[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05150750A - Driving system for display device - Google Patents

Driving system for display device

Info

Publication number
JPH05150750A
JPH05150750A JP33552591A JP33552591A JPH05150750A JP H05150750 A JPH05150750 A JP H05150750A JP 33552591 A JP33552591 A JP 33552591A JP 33552591 A JP33552591 A JP 33552591A JP H05150750 A JPH05150750 A JP H05150750A
Authority
JP
Japan
Prior art keywords
column electrode
potential
row
selection
driving voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33552591A
Other languages
Japanese (ja)
Inventor
Heihachiro Ebihara
平八郎 海老原
Mitsumasa Miyabe
光正 宮部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP33552591A priority Critical patent/JPH05150750A/en
Publication of JPH05150750A publication Critical patent/JPH05150750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To apply the same driving voltage to the same display picture element and to prevent an effective value different from becoming narrow owing to waveform distortion by holding a scanning select signal at a nonselection potential until the potential of a column electrode driving voltage becomes nearly stable. CONSTITUTION:The scanning select signal is held at the nonselection potential until potential variation in each column electrode driving voltage Y becomes nearly stable at the leading edge of each selection period. At the trailing edge of each selection period, the scanning select signal is varied to a nonselection potential prior to potential fixation and after the transition almost ends, the potential of each column electrode driving voltage is fixed. Further, the scanning select signal is varied to the nonselection potential prior to the variation in each column electrode driving voltage at the time of in-row inversion and after the potential variation nearly ends, the scanning select signal is varied to the selection potential again. Consequently, a driving voltage waveform which is applied in the selection period is not affected by the column electrode driving voltage stage of a last row and the influence of display data of a next row is eliminated in the process of transition from the selection period to the nonselection period.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は複数の列電極と複数の行
電極を有する液晶表示パネルと、前記行電極に走査選択
信号を印加する行電極駆動回路と、前記列電極に表示デ
ータに基づいた列電極駆動信号を印加する列電極駆動回
路と、駆動電源回路と、制御回路で構成され、各表示画
素は選択期間と非選択期間を通して各画素の両端に印加
される駆動電圧の実効値に関係して駆動され、かつ前記
選択期間に各画素の両端に印加される駆動電圧の実効値
の差によって明暗の表示状態を表示する表示装置の駆動
回路に関するものである。 【0002】 【従来の技術】図2は一般的な液晶表示装置の概念構成
図であり、複数の行電極X1 、X2 、・・・Xmは行電
極駆動回路203に接続され、複数の列電極Y1 、Y2
、・・・Ynは列電極駆動回路202に接続され、該
列電極駆動回路202と前記行電極駆動回路203は制
御回路201と駆動電源回路204にそれぞれ接続され
る。ここでmは偶数であるものとする。また表示データ
源は前記制御回路201に含めて考えるものとする。 【0003】図3は図2に於ける前記列電極駆動回路2
02、行電極駆動電圧回路203をより具体的に示した
ブロック図であり、前記駆動電源回路204は図示して
いない。図3に於いて前記列電極駆動回路202は前記
制御回路201からクロック信号を含む制御信号と表示
データを受け取り、該表示データを記憶する記憶回路3
01と、前記制御回路201からの制御信号によって、
行電極走査の1選択期間、前記記憶回路301の出力を
保持する保持回路302と、前記制御回路201からの
極性反転信号に基づいて前記データ保持回路302の出
力を反転させる電圧切替回路303と該電圧切替回路3
03の出力に基づいて表示パネル307の各列電極に与
える列電極駆動電圧を発生する出力回路304によって
構成され、前記行電極駆動回路203は前記制御回路2
01からクロック信号を含む制御信号を受け取り、行電
極走査選択信号を作成する走査信号発生回路305と、
該走査信号発生回路305の出力信号と前記制御回路2
01からの制御信号によって前記表示パネル307の各
行電極に与える行電極駆動電圧を発生する出力回路30
6によって構成される。 【0004】図4(a)、(b)は図2、図3に示した
液晶表示装置を駆動する場合の前記行電極、列電極に印
加する電圧の代表的な設定方法を示した図であり、図4
(a)はV1 乃至V6 の6レベルの電圧を用いる方式で
