JPH05152204A - Iii-v compound semiconductor - Google Patents
Iii-v compound semiconductorInfo
- Publication number
- JPH05152204A JPH05152204A JP31510191A JP31510191A JPH05152204A JP H05152204 A JPH05152204 A JP H05152204A JP 31510191 A JP31510191 A JP 31510191A JP 31510191 A JP31510191 A JP 31510191A JP H05152204 A JPH05152204 A JP H05152204A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- crystal
- component
- substrate
- mixed crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Recrystallisation Techniques (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は, III族の窒化物半導体
とIII-V族化合物半導体との混晶からなるワイドギャッ
プ半導体を基板上に堆積したIII-V 族化合物半導体に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a III-V group compound semiconductor in which a wide-gap semiconductor composed of a mixed crystal of a group III nitride semiconductor and a III-V group compound semiconductor is deposited on a substrate.
【0002】III族の窒化物半導体,例えばInN.G
aN,AlN及びこれらの混晶は禁制帯幅が3eVを越え
るワイドギャップ半導体であることから,短波長領域で
用いることができる光半導体素子の材料として重視され
ている。Group III nitride semiconductors such as InN. G
Since aN, AlN, and mixed crystals of these are wide-gap semiconductors having a band gap exceeding 3 eV, they are regarded as important materials for optical semiconductor devices that can be used in the short wavelength region.
【0003】しかし,これらの化合物半導体を半導体素
子材料として広く適用するには,基板結晶上に結晶性の
良いエピタキシャル結晶を堆積する必要がある。このた
め,結晶性の良い半導体結晶を基板とし,その上に格子
整合して堆積することができるワイドギャップ半導体が
求められている。However, in order to widely apply these compound semiconductors as semiconductor element materials, it is necessary to deposit an epitaxial crystal having good crystallinity on the substrate crystal. Therefore, there is a demand for a wide-gap semiconductor that can be deposited in lattice matching on a semiconductor crystal having good crystallinity.
【0004】[0004]
【従来の技術】ワイドギャップ半導体として知られる I
II族の窒化物半導体の多くはウルツ鉱型の結晶構造を有
する。このため従来は,同じ六方晶族に属する結晶を基
板としてエピタキシャル層を堆積し製造していた。2. Description of the Related Art I known as a wide-gap semiconductor
Most group II nitride semiconductors have a wurtzite crystal structure. For this reason, conventionally, epitaxial layers were deposited and manufactured using crystals belonging to the same hexagonal group as substrates.
【0005】しかし,六方晶族の結晶であって,格子定
数が III族の窒化物半導体と一致し,かつ結晶欠陥の少
ないものは知られていない。このため,従来はエピタキ
シャル法によっては結晶欠陥が少ないワイドギャップ半
導体結晶を製造することができなかった。However, there is no known hexagonal group crystal whose lattice constant matches that of a group III nitride semiconductor and which has few crystal defects. Therefore, conventionally, it has been impossible to manufacture a wide-gap semiconductor crystal with few crystal defects by the epitaxial method.
【0006】[0006]
【発明が解決しようとする課題】上述のように,従来の
III族窒化物からなるワイドギャップ半導体は,結晶性
の良い六方晶の基板結晶がないため,結晶欠陥の少ない
結晶をエピタキシャル成長法により製造することができ
ないという問題があった。As described above, the conventional
A wide-gap semiconductor made of a group III nitride has a problem that a crystal with few crystal defects cannot be manufactured by an epitaxial growth method because there is no hexagonal substrate crystal with good crystallinity.
【0007】本発明は,ウルツ鉱型の結晶構造をもつ I
II族窒化物半導体の混晶を,結晶構造の基本単位が基板
と整合する組成とすることにより,結晶性の良い半導体
結晶を基板としてエピタキシャル成長された結晶欠陥の
少ないワイドギャップIII-V族化合物半導体を提供する
ことを目的とする。The present invention has a wurtzite crystal structure I
A wide-gap III-V compound semiconductor with few crystal defects, which was epitaxially grown using a semiconductor crystal with good crystallinity as a substrate by making the mixed crystal of the group II nitride semiconductor have a composition in which the basic unit of the crystal structure matches the substrate. The purpose is to provide.
