JPH0516114A - Compacting method - Google Patents
Compacting methodInfo
- Publication number
- JPH0516114A JPH0516114A JP4057391A JP4057391A JPH0516114A JP H0516114 A JPH0516114 A JP H0516114A JP 4057391 A JP4057391 A JP 4057391A JP 4057391 A JP4057391 A JP 4057391A JP H0516114 A JPH0516114 A JP H0516114A
- Authority
- JP
- Japan
- Prior art keywords
- compact
- rubber
- powder
- sintering
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Press-Shaping Or Shaping Using Conveyers (AREA)
Abstract
Description
【産業上の利用分野】本発明は、バインダーを使用しな
いゴム型による粉末の静水圧成形方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrostatic molding method for powder by a rubber mold which does not use a binder.
【従来の技術】従来、バインダーを用いない粉末の成形
方法としては種々の方法があるが、中でも静水圧プレス
法(CIP法)が広く採用されている。CIP法により
成形する場合、ゴム型を使用するのが一般的である。従
来のゴム型によるCIP法の工程を図2に示す。図の
(a)に示すように粉末成形体1をゴム型3に充填し、
金属フランジ2で密栓する。次に図の(b)に示すよう
にゴム型3に加圧し、成形をする。このとき中央部分は
ゴム型に加圧されるが、両端部分は金属フランジがある
ため図の(c)に示すような成形体が出来る。2. Description of the Related Art Conventionally, there have been various methods for forming powders without using a binder, but the hydrostatic pressing method (CIP method) has been widely adopted. When molding by the CIP method, it is general to use a rubber mold. FIG. 2 shows the steps of the conventional CIP method using a rubber mold. As shown in (a) of the figure, the powder molded body 1 is filled in a rubber mold 3,
Seal with the metal flange 2. Next, as shown in (b) of the figure, the rubber mold 3 is pressed and molded. At this time, the central portion is pressed by the rubber mold, but since both end portions have the metal flanges, a molded body as shown in FIG.
【発明が解決しようとする課題】上記の従来のゴム型を
用いる方法では金属フランジに阻害されて、両端部分の
加圧が不足し、正円筒状の成形体を得ることができな
い。また、焼結前に機械加工を行って形状を整えること
は、焼結前は成形体の強度が弱いことから、極めて困難
であり、多大な工程数を必要とする。このように両端部
分の加圧が不足している成形体をこのまま焼結すると、
中央部分と両端部分の成形密度が異なるために焼結度も
不均質となる。そのため焼結後の寸法精度が悪く、クラ
ックが生ずることもあるなどの問題点がある。In the above-mentioned conventional method using a rubber mold, the metal flanges impede the pressurization of both end portions and the regular cylindrical molded body cannot be obtained. In addition, it is extremely difficult to perform the mechanical processing before sintering to adjust the shape, since the strength of the molded body is weak before sintering, and a great number of steps are required. In this way, if a compact with insufficient pressure on both ends is sintered as it is,
Since the molding densities of the central part and both end parts are different, the degree of sintering is also inhomogeneous. Therefore, there are problems that the dimensional accuracy after sintering is poor and cracks may occur.
【課題を解決するための手段】本発明では、成形体両端
部分の加圧不足を解決するために、原料粉末を充填する
際に、ゴムあるいは発泡スチロール等の圧縮性のある材
料を金属フランジと粉末の間に中子として挿入すること
により、加圧の際、成形体両端部分に圧縮性材料が接し
ているので金属フランジに加圧を阻害されず、粉末成形
体に均等に静水圧をかけることができる。According to the present invention, in order to solve the pressure shortage at both end portions of a molded body, when a raw material powder is filled, a compressible material such as rubber or expanded polystyrene is used as a metal flange and powder. By inserting it as a core between the two, the compressive material is in contact with both ends of the compact during pressurization, so the pressurization is not impeded by the metal flange and the hydrostatic pressure is evenly applied to the powder compact. You can
【作用】本発明の作用を図面と共に説明する。図1は本
発明の方法の説明図である。図の(a)は粉末成形体1
をゴム型3に充填した際の断面図である。両端部分の金
属フランジ2に阻害されて加圧の不足する端部の範囲
に、ゴムあるいは発泡スチロール等の圧縮性材料4を中
子として挿入する。加圧時の断面図を図の(b)に示
す。ゴムまたは発泡スチロール等の圧縮性材料が、金属
フランジによる加圧の不均等な範囲を占め、粉末成形体
は金属フランジの影響をうけない。粉末成形体に均等な
静水圧がかかっているため、断面形状が平行となる。静
水圧除荷後のゴム型断面図を図の(d)に示す。中子と
して入れる圧縮性材料に復元性の強いゴム等を用いる
と、静水圧除荷後、ゴムの復元力により成形体の型離れ
を促進することが出来る。本発明の成形法で作製した成
形体の断面図を図の(c)に示す。断面形状が平行で寸
法精度が高い、均質な成形密度の成形体を得ることが出
来る。成形密度が均質なので焼結による変形やクラック
の発生も起こらない。The operation of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of the method of the present invention. (A) of the figure shows the powder compact 1
FIG. 6 is a cross-sectional view when rubber mold 3 is filled with. A compressible material 4 such as rubber or Styrofoam is inserted as a core into the range of the end portions where the pressure is insufficient due to the metal flanges 2 at both end portions. A sectional view at the time of pressurization is shown in FIG. A compressible material such as rubber or styrofoam occupies an uneven range of pressure exerted by the metal flange and the powder compact is unaffected by the metal flange. Since a uniform hydrostatic pressure is applied to the powder compact, the cross-sectional shapes are parallel. A sectional view of the rubber mold after hydrostatic pressure unloading is shown in FIG. When a highly resilient rubber or the like is used as the compressible material to be inserted as the core, the mold releasing of the molded body can be promoted by the restoring force of the rubber after hydrostatic pressure unloading. A sectional view of a molded body produced by the molding method of the present invention is shown in FIG. It is possible to obtain a molded product having a uniform cross-sectional shape and high dimensional accuracy and a uniform molding density. Since the molding density is uniform, deformation and cracks due to sintering do not occur.