あり、図4(b)は±Vc、±Vsの4レベルの電圧を
用いる方式である。本発明はいずれの方式にも対応する
ものであるが、説明は図4(b)の方式を用いた場合に
ついて行う。 【0005】図5は、図4(b)の駆動方式を採用した
場合のより詳細な駆動波形を示したもので、図5に於い
て期間T1 、t1 は第1番目の行電極X1 を選択する期
間であり、期間T2 、t2 は第2番目の行電極X2 を選
択する期間であり、以下同様にして期間Tm、tmは第
m番目の行電極Xmを選択する期間である。期間T1乃
至Tm、期間t1 乃至tmをそれぞれ1フィールドと定
義すれば、前記第1番目の行電極X1 の各画素、P11乃
至P1 nは、1フィールド内に於いて期間T1もしくは
t1 の期間のみ選択され、その他の期間は非選択期間と
言う事になる。 【0006】非選択期間に行電極に印加される電位を基
準電位(0V)と定義した時、期間T1 に於いて前記行
電極X1 には+Vcが印加され、その他の行電極には0
Vが印加される。期間T2 に於いては前記行電極X2 に
+Vcが印加され、その他の行電極には0Vが印加され
る。以下同様にして期間Tmには前記行電極Xmに+V
cが印加され、その他の行電極には0Vが印加される。
次のフィールドに移ると期間t1 には前記行電極X1 に
−Vcが印加され、その他の行電極には0Vが印加さ
れ、期間t2 に於いては前記行電極X2 に−Vcが印加
され、その他の行電極には0Vが印加され、以下同様に
して期間tmには前記行電極Xmに−Vcが印加され、
その他の行電極には0Vが印加される。この方式はフィ
ールド反転方式と呼ばれる。図5に於いて記号Fはフィ
ールド反転信号を示す。 【0007】一方列電極に関しては、3つの列電極Y
a、Yb、Ycについて考える。また液晶は高い印加電
圧により明状態を表示する型のものであるとする。該列
電極Ya上の全ての画素の表示が明状態とし、前記列電
極Yb上の全ての画素の表示が暗状態とし、前記列電極
Yc上の画素の表示は交互に明状態と暗状態を行うもの
とすると、前記列電極Yaには前記期間T1 乃至Tmの
全ての期間に渡って−Vsが印加され、前記期間t1 乃
至tmの全ての期間に渡って+Vsが印加される。前記
列電極Ybには前記期間T1 乃至Tmの全ての期間に渡
って+Vsが印加され、前記期間t1 乃至tmの全ての
期間に渡って−Vsが印加される。また前記列電極Yc
には前記期間T1 、T3 、・・・Tmー1とt2 、t4 、
・・・tmには−Vsが印加され、前記期間T2 、T4
、・・・Tmとt1 、t3 、・・・tm-1には+Vs
が印加される。 【0008】すなわち各列電極には明状態の表示を行う
選択期間に於いては液晶の両端に印加される駆動電圧の
絶対値が|Vc+Vs|となるような列電極駆動電圧
(行電極駆動電圧が+Vcの場合は−Vs、行電極駆動
電圧が−Vcの場合は+Vs)が印加され、暗状態の表
示を行う選択期間に於いては液晶の両端に印加される駆
動電圧の絶対値が|VC−Vs|となるような列電極駆
動電圧(行電極駆動電圧が+Vcの場合は+Vs、行電
極駆動電圧が−Vcの場合は−Vs)が印加される。 【0009】この時前記第1行目の行電極X1 と前記列
電極Yaとの交点に形成される画素P1a、前記第1行目
の行電極X1 と前記列電極Ybとの交点に形成される画
素P1b、前記第1行目の行電極X1 と前記列電極Ycと
の交点に形成される画素P1cのそれぞれの両端に印加さ
れる駆動電圧は図5に示す如くとなる。該画素P1a、P
1 cに印加される駆動電圧の絶対値は選択期間に於いて
は|Vs+Vs|、非選択期間に於いては|Vs|とな
り、1フィールドに渡っての実効電圧はともに数1で示
される値となって、該画素P1a、P1cはともに前記明状
態を呈する。また前記画素P1bに印加される駆動電圧の
絶対値は選択期間に於いては|Vs−Vs|、非選択期
間に於いては|Vs|となり、1フィールドに渡っての
実効電圧は数2で示される値となって、該画素P1bは前
記暗状態を呈する。 【数1】 【数2】 【0010】数1、数2に於いて(Vc±Vs)2 /m
の項は選択期間に関する項であり、(m−1)・Vs2
/mの項は非選択期間に関する項である。明状態と暗状
態のコントラストはV1 /V2 の値が大きい方が良くな
る。V1 /V2 は数3で与えられ、その理論的最大値は
数4によって与えられる。 【数3】 【数4】 【0011】図5は理想的な波形を示したが、実際には
各部の波形には歪みがあり、図5の様にはならない。図
6は前記走査選択電圧には歪みがなく、前記列電極駆動
電圧に歪みが有る場合を描いた波形図である。これらの
波形図を検討すると、種々の点で表示品質を低下させる
要因がある事がわかる。 【0012】先ずともに明状態の表示となる前記画素P
1a、P1cの非選択期間について吟味すると、画素P1aの
場合は期間T1 から期間Tmまでの間(以下Tフィール
ドとする)データの変化がないため非選択期間T2 から
Tmまで+Vsが定常的に印加される。これに対し前記
画素P1cでは表示データが選択期間毎に変化し、この変
化の度毎に波形歪みの影響が出てしまい、非選択期間で
の実効電圧が低下する。従ってP1a、P1cは共に明状態
を表示するのであるが、その表示状態は異なってしま
う。 【0013】次に画素P1aとP1cに選択期間に印加され
る駆動電圧波形を比較してみると同一にはなっていない
事が分かる。すなわち選択期間T1 では前記画素P1aに
印加される電圧波形は、該期間T1 の前縁に於いて波形
歪みの影響が現れ、実効電圧が低下する事が分かる。こ
れに対し前記画素P1cに印加される駆動電圧は前記期間
T1 に於いて理想的な電圧波形が印加されている。 【0014】この原因が、当該選択期間に先行する選択
期間での列電極駆動電圧の状態による事は明かである。 【0015】以上の現象の結果として前記画素P1a、P
1cに印加される駆動電圧の実効値は等しくならず、異な
った表示状態を呈することになり、いわゆるクロストー
クの原因となる。勿論この現象はコントラストにも影響
する。 【0016】次に画素P1a、P1bについて吟味すると、
両者の非選択期間に於ける駆動電圧の実効値には差がな
い。しかし選択期間における駆動電圧波形には問題があ
る。すなわち選択期間T1 の前縁に於いて前記画素P1
a、P1bに印加される駆動電圧波形にはともに波形歪み
が生ずるが、その影響は両者で異なり、画素P1aでは実
効電圧が低下する方向となるが、画素P1bでは実効電圧
が増加する方向となる。このため明状態を呈する前記画
素P1aは暗くなり、暗状態を呈する画素P1bは明るくな
り、従ってコントラストが低下する。選択時の高い電圧
での波形歪の影響は極めて大きい。 【0017】更に前記走査選択信号にも歪みが有る場合
には特開平3−130797号公報(以下引例1とす
る)に有るように、選択期間から非選択期間に移行する
過程で駆動電圧波形が次行の表示データの影響を受け、
悪影響が生ずる。 【0018】程度の差はあれ、波形歪みが完全にはなく
せないものとして問題点を整理すると次の4つに要約で
きる。 (1)非選択期間に波形歪みの生ずる回数に差が生ずる
点。 (2)選択期間の前縁に於いて駆動電圧波形が前行の列
電極駆動電圧の状態の影響を受ける点。 (3)異なる表示状態の画素に関し、選択期間内の列電
極駆動電圧の波形歪が印加される駆動電圧波形にコント
ラストを低下させる方向に影響する。 (4)選択期間から非選択期間に移行する過程で駆動電
圧波形が次行の表示データの影響を受ける点。 【0019】これらの点に関し例えば前記引例1は「走