【0008】[0008]
【課題を解決するための手段】図1は本発明の原理説明
図であり,セン亜鉛鉱またはダイヤモンド型構造の基板
結晶上にウルツ鉱型構造の半導体混晶が成長したときの
格子面を表しており,図1(a)は基板の(111)面
に成長したものを,図1(b)は基板の<111>方位
に平行な面に成長したものを表している。FIG. 1 is an explanatory view of the principle of the present invention, showing a lattice plane when a wurtzite structure semiconductor mixed crystal grows on a substrate of a sphalerite or diamond structure. 1 (a) shows the one grown on the (111) plane of the substrate, and FIG. 1 (b) shows the one grown on the plane parallel to the <111> direction of the substrate.
【0009】上記課題を解決するための本発明の第一の
構成は,図1を参照して,第一の構成は,セン亜鉛鉱型
及びダイヤモンド型のうち何れか一つの結晶構造を有す
る半導体単結晶基板1上に堆積された,第一の成分と第
二の成分とからなる半導体混晶2であって,該第一の成
分は,AlN,GaN及びInNのうちの一つ又は二以
上の化合物からなり,該第二の成分は,InP,Ga
P,AlP,InAs,GaAs,AlAs,InS
b,GaSb及びAlSbのうちの一つ又は二以上の化
合物からなり,該半導体混晶2の該第一の成分と該第二
の成分との比は,該半導体混晶2の結晶構造において V
族原子が形成する四面体配位結合の平均原子間距離が該
半導体結晶基板1における四面体配位結合の原子間距離
と略等しくなる比でなることを特徴とするワイドギャッ
プIII-V 族化合物半導体として構成され,及び,第二の
構成は,第一の構成のIII-V 族化合物半導体において,
該半導体混晶はGaP単結晶上に堆積された((Alx
Ga1-x )y In1-y P)z (AlN) 1-z であり,x
は0以上0.7以下であり,yは0以上0.5以下であ
り,zは0.7以上0.8以下であることを特徴とする
直接遷移型のワイドギャップIII-V 族化合物半導体とし
て構成される。The first aspect of the present invention for solving the above problems
The composition is shown in Fig. 1, and the first composition is gemstone type.
And any one of diamond type crystal structure
The first component and the second component deposited on the semiconductor single crystal substrate 1
A semiconductor mixed crystal 2 composed of two components, the first composition
Minute is one or more of AlN, GaN and InN.
It consists of the above compound, and the second component is InP, Ga
P, AlP, InAs, GaAs, AlAs, InS
One or more of b, GaSb and AlSb
The semiconductor mixed crystal 2 and the first component and the second component
In the crystal structure of the semiconductor mixed crystal 2, the ratio of
The average interatomic distance of the tetrahedral coordination bond formed by group atoms is
Interatomic distance of tetrahedral coordination bond in semiconductor crystal substrate 1
The wide gap is characterized by a ratio that is substantially equal to
Configured as a group III-V compound semiconductor, and
The composition is the III-V group compound semiconductor of the first composition,
The semiconductor mixed crystal was deposited on a GaP single crystal ((Alx
Ga1-x)yIn1-yP)z(AlN) 1-zAnd x
Is 0 or more and 0.7 or less, and y is 0 or more and 0.5 or less
And z is 0.7 or more and 0.8 or less.
As a direct transition type wide-gap III-V compound semiconductor
Consists of
【0010】[0010]
【作用】本発明にかかる光装置用半導体は,AlN,G
aN及びInNを一つの成分とし,従来から光装置用と
して通常用いられているIII-V 族化合物半導体をもう一
つの成分とした混晶からなる。The semiconductor for optical devices according to the present invention is made of AlN, G
It is composed of a mixed crystal containing aN and InN as one component and a III-V group compound semiconductor conventionally used for optical devices as another component.
