzzy inference device infers and obtains the correction value of the deviation of the aimed position in the welding control coordinate system.

【0008】そして、ニューラルネットワーク装置の推
論演算及びファジー推論装置の推論ルールの実行からね
らい位置のずれを検出して溶接制御系での修正値を求め
るため、従来センサの溶接条件毎の演算処理の莫大なプ
ログラミング等が不要になり、しかも、ニューラルネッ
トワーク装置の事前の学習に基づき、どのような溶接条
件のときにも正確にねらい位置のずれが検出され、その
上、ファジー推論により事前の学習を行うことなくずれ
の検出結果に応じた修正値が溶接制御の座標系で求まる
ため、汎用性の高い高性能のアークセンサを提供でき
る。
Then, in order to obtain the correction value in the welding control system by detecting the deviation of the aimed position from the inference operation of the neural network device and the execution of the inference rule of the fuzzy inference device, the calculation process for each welding condition of the conventional sensor is performed. No need for enormous programming, etc. Moreover, based on the learning in advance of the neural network device, the deviation of the target position can be accurately detected under any welding condition, and in addition, the learning in advance can be performed by fuzzy reasoning. Since the correction value according to the deviation detection result is obtained without using the coordinate system for welding control, a highly versatile arc sensor with high versatility can be provided.

【0009】[0009]

【実施例】1実施例について、図1を参照して説明す
る。図1において、5はRAM等により構成された書換
自在の電流波形記憶装置、6は例えば3層フィードフォ
ワード構成のニューラルネットワーク装置、7はファジ
ー推論装置である。そして、図2のすみ肉溶接に適用す
る場合、心線4,溶接ワーク間のアーク電流が溶接機
(図示せず)により常時検出され、この溶接機のアーク
電流検出信号Siが記憶装置5に供給される。また、ウ
イービングの情報として例えばウイービングの毎周期の
始点,終点のタイミング情報Pwが記憶装置5に供給さ
れる。
EXAMPLE One example will be described with reference to FIG. In FIG. 1, 5 is a rewritable current waveform storage device composed of a RAM or the like, 6 is a neural network device of, for example, a three-layer feedforward configuration, and 7 is a fuzzy inference device. When applied to the fillet welding of FIG. 2, the arc current between the core wire 4 and the welding work is constantly detected by a welding machine (not shown), and the arc current detection signal Si of this welding machine is stored in the storage device 5. Supplied. Further, as the weaving information, for example, timing information Pw at the start point and the end point of each cycle of the weaving is supplied to the storage device 5.

【0010】そして、記憶装置5はタイミング情報Pw
に基づき毎周期の検出信号Siを取込み、この信号Si
を含む最新の3周期の検出信号Siの平均波形Iのデー
タを1周期のアーク電流波形のデータとして書換自在に
記憶する。さらに、記憶装置5の記憶波形,すなわち最
新の平均波形Iのデータはネットワーク装置6に読出さ
れ、この装置6によりウイービングのセンタの部材1又
は2寄りのずれ及び心線4の長,短の傾向が溶接のねら
い位置のずれとして推論され、溶接ワークの座標系
(X,Y,Z)で求められる。
Then, the storage device 5 stores the timing information Pw.
The detection signal Si of each cycle is taken in according to
The latest waveform data of the average waveform I of the detection signal Si of three cycles including is stored rewritably as the data of the arc current waveform of one cycle. Further, the waveform stored in the storage device 5, that is, the data of the latest average waveform I is read out to the network device 6, and by this device 6, the deviation of the weaving center toward the member 1 or 2 and the tendency of the length of the core wire 4 to become short. Is inferred as a deviation of the intended position of welding, and is obtained in the coordinate system (X, Y, Z) of the welding work.

【0011】ところで、ウイービングのセンタが溶接線
lに一致して正確に部材1,2の隅をねらう位置になっ
ていれば、1/2周期のときにセンタが溶接線lを横切
り、波形Iは1/2周期のときに最小値になる対称波形
となるが、部材1又は2寄りにずれると、センタが溶接
線lを横切るタイミングは1/2周期より例えば遅れ又
は進みにずれ、波形Iが1/2周期の点に対して非対称
になる。
By the way, if the center of the weaving coincides with the welding line 1 and is precisely positioned at the corner of the members 1 and 2, the center crosses the welding line 1 at 1/2 cycle, and the waveform I Has a symmetric waveform that has a minimum value at 1/2 cycle, but if the center shifts toward the member 1 or 2, the timing at which the center crosses the welding line 1 is delayed or advanced from the 1/2 cycle, and the waveform I Becomes asymmetric with respect to the point of 1/2 cycle.