査パルスの立ち上がり時及び立ち下がり時の直前の所定
期間、各データ信号の電圧レベルを黒レベル及び白レベ
ルの一方に設定し、前記立ち上がり時及び立ち下がり時
の直後の所定期間電圧レベルを前記黒レベル及び白レベ
ルの他方に設定し」上記問題点の(2)、(4)を解決
しようとする技術で有る。これを本願の図5に示した場
合に適用すると、その結果は図7となる。 【0020】図7に於いて記号Fはフィールド反転信号
であり、また記号M、Nは高電位(論理1とする)の
時、表示データによらず列電極駆動電圧を特定の電位に
固定する信号である。図7の場合、信号Mは走査選択信
号の立ち上がり時及び立ち下がり時の直前の短時間論理
1となり、信号Nは走査選択信号の立ち上がり時及び立
ち下がり時の直後の短時間論理1となる。記号Da、D
b、Dcはそれぞ列電極Ya、Yb、Ycに表示される
べき表示データを示し、論理1の時、明状態を表示し、
論理0の時、暗状態を表示するものとする。従って列電
極Yaの画素は全て明状態を表示し、列電極Ybの画素
は全て暗状態を表示し、列電極Yc上の画素は行毎に明
状態と暗状態の表示を繰り返す事になる。 【0021】図7は走査選択信号の立ち上がり時及び立
ち下がり時の直前の短時間、列電極駆動電圧のレベルを
黒レベル(暗表示状態)に設定し、前記立ち上がり時及
び立ち下がり時の直後の短時間、列電極駆動電圧のレベ
ルを白レベル(明表示状態)に設定した場合を示してい
る。 【0022】図7によれば各選択期間の前縁、及び後縁
に於いて前記列電極駆動電圧は表示データによらず特定
電位に固定されるから、前記問題点の(1)、(4)に
関しては改善されている事が分かる。しかしながら前記
(2)に関しては改善されているように見えるものの、
実際にはフィールド反転を行うと1行目と他の行では同
一表示であっても波形が異なってしまう。この点につい
ては本発明が先願(引例4とする)に於いて述べた通り
であり、また前記問題点(3)については波形歪ではな
い部分も含めて選択期間の前縁のみでなく後縁にも波形
差が生じ、むしろ悪化していると考えられる。 【0023】次に図8は特開平2−6921号公報に記
載された技術による場合で有る。この技術は「1走査期
間毎に、液晶セルの印加電圧が0Vとなる期間を設け
る」もので、上記問題点(1)を改善しようとするもの
であるが、図8は選択期間の後縁で液晶に印可する駆動
電圧を0にする場合を示している。この場合も前記問題
点の(1)、(2)は改善されている。また(4)につ
いては、明表示の画素と暗表示の画素とでは波形が異な
るものの、同一の表示状態の画素については同一波形と
なるから(4)についても改善されているといって良
い。しかしながら(3)については選択期間の前縁に依
然として問題が取り残されてしまう。 【0024】図9は本発明者が先願(引例3とする)の
図1に於いて提案した駆動方式を示す動作波形図であ
り、行内反転(各選択期間内に駆動電圧の極性を反転す
る)とフィールド反転を組み合わせ、各選択期間の後縁
でのみ、各列電極駆動電圧を表示データによらず明状態
若しくは暗状態のいずれかに該当する電位(図12では
暗状態)に固定する。この方式は前記問題点(1)、
(4)が解消されるが、前記引例4で述べた如くフィー
ルド反転直後の1行目と他の行とで、同一表示状態の駆
動電圧波形に差が生ずる。かつ(3)に関して前記引例
1の方式に比べて改善されるが、完全には解消しない。 【0025】 【発明が解決しようとする課題】そこで本発明が解決し
ようとする課題は、選択期間の駆動電圧波形に関する上
記問題点(2)、(3)、(4)を解決する事にある。 【0026】 【課題を解決するための手段】上記課題を解決するため
に本発明が用いる第1の手段は、列電極駆動電圧が印加
される列電極群と、走査選択信号に基づく行電極駆動電
圧が印加される行電極群を有する表示装置の駆動方式で
あって、少なくとも選択期間の前縁に於いて、各列電極
に印可する前記列電極駆動電圧の電位がほぼ安定するま
での期間、前記走査選択信号の電位を非選択電位とする
事である。 【0027】上記課題を解決するために本発明が用いる
第2の手段は、列電極駆動電圧が印加される列電極群
と、走査選択信号に基づく行電極駆動電圧が印加される
行電極群を有する表示装置の駆動方式であって、少なく
とも選択期間の後縁に於いて、各列電極に印可する前記
列電極駆動電圧の電位変化が開始するに先だって、前記
走査選択信号の電位を非選択電位とする事である。 【0028】上記課題を解決するために本発明が用いる
第3の手段は、列電極駆動電圧が印加される列電極群
と、走査選択信号に基づく行電極駆動電圧が印加される
行電極群を有する表示装置の駆動方式であって、前記走
査選択信号を行内反転させると共に、少なくとも該行内
反転直後に於いて、各列電極に印可する前記列電極駆動
電圧の電位がほぼ安定するまでの期間、前記走査選択信
号の電位を非選択電位とする事である。 【0029】上記課題を解決するために本発明が用いる
第4の手段は、列電極駆動電圧が印加される列電極群
と、走査選択信号に基づく行電極駆動電圧が印加される
行電極群を有する表示装置の駆動方式であって、前記走
査選択信号を行内反転させると共に、少なくとも該行内
反転直前に於いて、各列電極に印可する前記列電極駆動
電圧の電位変化が開始するに先だって、前記走査選択信
号の電位を非選択電位とする事である。 【0030】 【作用】上記手段を用いる事により上記問題点(2)、
(3)、(4)が解決される。すなわち選択期間に印加
される駆動電圧波形が、前行の列電極駆動電圧の状態の
影響を受けなくなり、また選択期間から非選択期間に移
行する過程で駆動電圧波形が次行の表示データの影響を
受けることがなくなり、更に選択期間内の列電極駆動電
圧の歪の影響も受けなくなる。 【0031】 【実施例】図10は図6に本発明を適用した場合の本発
明の第1の実施例であり、上記第1の解決手段と第2の
解決手段の両方を採用したものであり、各選択期間の前
縁に於いて、各列電極駆動電圧(Y)の電位変化がほぼ
安定するまでの期間、前記走査選択信号を非選択電位に
保持する。また各選択期間の後縁に於いて、選択期間の
終了に先だって前記走査選択信号を非選択電位に移行さ
せ、該移行がほぼ終了してから各列電極駆動電圧の電位
変化が開始されるようにする。具体的には信号Hを供給
し、該信号Hが高電位の時走査選択信号を強制的に非選
択電位とすれば良い。 【0032】図10に示した動作波形を図6の場合と比
較してみると、前記問題点の(2)、(3)、(4)が
解決される事が分かる。 【0033】図11は図7に本発明を適用した場合の第
2の実施例であり、各選択期間の前縁に於いて、各列電
極駆動電圧(Y)の電位変化がほぼ安定するまでの期
間、前記走査選択信号を非選択電位に保持する。また各
選択期間の後縁に於いて、電位固定に先立って前記走査
選択信号を非選択電位に移行させ、該移行がほぼ終了し
てから各列電極駆動電圧の電位固定が開始されるように
する。 【0034】図11に示した動作波形を図7の場合と比
較してみると、前記問題点の(1)、(2)、(3)、
(4)が全て解決される事が分かる。 【0035】図12は図8に本発明を適用した場合の第
3の実施例であり、各選択期間の前縁に於いて、各列電
極駆動電圧(Y)の電位変化がほぼ安定するまでの期
間、前記走査選択信号を非選択電位に保持する。また各
選択期間の後縁に於いて、電位固定に先立って前記走査
選択信号を非選択電位に移行させ、該移行がほぼ終了し
てから各列電極駆動電圧の電位固定が開始されるように