【0011】III-V 族化合物半導体の混晶の禁制帯幅と
格子定数は,組成比に応じて単調に変化することが知ら
れている。本発明に係る半導体混晶は,通常用いられて
いるIII-V 族化合物半導体に較べて著しく大きな禁制帯
幅を有するAlN,GaN及びInNを一成分とするこ
とから,大きな禁制帯幅を有するのである。It is known that the band gap and the lattice constant of the mixed crystal of the III-V group compound semiconductor monotonically change according to the composition ratio. The semiconductor mixed crystal according to the present invention has a large forbidden band width because it contains AlN, GaN, and InN, which have a significantly larger forbidden band width than the commonly used III-V group compound semiconductors. is there.
【0012】他方,混晶の成分である化合物の種類及び
その組成比を選定することで,広い範囲にわたり任意の
格子定数を有する半導体混晶を製造することができる。
本発明は,かかる窒化物を含む半導体混晶の組成を,そ
の半導体混晶及び基板結晶に共通する基本的結晶構造の
大きさが略同じになる様に選定するもので,これにより
半導体混晶層を結晶構造が異なる基板上に格子整合させ
て成長することを可能とするのである。On the other hand, a semiconductor mixed crystal having an arbitrary lattice constant over a wide range can be manufactured by selecting the kind of the compound as the component of the mixed crystal and the composition ratio thereof.
The present invention selects the composition of the semiconductor mixed crystal containing such a nitride so that the sizes of the basic crystal structures common to the semiconductor mixed crystal and the substrate crystal are substantially the same. The layers can be grown in a lattice-matched manner on substrates with different crystal structures.
【0013】即ち,半導体混晶が有するウルツ鉱型の結
晶構造は, V族原子が四面体配位結合を形成し,この四
面体配位構造を基本構造とする六方稠密構造をなしてい
る。また,基板が有するセン亜鉛鉱またはダイヤモンド
型構造は, V族又はIV族原子が形成する四面体配位を基
本構造として,これが面心稠密構造を形成する。That is, the wurtzite crystal structure of the semiconductor mixed crystal has a hexagonal close-packed structure in which the group V atoms form a tetrahedral coordination bond and the tetrahedral coordination structure is a basic structure. In addition, the zinc-blende or diamond-type structure of the substrate has a tetrahedral coordination formed by group V or group IV atoms as the basic structure, which forms a face-centered dense structure.
【0014】本発明の構成は,基板結晶とその上にエピ
タキシャル成長される半導体混晶との四面体配位構造の
平均の大きさ,即ち四面体配位の平均原子間距離が略一
致する様に半導体混晶の組成を選定するものである。According to the structure of the present invention, the average size of the tetrahedral coordination structure of the substrate crystal and the semiconductor mixed crystal epitaxially grown thereon, that is, the average interatomic distance of the tetrahedral coordination, is substantially the same. The composition of the semiconductor mixed crystal is selected.
【0015】かかる構成では,基板結晶とエピタキシャ
ル半導体混晶との界面に,以下に説明する通り,転位の
如きエピタキシャル層内へ伝播する結晶欠陥を発生する
ことなく結晶構造の相違を吸収することができる。In such a structure, the difference in crystal structure can be absorbed at the interface between the substrate crystal and the epitaxial semiconductor mixed crystal without generating a crystal defect such as a dislocation which propagates into the epitaxial layer, as described below. it can.
【0016】良く知られる様に,図1を参照して,セン
亜鉛鉱またはダイヤモンド型構造は上述の四面体配位構
造が面内で互いにずれたA,B,Cの3つの格子面がこ
の順に積層されて面心稠密構造をなし,またウルツ鉱型
構造はA,Bの2つの格子面が交互に積層されて六方稠
密構造をなしている。As is well known, referring to FIG. 1, a gemstone or diamond type structure has three lattice planes A, B and C in which the above-mentioned tetrahedral coordination structure is displaced in-plane. The wurtzite structure has a hexagonal close-packed structure in which two lattice planes A and B are alternately stacked.