【実施例】実施例として本発明の方法を用いて、ビスマ
ス系酸化物超電導体のバルクを作製した。CIP圧40
00気圧で成形した結果、直径10mm、長さ150m
mのきわめて精度のよい成形体が得られた。焼結後もほ
とんど変形せず、均質な密度の焼結体が得られた。EXAMPLE As a practical example, a bulk of a bismuth-based oxide superconductor was produced by using the method of the present invention. CIP pressure 40
As a result of molding at 00 atm, diameter 10 mm, length 150 m
A highly accurate molded product of m was obtained. Almost no deformation occurred after sintering, and a sintered body having a uniform density was obtained.
【発明の効果】以上のように、本発明の粉末成形法によ
れば、粉末成形体に均等な静水圧を加えることが出来
る。そのため寸法精度の高い成形体を作製することが出
来る。成形密度も均質で、その後の焼結処理においても
変形やクラックの発生を防ぎ、高い寸法精度を維持する
ことが出来る。復元力の大きい圧縮性材料を使用した場
合、静水圧を取り除いた後の型が離れやすい等の効果も
ある。As described above, according to the powder molding method of the present invention, a uniform hydrostatic pressure can be applied to the powder molded body. Therefore, a molded product with high dimensional accuracy can be manufactured. The molding density is also uniform, and it is possible to prevent deformation and cracks in the subsequent sintering process and maintain high dimensional accuracy. When a compressible material having a large restoring force is used, there is also an effect that the mold is easily separated after removing the hydrostatic pressure.
【図1】本発明の粉末成形方法の説明図である。FIG. 1 is an explanatory view of a powder molding method of the present invention.
【図2】従来の粉末成形方法の説明図である。FIG. 2 is an explanatory diagram of a conventional powder molding method.
1 粉末成形体 2 金属フランジ 3 ゴム型 4 ゴムまたは発泡スチロール等の圧縮性材料 1 Powder compact 2 Metal flange 3 Rubber mold 4 Compressible material such as rubber or Styrofoam
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成3年2月21日[Submission date] February 21, 1991
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】全文[Name of item to be corrected] Full text
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【書類名】 明細書[Document name] Statement
【発明の名称】 粉末成形方法Title of powder molding method
【特許請求の範囲】[Claims]
【発明の詳細な説明】 Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は、バインダーを使用しな
いゴム型による粉末の静水圧成形方法に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrostatic molding method for powder by a rubber mold which does not use a binder.
【0002】[0002]
【従来の技術】従来、バインダーを用いない粉末の成形
方法としては種々の方法があるが、中でも静水圧プレス
法(CIP法)が広く採用されている。CIP法により
成形する場合、ゴム型を使用するのが一般的である。従
来のゴム型によるCIP法の工程を図2に示す。図の
(a)に示すように粉末成形体1をゴム型3に充填し、
金属フランジ2で密栓する。次に図の(b)に示すよう
にゴム型3に加圧し、成形をする。このとき中央部分は
ゴム型に加圧されるが、両端部分は金属フランジがある
ため図の(c)に示すような成形体が出来る。 2. Description of the Related Art Conventionally, there have been various methods for forming powders without using a binder, but the hydrostatic pressing method (CIP method) has been widely adopted. When molding by the CIP method, it is general to use a rubber mold. FIG. 2 shows the steps of the conventional CIP method using a rubber mold. As shown in (a) of the figure, the powder molded body 1 is filled in a rubber mold 3,
Seal with the metal flange 2. Next, as shown in (b) of the figure, the rubber mold 3 is pressed and molded. At this time, the central portion is pressed by the rubber mold, but since both end portions have the metal flanges, a molded body as shown in FIG.