する。具体的には信号Hが高電位の時、前記走査選択信
号強制的に非選択電位にすれば良い。 【0036】図12に示した動作波形を図8の場合と比
較してみると、前記問題点の(1)、(2)、(3)、
(4)が全て解決される事が分かる。 【0037】図11、図12に於いて波線で示した波形
は、選択期間の後縁に於いて前記走査選択信号を非選択
電位に固定するタイミングを列電極駆動電圧の電位固定
と同時にした場合を示している。前記走査選択信号に歪
みが有っても、次の行の表示状態に関係なく、明状態の
場合も暗状態の場合もそれぞれ決まった波形を呈するの
で、前記列電極駆動電圧の電位固定開始時期と前記走査
選択信号の非選択電位への移行終了時期が多少重なって
も良い。 【0038】図13は図9に本発明を適用した場合の第
4の実施例であり、前記解決手段1、2を適用した場合
であって各選択期間の前縁に於いて、各列電極駆動電圧
(Y)の電位変化がほぼ安定するまでの期間、前記走査
選択信号を非選択電位に保持する。また各選択期間の後
縁に於いて、電位固定に先立って前記走査選択信号を非
選択電位に移行させ、該移行がほぼ終了してから各列電
極駆動電圧の電位固定が開始されるようにする。 【0039】図13に示した動作波形を図9の場合と比
較してみると、前記問題点の(1)と、選択期間の前縁
及び後縁に於ける前記問題点の(2)、(3)、(4)
が解決される事が分かる。しかし行内反転時に(3)の
問題点が残されてしまう。 【0040】図1は図13を更に改良した本発明の第5
の実施例であり、前記解決手段1、2、3、4を適用し
た場合であって各選択期間の前縁に於いて、各列電極駆
動電圧(Y)の電位変化がほぼ安定するまでの期間、前
記走査選択信号を非選択電位に保持し、また各選択期間
の後縁に於いて、電位固定に先立って前記走査選択信号
を非選択電位に移行させ、該移行がほぼ終了してから各
列電極駆動電圧の電位固定が開始されるようにするとと
もに、行内反転時に各列電極駆動電圧が変化を開始する
のに先立って前記走査選択信号を非選択電位に移行さ
せ、各列電極駆動電圧の電位変化がほぼ終了してから再
び前記走査選択信号を選択電位に移行させる。 【0041】図1に示した動作波形を図9の場合と比較
してみると、前記問題点の(1)と(2)、(3)、
(4)が全て解決される事が分かる。 【0042】所で例えば図10の実施例に於いて、「選
択期間」の定義を変更すると図14、図15、図16が
得られる。 【0043】図10に於いは選択期間の後縁で行われた
操作が、図14に於いては選択期間の前縁で行われる事
になる。すなわち各選択期間の前縁に於いて、列電極駆
動電圧の変化の開始タイミングを、前行の走査選択信号
がほぼ非選択電位になってから開始するとともに、該列
電極駆動電圧が当該行の表示データに基づく電圧にほぼ
安定するまでの間、当該行の走査選択信号を非選択電位
に固定する。 【0044】図10に於いて選択期間の後縁で行われた
操作が、図15に於いては選択期間の後縁で行われる事
になる。すなわち各選択期間の後縁に於いて、列電極駆
動電圧の変化の開始されるに先行して、走査選択信号を
非選択電位に移行させ、選択期間の終了に先だって該列
電極駆動電圧が次行の表示データに基づく電圧にほぼ安
定させるようにする。 【0045】図10に於いて選択期間の後縁で行われた
操作が、図16に於いては選択期間と選択期間の間で行
われる事になる。すなわち各選択期間の間に走査選択信
号が全て非選択電位になる安定化期間を設け、該安定期
間内に於いて、各列電極駆動電圧の、前行の表示データ
に基づく電圧から次行の表示データに基づく電圧への移
行をほぼ完了させる 【0046】図14、図15、図16に於いて、図7、
図8、図9に示したような列電極駆動電圧の固定を行う
場合は当然の事ながら前記走査選択信号が非選択電位に
有る期間内で行う事になる。 【0047】本発明の以上の実施例を要約すると、「少
なくとも各列電極駆動電圧が変化していると予測される
期間、各走査選択信号の電位がほぼ非選択電位となる如
く操作する事」になる。本発明は図示した実施例以外の
駆動方式にも有効である事は言うまでもない。本発明の
実施にあたり、液晶駆動電圧に残留する直流成分に関す
る考慮(例えば正極性方向と負極性方向の駆動時間を同
一にする等)がなされるべき事は当然である。 【0048】 【発明の効果】以上述べた如く本発明によれば同一表示
状態の画素には常に等しい実効電圧が印可されるからク
ロストークの発生が抑えられ、かつ選択期間に表示状態
を悪化させる方向の電圧が印可されないからコントラス
トの低下も抑えられ、極めて良好な表示装置を提供する
事が出来その効果は大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display panel having a plurality of column electrodes and a plurality of row electrodes, and a row electrode driving circuit for applying a scanning selection signal to the row electrodes. And a column electrode drive circuit that applies a column electrode drive signal based on display data to the column electrode, a drive power supply circuit, and a control circuit, and each display pixel has both ends of each pixel through a selection period and a non-selection period. And a drive circuit of a display device which is driven in relation to an effective value of a drive voltage applied to the pixel and which displays a bright and dark display state by a difference in the effective value of the drive voltage applied to both ends of each pixel in the selection period. It is a thing. FIG. 2 is a conceptual block diagram of a general liquid crystal display device. A plurality of row electrodes X1, X2, ... Xm are connected to a row electrode drive circuit 203, and a plurality of column electrodes. Y1, Y2
, Yn are connected to a column electrode drive circuit 202, and the column electrode drive circuit 202 and the row electrode drive circuit 203 are connected to a control circuit 201 and a drive power supply circuit 204, respectively. Here, it is assumed that m is an even number. The display data source is included in the control circuit 201. FIG. 3 shows the column electrode drive circuit 2 shown in FIG.