【0017】本発明では,四面体配位の大きさが略等し
いので,結晶構造上は基板と半導体混晶との格子面は同
一面とみなされる。即ち,(111)面に界面を有する
エピタキシャル成長では,図1(a)を参照して,AB
ABと交互にA面とB面とが積層する基板表面に,その
まま続けてABCABCと3つの格子面が順に積層す
る。上述の如く,基板と半導体混晶との格子面は同等で
あるから,基板と半導体混晶との間に転位の如きエピタ
キシャル層中に伝播する格子不整を生ずることがないの
である。In the present invention, since the tetrahedral coordination sizes are substantially the same, the lattice planes of the substrate and the semiconductor mixed crystal are regarded as the same plane in terms of crystal structure. That is, in epitaxial growth having an interface on the (111) plane, as shown in FIG.
ABCABC and three lattice planes are sequentially laminated on the surface of the substrate on which the A and B planes are alternately laminated with AB. As described above, since the lattice planes of the substrate and the semiconductor mixed crystal are the same, no lattice irregularity such as dislocation that propagates in the epitaxial layer occurs between the substrate and the semiconductor mixed crystal.
【0018】また,(111)面以外の成長面,例えば
<111>に平行な面を成長面とする場合には,図1
(b)を参照して,基板と半導体混晶の界面で結晶格子
が整合する整合格子面3aと結晶格子が不整合な不整合
格子面3bとが生ずる。この不整合格子面は基板との界
面に60度半転位と積層欠陥を生ずる。しかし,これら
の格子不整は基板とエピタキシャル層との界面に留ま
り,エピタキシャル層中に伝播することがない。When a growth surface other than the (111) plane, for example, a plane parallel to <111> is used as the growth surface,
Referring to (b), a matching lattice plane 3a where the crystal lattice is matched and an unmatched lattice plane 3b where the crystal lattice is mismatched at the interface between the substrate and the semiconductor mixed crystal. This mismatched lattice plane causes 60 ° half dislocations and stacking faults at the interface with the substrate. However, these lattice irregularities remain at the interface between the substrate and the epitaxial layer and do not propagate into the epitaxial layer.
【0019】上述のごとく,本発明では四面体配位の平
均原子間距離が基板結晶の原子間距離と略一致する組成
とすることにより,半転位と積層欠陥とが基板と半導体
混晶との界面に生ずるほかは,エピタキシャル層中に伝
播する欠陥が発生しないから,結晶性の良好な半導体混
晶が堆積されるのである。As described above, in the present invention, the composition is such that the average interatomic distance of tetrahedral coordination is substantially equal to the interatomic distance of the substrate crystal, so that the half dislocations and stacking faults are separated from the substrate and the semiconductor mixed crystal. In addition to occurring at the interface, there are no defects that propagate in the epitaxial layer, so a semiconductor mixed crystal with good crystallinity is deposited.
【0020】本発明の第二の構成に係る半導体混晶は,
Al,Ga,In,Pの組成比が直接遷移型となる範囲
にある半導体と,同じく直接遷移型のAlNとを混晶と
したもので,直接遷移型のエネルギーバンド構造を有す
る。従って,効率の高い発光,受光素子の材料として優
れている。The semiconductor mixed crystal according to the second structure of the present invention is
This is a mixed crystal of a semiconductor in which the composition ratio of Al, Ga, In, and P is in the range of direct transition type, and AlN of direct transition type as well, and has a direct transition type energy band structure. Therefore, it is an excellent material for highly efficient light emitting and light receiving elements.
【0021】また,本構成では,基板にGaPを用い,
AlNの外はP化合物を成分としている。このため,エ
ピタキシャル成長の際に基板表面の V族原子の再分布に
伴う結晶性の劣化を防止することができる。Further, in this structure, GaP is used for the substrate,
The component other than AlN is a P compound. Therefore, it is possible to prevent the deterioration of crystallinity due to the redistribution of group V atoms on the substrate surface during epitaxial growth.