【0012】また、アーク電流は心線4の溶接トーチ3
からの突き出し長さに比例して減少変化し、心線4の長
さが適当なときの波形Iの平均を標準値とすると、心線
4の長,短変化により波形Iの平均は標準値より小,大
に変化する。したがって、波形Iの対称性のずれからウ
イービングのセンタの部材1又は2寄りのずれを推論で
き、波形Iの平均から心線4の長,短を推論できる。
The arc current is the welding torch 3 of the core wire 4.
If the average value of the waveform I when the length of the core wire 4 is appropriate is a standard value and the average length of the core wire 4 changes as the standard value, the average of the waveform I is a standard value. It changes to smaller and larger. Therefore, the deviation of the weaving center toward the member 1 or 2 can be inferred from the symmetry deviation of the waveform I, and the length and shortness of the core wire 4 can be inferred from the average of the waveform I.

【0013】そして、種々の溶接条件のときに所望の確
度でねらい位置のずれの推論が行えるように、ネットワ
ーク装置6には、予め、バックプロパゲーション学習等
により、代表的な溶接条件それぞれにつき、ウイービン
グのセンタ,心線4の長さが適当な場合及び不適当な場
合の正しい推論結果を学習させ、ウイービングのセンタ
の部材1,2寄りのずれを検出してセンタずれの判別信
号S1,S2それぞれを出力し、心線4の長過ぎ,短過
ぎを検出して心線長不良の判別信号S3,S4それぞれ
を出力するように設定する。
Then, in order to be able to infer the deviation of the aimed position with desired accuracy under various welding conditions, the network device 6 has in advance a typical welding condition for each typical welding condition, such as by back propagation learning. Correct inference results when the weaving center and the length of the core wire 4 are appropriate and improper are learned, and the deviations of the weaving center members 1 and 2 are detected to detect the center deviation determination signals S1 and S2. It is set to output each of them, detect whether the core wire 4 is too long or too short, and output each of the identification signals S3 and S4 of the core wire length failure.

【0014】この学習と設定とに基づき、学習後のネッ
トワーク装置6は、個々の溶接条件やその条件に合致し
た数値演算処理のプログラミングを与えることなく、波
形Iに基づく推論演算から自動的に現在のねらい位置の
ずれの傾向を溶接ワークの座標系(X,Y,Z)で正確
に検出し、検出結果に応じた判別信号S1,S2,S3
又はS4を出力する。そして、各判別信号S1〜S4は
溶接状態の検出信号として推論装置7に供給される。ま
た、溶接条件の情報として現在の溶接方向,溶接姿勢,
開先形状のデータDa,Db,Dcが推論装置7に供給
される。
Based on this learning and setting, the network device 6 after learning automatically presents the current inference operation based on the waveform I without giving programming of individual welding conditions or numerical operation processing which matches the conditions. The tendency of deviation of the target position is accurately detected in the coordinate system (X, Y, Z) of the welding work, and the discrimination signals S1, S2, S3 corresponding to the detection result are detected.
Alternatively, S4 is output. Then, the respective discrimination signals S1 to S4 are supplied to the inference device 7 as detection signals of the welding state. In addition, as welding condition information, the current welding direction, welding position,
The groove shape data Da, Db, Dc are supplied to the inference device 7.

【0015】ところで、推論装置7は推論ルールとし
て、代表的な溶接条件についての溶接状態の検出信号に
対する溶接制御の座標系(x,y,z)での修正値を求
める「if−then」形式のルールが予め記述されて
いる。そして、ネットワーク装置6から与えられた判別
信号S1〜S4とデータDa〜Dcとに基づき、推論装
置7は推論ルールを実行し、個々の溶接条件に合致した
座標変換のプログラミングを与えることなく、検出され
たねらい位置のずれに対応する座標系(x,y,z)で
の修正値Δx,Δy,Δzを求める。
By the way, the inference device 7 uses, as an inference rule, an "if-then" format for obtaining a correction value in the coordinate system (x, y, z) of the welding control for the detection signal of the welding state under typical welding conditions. Rules are described in advance. Then, based on the discrimination signals S1 to S4 and the data Da to Dc given from the network device 6, the inference device 7 executes an inference rule and detects without applying programming of coordinate conversion that matches individual welding conditions. The correction values Δx, Δy, Δz in the coordinate system (x, y, z) corresponding to the deviation of the aimed position are obtained.