02 is a block diagram showing the row electrode drive voltage circuit 203 more specifically, and the drive power supply circuit 204 is not shown. In FIG. 3, the column electrode drive circuit 202 receives a control signal including a clock signal and display data from the control circuit 201 and stores the display data.
01 and a control signal from the control circuit 201,
A holding circuit 302 that holds the output of the memory circuit 301 for one selection period of row electrode scanning, a voltage switching circuit 303 that inverts the output of the data holding circuit 302 based on a polarity inversion signal from the control circuit 201, and the holding circuit 302. Voltage switching circuit 3
The output circuit 304 generates a column electrode drive voltage to be applied to each column electrode of the display panel 307 on the basis of the output of the display panel 307.
A scan signal generation circuit 305 which receives a control signal including a clock signal from 01 and creates a row electrode scan selection signal;
The output signal of the scanning signal generation circuit 305 and the control circuit 2
An output circuit 30 for generating a row electrode drive voltage to be applied to each row electrode of the display panel 307 according to a control signal from 01.
It is composed of 6. FIGS. 4 (a) and 4 (b) are diagrams showing a typical setting method of voltages applied to the row electrodes and column electrodes when driving the liquid crystal display device shown in FIGS. Yes, Figure 4
(A) is a system using 6 level voltages of V1 to V6, and FIG. 4 (b) is a system using 4 level voltages of ± Vc and ± Vs. The present invention is compatible with any of the methods, but the description will be given for the case of using the method of FIG. FIG. 5 shows more detailed driving waveforms when the driving method of FIG. 4B is adopted. In FIG. 5, the first row electrode X1 is selected during the periods T1 and t1. The periods T2 and t2 are periods for selecting the second row electrode X2, and the periods Tm and tm are similarly periods for selecting the mth row electrode Xm. If the periods T1 to Tm and the periods t1 to tm are defined as one field, each pixel of the first row electrode X1 and P11 to P1 n are selected only in the period T1 or t1 in one field. Other periods are called non-selection periods. When the potential applied to the row electrodes during the non-selection period is defined as the reference potential (0V), + Vc is applied to the row electrode X1 and 0 to the other row electrodes during the period T1.
V is applied. In the period T2, + Vc is applied to the row electrode X2, and 0V is applied to the other row electrodes. Similarly, + V is applied to the row electrode Xm during the period Tm.
c is applied, and 0V is applied to the other row electrodes.
Moving to the next field, -Vc is applied to the row electrode X1 in the period t1, 0V is applied to the other row electrodes, and -Vc is applied to the row electrode X2 in the period t2. 0V is applied to the row electrode of, and similarly, −Vc is applied to the row electrode Xm during the period tm.