【0022】なお,基板とエピタキシャル層との原子間
距離の不整合は,通常1%以下であることがミスマッチ
転位の発生を回避するために好ましい。また,Inの組
成比は(Alx Ga1-x )y In1-y Pにおいて直接遷
移型であることが確認された組成とすることができる。
かかる組成は,yは0以上0.5以下,zは0.7以上
0.8以下として実現される。The mismatch of the interatomic distance between the substrate and the epitaxial layer is usually preferably 1% or less in order to avoid the occurrence of mismatch dislocation. In addition, the composition ratio of In can be a composition confirmed to be a direct transition type in (Al x Ga 1-x ) y In 1-y P.
Such a composition is realized when y is 0 or more and 0.5 or less and z is 0.7 or more and 0.8 or less.
【0023】[0023]
【実施例】本発明の詳細を実施例を参照して説明する。
本発明の第一実施例は,GaP単結晶を基板とし((A
lx Ga1-x )y In 1-y P)z (AlN)1-z を堆積
するものである。EXAMPLES Details of the present invention will be described with reference to examples.
In the first embodiment of the present invention, a GaP single crystal is used as a substrate ((A
lxGa1-x)yIn 1-yP)z(AlN)1-zDeposited
To do.
【0024】本実施例の各成分である化合物の四面体配
位の原子間距離は,AlNが0.1917nm,AlPが0.2367
nm, GaPが0.2358nm, InPが0.254nm である。従っ
て,平均原子間距離dはベガードの法則を用いて, d=0.1917(1-z)+((0.2367x+0.2358(1-x))y+0.254(1-y))z として求められる。ここで, (Alx Ga1-x )yIn
1-y Pが直接遷移型であるx=0.7,y=0.5 の場合で, dを
GaPの原子間距離0.2358nmに等しいとするとき,z=
0.8 となる。この組成の半導体混晶は,直接遷移型であ
り,その禁制帯幅は略2.9eV である。The interatomic distance of tetrahedral coordination of the compound as each component of this example is 0.1917 nm for AlN and 0.2367 for AlP.
nm, GaP is 0.2358 nm, and InP is 0.254 nm. Therefore, the average interatomic distance d can be obtained by using Vegard's law as d = 0.1917 (1-z) + ((0.2367x + 0.2358 (1-x)) y + 0.254 (1-y)) z. Where (Al x Ga 1-x ) yIn
If 1-y P is a direct transition type x = 0.7, y = 0.5, and d is equal to the GaP interatomic distance of 0.2358 nm, z =
It becomes 0.8. A semiconductor mixed crystal of this composition is a direct transition type, and its band gap is about 2.9 eV.
【0025】本実施例のかかる組成比の半導体混晶をI
nP基板上に堆積して,青色発光ダイオードの発光層と
することができる。また大きな禁制帯幅を利用して,発
光素子のクラッド層に適用することもできる。さらに,
本実施例によれば緑色発光ができる基板と青色発光する
エピタキシャル層とを重ねて堆積することができるか
ら,三原色の発光を実現することが容易である。A semiconductor mixed crystal having such a composition ratio of the present embodiment is I
It can be deposited on an nP substrate to form a light emitting layer of a blue light emitting diode. It can also be applied to the cladding layer of a light emitting device by utilizing a large forbidden band width. further,
According to this embodiment, since the substrate capable of emitting green light and the epitaxial layer emitting blue light can be stacked and deposited, it is easy to realize the emission of the three primary colors.
【0026】本実施例のIII-V 族化合物半導体の堆積に
は,化合物半導体のエピタキシャル成長で通常用いられ
る方法,例えばアンモニアを用いたCVD法,又はMB
E法を用いることができる。The III-V group compound semiconductor of this embodiment is deposited by a method usually used in the epitaxial growth of compound semiconductors, for example, a CVD method using ammonia, or MB.
Method E can be used.
【0027】本実施例の第二実施例はGaP単結晶を基
板とし (AlAs)1-z (AlN) z を堆積するものであ
る。第一実施例と同様に,半導体混晶の四面体配位の原
子間距離はdは, d=0.2451(1-z)+0.1917z となる。ここでAlAsの四面体配位の原子間距離,0.