【0016】そして、修正値Δx,Δy,Δzにより溶
接ロボットのアーム位置等がx,y,z軸方向に単位量
調整され、この調整のくり返しによりねらい位置が適正
位置に修正,維持される。なお、前記実施例では過渡変
動の防止等を図るため、1周期のアーク電流波形のデー
タを検出信号Siの3周期の平均から求めたが、N(=
1,2,3,…の整数)周期の平均から求めるようにし
てよいのは勿論である。また、各装置5〜7の構成等は
実施例に限定されるものではない。そして、種々の自動
溶接に適用できるのは勿論である。
Then, the arm position of the welding robot is adjusted by a unit amount in the x-, y-, and z-axis directions by the correction values Δx, Δy, Δz, and the aimed position is corrected and maintained at an appropriate position by repeating this adjustment. In the above embodiment, in order to prevent transient fluctuations, the data of the arc current waveform for one cycle was obtained from the average of three cycles of the detection signal Si, but N (=
Needless to say, it may be obtained from the average of (integer of 1, 2, 3, ...) Period. Further, the configurations and the like of the respective devices 5 to 7 are not limited to the embodiments. And, of course, it can be applied to various automatic welding.

【0017】[0017]

【発明の効果】本発明は、以上説明したように構成され
ているため、以下に記載する効果を奏する。電流波形記
憶装置5に記憶された1周期のアーク電流波形のデータ
に基づき、ニューラルネットワーク装置6がねらい位置
のずれを推論して検出し、この検出結果と溶接条件とに
基づき、ファジー推論装置7が溶接制御の座標系でのね
らい位置のずれの修正値を推論して求めるため、従来セ
ンサの溶接条件毎の演算処理の莫大なプログラミング等
を用意することなく、ニューラルネットワーク装置6の
事前の学習に基づき、どのような溶接条件のときにも正
確にねらい位置のずれを検出し、ファジー推論により事
前の学習等を行うことなくずれの検出結果に応じた修正
値を溶接制御の座標系で求めることができ、汎用性の高
い高性能のアークセンサを提供できる。
Since the present invention is configured as described above, it has the following effects. The neural network device 6 infers and detects the deviation of the aim position based on the data of the arc current waveform of one cycle stored in the current waveform storage device 5, and based on the detection result and the welding condition, the fuzzy inference device 7 Since the correction value of the deviation of the target position in the coordinate system for welding control is inferred and obtained, prior learning of the neural network device 6 without preparing enormous programming of arithmetic processing for each welding condition of the conventional sensor. Based on the above, the target position deviation is accurately detected under any welding condition, and the correction value according to the deviation detection result is obtained in the welding control coordinate system without performing prior learning by fuzzy reasoning. It is possible to provide a high-performance arc sensor with high versatility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の自動溶接用アークセンサの1実施例の
ブロック図である。
FIG. 1 is a block diagram of an embodiment of an arc sensor for automatic welding according to the present invention.

【図2】自動溶接の1例の溶接説明図である。FIG. 2 is a welding explanatory view of an example of automatic welding.

【符号の説明】[Explanation of symbols]

5 電流波形記憶装置 6 ニューラルネットワーク装置 7 ファジー推論装置 5 Current waveform storage device 6 Neural network device 7 Fuzzy inference device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G05B 19/403 M 9064−3H V 9064−3H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G05B 19/403 M 9064-3H V 9064-3H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶接線方向の移動とウイービングとによ
り溶接線に沿って溶接する際に、アーク電流から溶接の
ねらい位置のずれを検出する自動溶接用アークセンサに
おいて、 ウイービングの1周期の前記アーク電流の波形を記憶す
る電流波形記憶装置と、 前記記憶装置の記憶波形のデータに基づく推論演算から
前記ねらい位置のずれを検出するニューラルネットワー
ク装置と、 前記ネットワーク装置の検出結果と溶接方向,溶接姿勢
等の溶接条件とに基づく推論ルールの実行から溶接制御
の座標系での前記ねらい位置のずれの修正値を算出する
ファジー推論装置とを備えたことを特徴とする自動溶接
用アークセンサ。
1. An automatic welding arc sensor for detecting a deviation of a welding aim position from an arc current when welding along a welding line by moving in the direction of the welding line and weaving, and the arc of one cycle of weaving. A current waveform storage device that stores a waveform of a current, a neural network device that detects the deviation of the target position from an inference operation based on the data of the storage waveform of the storage device, a detection result of the network device, a welding direction, and a welding posture An arc sensor for automatic welding, comprising: a fuzzy inference device that calculates a correction value for the deviation of the target position in the coordinate system for welding control from execution of an inference rule based on welding conditions such as.
JP35897991A 1991-12-27 1991-12-27 Arc sensor for automatic welding Pending JPH05177353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35897991A JPH05177353A (en) 1991-12-27 1991-12-27 Arc sensor for automatic welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35897991A JPH05177353A (en) 1991-12-27 1991-12-27 Arc sensor for automatic welding