0V is applied to the other row electrodes. This method is called a field inversion method. In FIG. 5, the symbol F indicates a field inversion signal. On the other hand, regarding the column electrodes, three column electrodes Y
Consider a, Yb, and Yc. Further, the liquid crystal is of a type that displays a bright state by a high applied voltage. The display of all pixels on the column electrode Ya is in a bright state, the display of all pixels on the column electrode Yb is in a dark state, and the display of pixels on the column electrode Yc is alternately in a bright state and a dark state. If it is performed, -Vs is applied to the column electrode Ya over the entire period of T1 to Tm, and + Vs is applied over the entire period of the period t1 to tm. + Vs is applied to the column electrode Yb for all the periods T1 to Tm, and -Vs is applied for all the periods t1 to tm. In addition, the column electrode Yc
, The periods T1, T3, ... Tm-1 and t2, t4,
...- Vs is applied to tm, and the periods T2, T4
, ... + Vs for Tm and t1, t3, ... tm-1
Is applied. That is, the column electrode drive voltage (row electrode drive voltage) such that the absolute value of the drive voltage applied to both ends of the liquid crystal becomes | Vc + Vs | during the selection period in which a bright state is displayed on each column electrode. Is + Vc, + Vs is applied when the row electrode drive voltage is -Vc, and the absolute value of the drive voltage applied to both ends of the liquid crystal is | A column electrode drive voltage (+ Vs when the row electrode drive voltage is + Vc, −Vs when the row electrode drive voltage is −Vc) that is VC−Vs | is applied. At this time, the pixel P1a is formed at the intersection of the first row electrode X1 and the column electrode Ya, and the pixel P1a is formed at the intersection of the first row electrode X1 and the column electrode Yb. The driving voltage applied to both ends of the pixel P1b and the pixel P1c formed at the intersection of the row electrode X1 of the first row and the column electrode Yc is as shown in FIG. The pixels P1a, P
The absolute value of the drive voltage applied to 1c is | Vs + Vs | during the selection period and | Vs | during the non-selection period, and the effective voltage over one field is the value expressed by the equation 1. Thus, both the pixels P1a and P1c exhibit the bright state. The absolute value of the driving voltage applied to the pixel P1b is | Vs-Vs | in the selection period and | Vs | in the non-selection period, and the effective voltage over one field is several 2. The pixel P1b has the indicated value and exhibits the dark state. [Equation 1] [Equation 2] In equations 1 and 2, (Vc ± Vs) 2 / m
Is related to the selection period, and is (m-1) .Vs2
The term / m is related to the non-selection period. The larger the value of V1 / V2, the better the contrast between the bright state and the dark state. V1 / V2 is given by the equation 3, and its theoretical maximum value is given by the equation 4. [Equation 3] [Equation 4] FIG. 5 shows an ideal waveform, but in reality, the waveform of each part is distorted and the waveform is not as shown in FIG. FIG. 6 is a waveform diagram illustrating a case where the scan selection voltage has no distortion and the column electrode drive voltage has distortion. Examination of these waveform diagrams reveals that there are various factors that reduce display quality. First, the pixel P, which is in a bright display state, is displayed.
When the non-selection periods of 1a and P1c are examined, + Vs is constantly applied from the non-selection period T2 to Tm because there is no change in the data from the period T1 to the period Tm (hereinafter referred to as T field) in the case of the pixel P1a. To be done. On the other hand, in the pixel P1c, the display data changes in each selection period, and the influence of the waveform distortion occurs each time this change occurs, and the effective voltage in the non-selection period decreases. Therefore, both P1a and P1c display the bright state, but the display states are different. Next, comparing the driving voltage waveforms applied to the pixels P1a and P1c during the selection period, it can be seen that they are not the same. That is, it can be seen that in the selection period T1, the voltage waveform applied to the pixel P1a is affected by the waveform distortion at the leading edge of the period T1 and the effective voltage decreases. On the other hand, the drive voltage applied to the pixel P1c has an ideal voltage waveform during the period T1. It is obvious that the cause of this is due to the state of the column electrode drive voltage in the selection period preceding the selection period. As a result of the above phenomenon, the pixels P1a, P1
The effective values of the drive voltage applied to 1c are not equal, and different display states are exhibited, which causes so-called crosstalk. Of course, this phenomenon also affects the contrast. Next, when the pixels P1a and P1b are examined,
There is no difference in the effective value of the drive voltage in the non-selection period of both. However, there is a problem with the drive voltage waveform during the selection period. That is, at the leading edge of the selection period T1, the pixel P1
Both of the drive voltage waveforms applied to a and P1b are distorted, but their influences are different, and the effective voltage decreases in the pixel P1a, but the effective voltage increases in the pixel P1b. .. Therefore, the pixel P1a exhibiting the bright state becomes dark, and the pixel P1b exhibiting the dark state becomes bright, so that the contrast is lowered. The influence of waveform distortion at a high voltage during selection is extremely large. Further, when the scanning selection signal also has distortion, the driving voltage waveform is changed in the process of shifting from the selection period to the non-selection period as described in Japanese Patent Laid-Open No. 3-130797 (hereinafter referred to as Reference 1). Affected by the display data of the next line,
Adverse effects occur. To some extent, the waveform distortion can be completely eliminated, and the problems can be summarized into the following four. (1) A point that a difference occurs in the number of times waveform distortion occurs during the non-selection period. (2) The driving voltage waveform is influenced by the state of the column electrode driving voltage of the preceding row at the leading edge of the selection period. (3) Regarding pixels in different display states, the waveform distortion of the column electrode drive voltage within the selection period affects the direction in which the contrast is lowered in the applied drive voltage waveform. (4) The drive voltage waveform is affected by the display data of the next row in the process of shifting from the selected period to the non-selected period. With respect to these points, for example, the above-mentioned Reference 1 states that "the voltage level of each data signal is set to one of a black level and a white level for a predetermined period immediately before the rise and fall of the scan pulse, and the rise and This is a technique for solving the above problems (2) and (4) by setting the voltage level to the other of the black level and the white level for a predetermined period immediately after the fall. When this is applied to the case shown in FIG. 5 of the present application, the result is shown in FIG. 7. In FIG. 7, a symbol F is a field inversion signal, and symbols M and N fix the column electrode drive voltage to a specific potential regardless of display data when the potential is high (logic 1). It is a signal. In the case of FIG. 7, the signal M becomes the short-time logic 1 immediately before the rising and falling of the scanning selection signal, and the signal N becomes the short-time logic 1 immediately after the rising and falling of the scanning selection signal. Symbols Da and D
b and Dc represent display data to be displayed on the column electrodes Ya, Yb, and Yc, respectively, and when the logic value is 1, the bright state is displayed.