2451nmを用いた。dをGaPの原子間距離に等しいとお
くと,z=0.2 を得る。この組成の半導体混晶は特に禁
制帯幅が大きい。The second embodiment of this embodiment uses a GaP single crystal as a substrate to deposit (AlAs) 1-z (AlN) z . As in the first embodiment, the interatomic distance d in the tetrahedral coordination of the semiconductor mixed crystal is d = 0.2451 (1-z) + 0.1917z. Here, the interatomic distance of tetrahedral coordination of AlAs, 0.
2451 nm was used. If d is set equal to the interatomic distance of GaP, we obtain z = 0.2. The semiconductor mixed crystal having this composition has a particularly large band gap.
【0028】[0028]
【発明の効果】本発明によれば,ウルツ鉱型の半導体単
結晶を,セン亜鉛鉱型又はダイヤモンド型の半導体基板
結晶上に格子面を整合させてエピタキシャル成長するこ
とができるので,結晶性の良い半導体結晶を基板として
その上に禁制帯幅の大きな III族の窒化物を含む混晶を
堆積することができ,その結果半導体基板上に堆積でき
かつ結晶欠陥の少ないワイドギャップIII-V 族化合物半
導体を提供することができるから,光半導体装置の性能
向上に貢献するところが大きい。According to the present invention, a wurtzite-type semiconductor single crystal can be epitaxially grown on a zinc-zinc-type or diamond-type semiconductor substrate crystal with matching lattice planes, so that the crystallinity is good. A wide-gap III-V group compound semiconductor that can be deposited on a semiconductor substrate and has few crystal defects can be formed by using a semiconductor crystal as a substrate to deposit a mixed crystal containing a group III nitride having a large forbidden band. Can contribute to improving the performance of optical semiconductor devices.
【図1】 本発明の原理説明図FIG. 1 is an explanatory view of the principle of the present invention.
1 基板 2 半導体混晶 3 格子面 3a 整合格子面 3b 不整合格子面 1 substrate 2 semiconductor mixed crystal 3 lattice plane 3a matching lattice plane 3b unmatched lattice plane
Claims (2)
何れか一つの結晶構造を有する半導体単結晶基板(1)
上に堆積された,第一の成分と第二の成分とからなる半
導体混晶(2)であって, 該第一の成分は,AlN,GaN及びInNのうちの一
つ又は二以上の化合物からなり, 該第二の成分は,InP,GaP,AlP,InAs,
GaAs,AlAs,InSb,GaSb及びAlSb
のうちの一つ又は二以上の化合物からなり, 該半導体混晶(2)の該第一の成分と該第二の成分との
比は,該半導体混晶(2)の結晶構造において V族原子
が形成する四面体配位結合の平均原子間距離が該半導体
結晶基板(1)における四面体配位結合の原子間距離と
略等しくなる比でなることを特徴とするワイドギャップ
III-V 族化合物半導体。1. A semiconductor single crystal substrate (1) having a crystal structure of any one of a sphalerite type and a diamond type.
A semiconductor mixed crystal (2) deposited on the first component and the second component, wherein the first component is one or more compounds of AlN, GaN and InN. And the second component is InP, GaP, AlP, InAs,
GaAs, AlAs, InSb, GaSb and AlSb
Of the semiconductor mixed crystal (2), the ratio of the first component to the second component of the semiconductor mixed crystal (2) is V group in the crystal structure of the semiconductor mixed crystal (2). A wide gap characterized in that the average interatomic distance of tetrahedral coordination bonds formed by atoms is in a ratio substantially equal to the interatomic distance of tetrahedral coordination bonds in the semiconductor crystal substrate (1).
Group III-V compound semiconductors.