【0003】[0003]
【発明が解決しようとする課題】上記の従来のゴム型を
用いる方法では金属フランジに阻害されて、両端部分の
加圧が不足し、正円筒状の成形体を得ることができな
い。また、焼結前に機械加工を行って形状を整えること
は、焼結前は成形体の強度が弱いことから、極めて困難
であり、多大な工程数を必要とする。このように両端部
分の加圧が不足している成形体をこのまま焼結すると、
中央部分と両端部分の成形密度が異なるために焼結度も
不均質となる。そのため焼結後の寸法精度が悪く、クラ
ックが生ずることもあるなどの問題点がある。 In the above-mentioned conventional method using a rubber mold, the metal flanges impede the pressurization of both end portions and the regular cylindrical molded body cannot be obtained. In addition, it is extremely difficult to perform the mechanical processing before sintering to adjust the shape, since the strength of the molded body is weak before sintering, and a great number of steps are required. In this way, if a compact with insufficient pressure on both ends is sintered as it is,
Since the molding densities of the central part and both end parts are different, the degree of sintering is also inhomogeneous. Therefore, there are problems that the dimensional accuracy after sintering is poor and cracks may occur.
【0004】[0004]
【課題を解決するための手段】本発明では、成形体両端
部分の加圧不足を解決するために、原料粉末を充填する
際に、ゴムあるいは発泡スチロール等の圧縮性のある材
料を金属フランジと粉末の間に中子として挿入すること
により、加圧の際、成形体両端部分に圧縮性材料が接し
ているので金属フランジに加圧を阻害されず、粉末成形
体に均等に静水圧をかけることができる。 According to the present invention, in order to solve the pressure shortage at both end portions of a molded body, when a raw material powder is filled, a compressible material such as rubber or expanded polystyrene is used as a metal flange and powder. By inserting it as a core between the two, the compressive material is in contact with both ends of the compact during pressurization, so the pressurization is not impeded by the metal flange and the hydrostatic pressure is evenly applied to the powder compact. You can
【0005】[0005]
【作用】本発明の作用を図面と共に説明する。図1は本
発明の方法の説明図である。図の(a)は粉末成形体1
をゴム型3に充填した際の断面図である。両端部分の金
属フランジ2に阻害されて加圧の不足する端部の範囲
に、ゴムあるいは発泡スチロール等の圧縮性材料4を中
子として挿入する。加圧時の断面図を図の(b)に示
す。ゴムまたは発泡スチロール等の圧縮性材料が、金属
フランジによる加圧の不均等な範囲を占め、粉末成形体
は金属フランジの影響をうけない。粉末成形体に均等な
静水圧がかかっているため、断面形状が平行となる。静
水圧除荷後のゴム型断面図を図の(d)に示す。中子と
して入れる圧縮性材料に復元性の強いゴム等を用いる
と、静水圧除荷後、ゴムの復元力により成形体の型離れ
を促進することが出来る。本発明の成形法で作製した成
形体の断面図を図の(c)に示す。断面形状が平行で寸
法精度が高い、均質な成形密度の成形体を得ることが出
来る。成形密度が均質なので焼結による変形やクラック
の発生も起こらない。 The operation of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of the method of the present invention. (A) of the figure shows the powder compact 1
FIG. 6 is a cross-sectional view when rubber mold 3 is filled with. A compressible material 4 such as rubber or Styrofoam is inserted as a core into the range of the end portions where the pressure is insufficient due to the metal flanges 2 at both end portions. A sectional view at the time of pressurization is shown in FIG. A compressible material such as rubber or styrofoam occupies an uneven range of pressure exerted by the metal flange and the powder compact is unaffected by the metal flange. Since a uniform hydrostatic pressure is applied to the powder compact, the cross-sectional shapes are parallel. A sectional view of the rubber mold after hydrostatic pressure unloading is shown in FIG. When a highly resilient rubber or the like is used as the compressive material to be inserted as the core, it is possible to promote the mold release of the molded body by the restoring force of the rubber after unloading under hydrostatic pressure. A sectional view of a molded body produced by the molding method of the present invention is shown in FIG. It is possible to obtain a molded product having a uniform cross-sectional shape and high dimensional accuracy and a uniform molding density. Since the molding density is uniform, deformation and cracks due to sintering do not occur.