When logic 0, the dark state shall be displayed. Therefore, all the pixels of the column electrode Ya display the bright state, all the pixels of the column electrode Yb display the dark state, and the pixels on the column electrode Yc repeat the display of the bright state and the dark state for each row. FIG. 7 shows that the level of the column electrode drive voltage is set to the black level (dark display state) for a short time immediately before the rise and fall of the scan selection signal, and immediately after the rise and fall. The case where the level of the column electrode drive voltage is set to the white level (bright display state) for a short time is shown. According to FIG. 7, the column electrode driving voltage is fixed to a specific potential at the leading edge and the trailing edge of each selection period regardless of the display data. Therefore, the problems (1), (4) ), It can be seen that it has been improved. However, although it seems that (2) is improved,
Actually, when the field inversion is performed, the waveforms on the first line and the other lines are different even if the same display is performed. This point is as described in the prior application (referred to as Reference 4) of the present invention, and the problem (3) includes not only the waveform distortion but also the leading edge of the selection period and It is considered that there is a waveform difference at the edge and it is rather worse. Next, FIG. 8 shows the case of the technique disclosed in Japanese Patent Laid-Open No. 2-6921. This technique "provides a period in which the voltage applied to the liquid crystal cell is 0 V every scanning period", and is intended to improve the above-mentioned problem (1). Shows the case where the drive voltage applied to the liquid crystal is set to zero. Also in this case, the problems (1) and (2) are improved. Regarding (4), although the waveforms of the bright display pixels and the dark display pixels are different, the same waveform is obtained for the pixels in the same display state, and thus it can be said that the above (4) is also improved. However, regarding (3), the problem still remains at the leading edge of the selection period. FIG. 9 is an operation waveform diagram showing the drive method proposed by the present inventor in FIG. 1 of the prior application (referred to as Reference 3). In-row inversion (inversion of the polarity of the drive voltage within each selection period is performed). Yes) and field inversion, and each column electrode drive voltage is fixed to a potential corresponding to either a bright state or a dark state (dark state in FIG. 12) irrespective of display data only at the trailing edge of each selection period. .. This method has the above-mentioned problem (1),
Although (4) is eliminated, as described in Reference 4, a difference occurs in the drive voltage waveforms in the same display state between the first row immediately after field inversion and the other rows. Further, regarding (3), it is improved as compared with the method of the above-mentioned reference 1, but it is not completely solved. The problem to be solved by the present invention is to solve the above-mentioned problems (2), (3) and (4) concerning the drive voltage waveform in the selection period. .. To solve the above problems, the first means used by the present invention is to drive a row electrode based on a scanning selection signal and a column electrode group to which a column electrode drive voltage is applied. A driving method of a display device having a row electrode group to which a voltage is applied, at least at the leading edge of the selection period, a period until the potential of the column electrode driving voltage applied to each column electrode is substantially stable, That is, the potential of the scan selection signal is set to a non-selection potential. The second means used by the present invention to solve the above problem is to provide a column electrode group to which a column electrode drive voltage is applied and a row electrode group to which a row electrode drive voltage based on a scan selection signal is applied. In the driving method of the display device, the potential of the scan selection signal is set to a non-selection potential before the potential change of the column electrode drive voltage applied to each column electrode starts at least at the trailing edge of the selection period. That is to say. A third means used by the present invention to solve the above-mentioned problems is to provide a column electrode group to which a column electrode drive voltage is applied and a row electrode group to which a row electrode drive voltage based on a scan selection signal is applied. A driving method of a display device having, inversion of the scanning selection signal in a row, at least immediately after the inversion of the row, until the potential of the column electrode drive voltage applied to each column electrode is substantially stable, That is, the potential of the scan selection signal is set to a non-selection potential. A fourth means used by the present invention to solve the above-mentioned problem is to provide a column electrode group to which a column electrode drive voltage is applied and a row electrode group to which a row electrode drive voltage based on a scan selection signal is applied. A driving method of a display device having, wherein the scanning selection signal is inverted within a row, and at least immediately before the inversion within the row, before the potential change of the column electrode drive voltage applied to each column electrode is started, That is, the potential of the scan selection signal is set to the non-selection potential. By using the above means, the above problem (2),
(3) and (4) are solved. That is, the drive voltage waveform applied during the selection period is not affected by the state of the column electrode drive voltage of the previous row, and the drive voltage waveform is affected by the display data of the next row during the transition from the selection period to the non-selection period. It is not affected by the distortion of the column electrode drive voltage during the selection period. FIG. 10 shows a first embodiment of the present invention when the present invention is applied to FIG. 6, and adopts both the first solving means and the second solving means. Thus, at the leading edge of each selection period, the scan selection signal is held at the non-selection potential until the potential change of each column electrode drive voltage (Y) becomes substantially stable. Further, at the trailing edge of each selection period, the scanning selection signal is shifted to the non-selection potential before the end of the selection period, and the potential change of each column electrode drive voltage is started after the transition is almost completed. To Specifically, the signal H may be supplied, and when the signal H has a high potential, the scan selection signal may be forcibly set to the non-selection potential. Comparing the operation waveforms shown in FIG. 10 with the case of FIG. 6, it can be seen that the problems (2), (3) and (4) are solved. FIG. 11 shows a second embodiment in which the present invention is applied to FIG. 7, until the potential change of each column electrode drive voltage (Y) becomes substantially stable at the leading edge of each selection period. During the period, the scan selection signal is held at the non-selection potential. Further, at the trailing edge of each selection period, the scanning selection signal is shifted to the non-selection potential before the potential is fixed, and the potential of each column electrode drive voltage is fixed after the transition is almost completed. To do. Comparing the operation waveforms shown in FIG. 11 with those in FIG. 7, the problems (1), (2), (3),
You can see that (4) is all solved. FIG. 12 shows a third embodiment in which the present invention is applied to FIG. 8, until the potential change of each column electrode drive voltage (Y) becomes substantially stable at the leading edge of each selection period. During the period, the scan selection signal is held at the non-selection potential. Further, at the trailing edge of each selection period, the scanning selection signal is shifted to the non-selection potential before the potential is fixed, and the potential of each column electrode drive voltage is fixed after the transition is almost completed. To do. Specifically, when the signal H has a high potential, the scanning selection signal may be forcibly set to a non-selection potential. When the operation waveforms shown in FIG. 12 are compared with those in FIG. 8, the problems (1), (2), (3),
You can see that (4) is all solved. The waveforms shown by the wavy lines in FIGS. 11 and 12 are obtained when the timing of fixing the scanning selection signal to the non-selection potential at the trailing edge of the selection period is set at the same time as the potential of the column electrode drive voltage is fixed. Is shown. Even if the scan selection signal is distorted, a fixed waveform is displayed in each of the bright state and the dark state regardless of the display state of the next row. The timing of ending the transition of the scan selection signal to the non-selection potential may slightly overlap. FIG. 13 shows a fourth embodiment in which the present invention is applied to FIG. 9, and in the case where the solving means 1 and 2 are applied, each column electrode at the leading edge of each selection period. The scan selection signal is held at the non-selection potential until the potential change of the drive voltage (Y) becomes substantially stable. Further, at the trailing edge of each selection period, the scanning selection signal is shifted to the non-selection potential before the potential is fixed, and the potential of each column electrode drive voltage is fixed after the transition is almost completed. To do. When the operation waveforms shown in FIG. 13 are compared with the case of FIG. 9, the problem (1) and the problem (2) at the leading edge and the trailing edge of the selection period, (3), (4)
You can see that is solved. However, the problem of (3) remains when the in-line inversion is performed. FIG. 1 shows a fifth embodiment of the present invention which is a further improvement of FIG.