おいて, 該半導体混晶はGaP単結晶上に堆積された((Alx
Ga1-x )y In1-y P)z (AlN)1-z であり, xは0以上0.7以下であり, yは0以上0.5以下であり, zは0.7以上0.8以下であることを特徴とする直接
遷移型のワイドギャップIII-V 族化合物半導体。2. The III-V group compound semiconductor according to claim 1, wherein the semiconductor mixed crystal is deposited on a GaP single crystal ((Al x
Ga 1-x ) y In 1-y P) z (AlN) 1-z , x is 0 or more and 0.7 or less, y is 0 or more and 0.5 or less, and z is 0.7 or more. A direct transition type wide-gap III-V group compound semiconductor characterized by being 0.8 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31510191A JPH05152204A (en) | 1991-11-29 | 1991-11-29 | Iii-v compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31510191A JPH05152204A (en) | 1991-11-29 | 1991-11-29 | Iii-v compound semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05152204A true JPH05152204A (en) | 1993-06-18 |
Family
ID=18061433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31510191A Withdrawn JPH05152204A (en) | 1991-11-29 | 1991-11-29 | Iii-v compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05152204A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0747963A1 (en) * | 1995-06-06 | 1996-12-11 | HE HOLDINGS, INC. dba HUGHES ELECTRONICS | AlPSb/InP single heterojunction bipolar transistor on InP substrate for high-speed, high-power applications |
US6953754B2 (en) | 2001-06-04 | 2005-10-11 | Sony Corporation | Functional device and method of manufacturing the same |
-
1991
- 1991-11-29 JP JP31510191A patent/JPH05152204A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0747963A1 (en) * | 1995-06-06 | 1996-12-11 | HE HOLDINGS, INC. dba HUGHES ELECTRONICS | AlPSb/InP single heterojunction bipolar transistor on InP substrate for high-speed, high-power applications |
US6953754B2 (en) | 2001-06-04 | 2005-10-11 | Sony Corporation | Functional device and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9691712B2 (en) | Method of controlling stress in group-III nitride films deposited on substrates | |
US5863811A (en) | Method for growing single crystal III-V compound semiconductor layers on non single crystal III-V Compound semiconductor buffer layers | |
US7312480B2 (en) | Semiconductor device and method of fabricating the same | |
US6524932B1 (en) | Method of fabricating group-III nitride-based semiconductor device | |
US7128846B2 (en) | Process for producing group III nitride compound semiconductor | |
US8981382B2 (en) | Semiconductor structure including buffer with strain compensation layers | |
US6198112B1 (en) | III-V compound semiconductor luminescent device | |
US7271404B2 (en) | Group III-V nitride-based semiconductor substrate and method of making same | |
US20010023942A1 (en) | Semiconductor device of heterojunction structure having quantum dot buffer layer | |
US6967355B2 (en) | Group III-nitride on Si using epitaxial BP buffer layer | |
US20230215924A1 (en) | Novel buffer layer structure to improve gan semiconductors | |
JPH11135882A (en) | Compound semiconductor substrate, manufacture thereof, and light-emitting element | |
JPH05152204A (en) | Iii-v compound semiconductor | |
JP2000183325A (en) | Semiconductor device and formation thereof | |
Lee et al. | Fabrication of Less Bowed Light-Emitting Diodes on Sapphire Substrates with a SiO 2 Thin Film on Their Back Sides | |
US6072202A (en) | II-VI compound semiconductor device with III-V buffer layer | |
JP4174910B2 (en) | Group III nitride semiconductor device | |
KR20060108059A (en) | Method of forming buffer layer for a light emitting device of a nitride compound semiconductor and buffer layer formed by the method | |
JPH09321338A (en) | Light emitting device | |
US20230378278A1 (en) | Novel buffer layer structure to improve gan semiconductors | |
WO2019035274A1 (en) | Template substrate, electronic device, light-emitting device, method for producing template substrate and method for producing electronic device | |
KR100879231B1 (en) | Group 3-5 compound semiconductor and light emitting diode | |
JPH09227297A (en) | Indium-gallium-nitride single crystal and its production | |
Zhang et al. | Enhanced Blue‐Light Emission from InGaN/GaN Quantum Wells Grown over Multilayered Buffer on Silicon Substrate by Metal Organic Chemical Vapor Deposition | |
JPH09186359A (en) | Croup iii-v semiconductor material and electronic member containing said material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990204 |