Publications (1)

Publication Number Publication Date
JPH05177353A true JPH05177353A (en) 1993-07-20

Family

ID=18462106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35897991A Pending JPH05177353A (en) 1991-12-27 1991-12-27 Arc sensor for automatic welding

Country Status (1)

Country Link
JP (1) JPH05177353A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009911A1 (en) * 1994-09-26 1996-04-04 Square D. Company Apparatus using a neural network for power factor calculation
US5614116A (en) * 1994-10-31 1997-03-25 United Technologies Corporation Welding control using fuzzy logic analysis of video imaged puddle dimensions
KR19980013917A (en) * 1996-08-05 1998-05-15 이대원 Welding line following method using arc (ARC) sensor
KR100238884B1 (en) * 1996-12-31 2000-01-15 김덕중 Method of sensing and processing gap of arc welding device
KR20020066126A (en) * 2001-02-09 2002-08-14 현대중공업 주식회사 Automatic seam tracking system by using regression method
KR100373140B1 (en) * 2001-02-09 2003-02-25 현대중공업 주식회사 Automatic seam tracking system in conjunction with quality control by using artificial intelligence
CN114619121A (en) * 2022-04-11 2022-06-14 唐山松下产业机器有限公司 Arc sensing control method and device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009911A1 (en) * 1994-09-26 1996-04-04 Square D. Company Apparatus using a neural network for power factor calculation
US5614116A (en) * 1994-10-31 1997-03-25 United Technologies Corporation Welding control using fuzzy logic analysis of video imaged puddle dimensions
USRE36926E (en) * 1994-10-31 2000-10-31 United Technologies Corporation Welding control using fuzzy logic analysis of video imaged puddle dimensions
KR19980013917A (en) * 1996-08-05 1998-05-15 이대원 Welding line following method using arc (ARC) sensor
KR100238884B1 (en) * 1996-12-31 2000-01-15 김덕중 Method of sensing and processing gap of arc welding device
KR20020066126A (en) * 2001-02-09 2002-08-14 현대중공업 주식회사 Automatic seam tracking system by using regression method
KR100373140B1 (en) * 2001-02-09 2003-02-25 현대중공업 주식회사 Automatic seam tracking system in conjunction with quality control by using artificial intelligence
CN114619121A (en) * 2022-04-11 2022-06-14 唐山松下产业机器有限公司 Arc sensing control method and device

Similar Documents

Publication Publication Date Title
CN108000517B (en) The robot controller for having learning control function
JPH05177353A (en) Arc sensor for automatic welding
US4990743A (en) Control method for tracing a weld line in a welding apparatus
JPH05177352A (en) Arc sensor for automatic welding
JPS58122179A (en) Teaching playback robot for arc welding
JPH05245639A (en) Method and device for correcting welding position
JPH10193116A (en) Left/right weaving width correction method in automatic tube circumference welding machine
US20230015734A1 (en) A method and system for robotic welding
JP3092420B2 (en) Robot interference detection method
JPH0639066B2 (en) Control method for industrial robot
JPH04190977A (en) Control system for arc welding robot
JPS6175405A (en) Error detecting method of machine system
JPH06218548A (en) Welding control method for welding robot
JP2003039354A (en) Control method, controller, and tool for robot
JPS61157904A (en) Method of monitoring profiling action locus
JPS6340677A (en) Welding robot with sensor
JPH10328835A (en) Arc sensing control method
JPS63192566A (en) Controller for arc welding robot
JPH04158981A (en) Welding robot controller
JPS61288982A (en) Method of controlling robot with visual sensor
JPS6072676A (en) Method and device for following up weld line
JPH04343106A (en) Industrial robot
JPH048485A (en) Teaching method of robot system with conveyor
JPS6320181A (en) Automatic welding equipment
JP2604838B2 (en) Industrial robot control method