【0006】[0006]
【実施例】実施例として本発明の方法を用いて、ビスマ
ス系酸化物超電導体のバルクを作製した。CIP圧40
00気圧で成形した結果、直径10mm、長さ150m
mのきわめて精度のよい成形体が得られた。焼結後もほ
とんど変形せず、均質な密度の焼結体が得られた。 EXAMPLE As a practical example, a bulk of a bismuth-based oxide superconductor was produced by using the method of the present invention. CIP pressure 40
As a result of molding at 00 atm, diameter 10 mm, length 150 m
A highly accurate molded product of m was obtained. Almost no deformation occurred after sintering, and a sintered body having a uniform density was obtained.
【0007】[0007]
【発明の効果】以上のように、本発明の粉末成形法によ
れば、粉末成形体に均等な静水圧を加えることが出来
る。そのため寸法精度の高い成形体を作製することが出
来る。成形密度も均質で、その後の焼結処理においても
変形やクラックの発生を防ぎ、高い寸法精度を維持する
ことが出来る。復元力の大きい圧縮性材料を使用した場
合、静水圧を取り除いた後の型が離れやすい等の効果も
ある。As described above, according to the powder molding method of the present invention, a uniform hydrostatic pressure can be applied to the powder molded body. Therefore, a molded product with high dimensional accuracy can be manufactured. The molding density is also uniform, and it is possible to prevent deformation and cracks in the subsequent sintering process and maintain high dimensional accuracy. When a compressible material having a large restoring force is used, there is also an effect that the mold is easily separated after removing the hydrostatic pressure.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の粉末成形方法の説明図である。FIG. 1 is an explanatory view of a powder molding method of the present invention.
【図2】従来の粉末成形方法の説明図である。FIG. 2 is an explanatory diagram of a conventional powder molding method.
【符号の説明】 1 粉末成形体 2 金属フランジ 3 ゴム型 4 ゴムまたは発泡スチロール等の圧縮性材料[Explanation of symbols] 1 powder compact 2 metal flange 3 rubber mold 4 rubber or styrofoam or other compressible material
Claims (1)
いて、粉末充填時に圧縮性材料を両端のフランジと粉末
材料の間に介在させ、加圧成形することを特徴とする粉
末材料成形方法。Claim: What is claimed is: 1. In hydrostatic molding of a powder material by a rubber mold, a compressive material is interposed between the flanges at both ends and the powder material when the powder is filled, and pressure molding is performed. Powder material molding method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4057391A JPH0516114A (en) | 1991-02-13 | 1991-02-13 | Compacting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4057391A JPH0516114A (en) | 1991-02-13 | 1991-02-13 | Compacting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0516114A true JPH0516114A (en) | 1993-01-26 |
Family
ID=12584225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4057391A Pending JPH0516114A (en) | 1991-02-13 | 1991-02-13 | Compacting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0516114A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9271739B2 (en) | 2009-08-06 | 2016-03-01 | Depuy (Ireland) | Surgical instrument and system of surgical instruments |
-
1991
- 1991-02-13 JP JP4057391A patent/JPH0516114A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9271739B2 (en) | 2009-08-06 | 2016-03-01 | Depuy (Ireland) | Surgical instrument and system of surgical instruments |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3499066A (en) | Method for manufacturing isostatically pressed articles having openings or inserts therein | |
JPH10296499A (en) | Method for press-forming green compact and die press forming die | |
JPH0516114A (en) | Compacting method | |
JPS6285903A (en) | Method and device for forming molding insulating piece | |
US3608026A (en) | Method of manufacturing rods or tubes from powder | |
KR980700665A (en) | MANUFACTURING CERAMIC ARTICLES | |
JP2851326B2 (en) | Nuclear fuel pellet manufacturing equipment | |
JP2001003104A (en) | Method for forming green compact from powder | |
JP3078356B2 (en) | Powder pressing method | |
JPS62184806A (en) | Pressure molding rubber mold for bag tubular ceramic molded shape | |
JP2010274288A (en) | Method for pressing powder compact | |
JP2001009596A (en) | Powder compression molding method | |
US5342574A (en) | Method for producing anisotropic rare earth magnet | |
JP3007488B2 (en) | Mold for cold isostatic pressing | |
JP2545687B2 (en) | Molding die and powder molding method | |
Lewis Jr | Dry pressing technical ceramics | |
JP2594691B2 (en) | Method of forming ceramic tube forming body | |
JP2724743B2 (en) | Method of manufacturing ceramic part having hollow part | |
KR200164530Y1 (en) | Powder forming device | |
JPH0780072B2 (en) | Molding method with cold isostatic molding device | |
JPH0413079B2 (en) | ||
JPS61290004A (en) | Method of molding ceramics | |
JPH05156305A (en) | Device for compacting sintered part | |
JPH073304A (en) | Sintered parts of metallic powder and production of comb-shaped parts | |
JPH05138627A (en) | Production of oxide superconductor |