In the case of applying the solving means 1, 2, 3 and 4, until the potential change of each column electrode drive voltage (Y) becomes substantially stable at the leading edge of each selection period. The scanning selection signal is held at the non-selection potential during the period, and at the trailing edge of each selection period, the scanning selection signal is shifted to the non-selection potential before the potential is fixed, and after the transition is almost completed. The fixing of the potential of each column electrode drive voltage is started, and the scan selection signal is shifted to the non-selection potential before the change of each column electrode drive voltage at the time of inversion in the row to drive each column electrode drive. After the potential change of the voltage is almost completed, the scan selection signal is shifted to the selection potential again. When the operation waveforms shown in FIG. 1 are compared with the case of FIG. 9, the problems (1), (2), (3),
You can see that (4) is all solved. Now, for example, in the embodiment of FIG. 10, when the definition of "selection period" is changed, FIGS. 14, 15 and 16 are obtained. The operation performed at the trailing edge of the selection period in FIG. 10 is performed at the leading edge of the selection period in FIG. That is, at the leading edge of each selection period, the start timing of the change of the column electrode drive voltage is started after the scanning selection signal of the previous row becomes almost the non-selection potential, and the column electrode drive voltage of the row is changed. The scan selection signal of the row is fixed to the non-selection potential until the voltage based on the display data becomes almost stable. The operation performed at the trailing edge of the selection period in FIG. 10 is performed at the trailing edge of the selection period in FIG. That is, at the trailing edge of each selection period, the scan selection signal is shifted to the non-selection potential before the change of the column electrode drive voltage is started, and the column electrode drive voltage is changed to the next level before the end of the selection period. Make the voltage almost stable based on the display data of the row. The operation performed at the trailing edge of the selection period in FIG. 10 is performed between the selection periods in FIG. That is, a stabilization period in which all the scan selection signals become non-selection potential is provided between each selection period, and within the stabilization period, the voltage based on the display data of the previous row of the voltage of each column electrode drive voltage is changed to the next row. Almost complete the transition to the voltage based on the display data. [0046] In Figs. 14, 15 and 16, Fig. 7,
When the column electrode drive voltage is fixed as shown in FIGS. 8 and 9, it goes without saying that it is performed within the period in which the scan selection signal is at the non-selection potential. To summarize the above-described embodiments of the present invention, "operate so that the potential of each scan selection signal becomes substantially a non-selection potential at least during the period when the column electrode drive voltage is expected to change." become. It goes without saying that the present invention is also effective for drive systems other than the illustrated embodiment. In implementing the present invention, it is natural that consideration should be given to the DC component remaining in the liquid crystal drive voltage (for example, the drive time in the positive polarity direction should be the same as the drive time in the negative polarity direction). As described above, according to the present invention, the same effective voltage is always applied to the pixels in the same display state, so that the occurrence of crosstalk is suppressed and the display state is deteriorated during the selection period. Since the voltage in the direction is not applied, the deterioration of the contrast can be suppressed, and a very good display device can be provided, and the effect is great.

【図面の簡単な説明】 【図1】本発明の第5実施例を示す動作波形図である。 【図2】液晶駆動回路の構成を示す図である。 【図3】液晶駆動回路のより詳細なブロック図である。 【図4】液晶駆動電圧の設定法を示す波形図である。 【図5】液晶の基本的な駆動波形を示す図である。 【図6】基本的な駆動方式の問題点を説明するための波
形図である。 【図7】従来例を説明するための動作波形図である。 【図8】従来例を説明するための動作波形図である。 【図9】従来例を説明するための動作波形図である。 【図10】本発明の第1の実施例を示す動作波形図であ
る。 【図11】本発明の第2の実施例を示す動作波形図であ
る。 【図12】本発明の第3の実施例を示す動作波形図であ
る。 【図13】本発明の第4の実施例を示す動作波形図であ
る。 【図14】本発明の第5の実施例を示す動作波形図であ
る。 【図15】本発明の第6の実施例を示す動作波形図であ
る。 【図16】本発明の第7の実施例を示す動作波形図であ
る。 【符号の説明】 201 制御回路 202 列電極駆動回路 203 行電極駆動回路 204 駆動電源回路 301 記憶回路 302 保持回路 303 電圧切替回路 304 出力回路 305 走査信号発生回路 306 出力回路 307 表示パネル
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an operation waveform diagram showing a fifth embodiment of the present invention. FIG. 2 is a diagram showing a configuration of a liquid crystal drive circuit. FIG. 3 is a more detailed block diagram of a liquid crystal drive circuit. FIG. 4 is a waveform diagram showing a method of setting a liquid crystal drive voltage. FIG. 5 is a diagram showing a basic drive waveform of liquid crystal. FIG. 6 is a waveform diagram for explaining problems of a basic driving method. FIG. 7 is an operation waveform diagram for explaining a conventional example. FIG. 8 is an operation waveform diagram for explaining a conventional example. FIG. 9 is an operation waveform diagram for explaining a conventional example. FIG. 10 is an operation waveform diagram showing the first embodiment of the present invention. FIG. 11 is an operation waveform diagram showing a second embodiment of the present invention. FIG. 12 is an operation waveform diagram showing a third embodiment of the present invention. FIG. 13 is an operation waveform diagram showing a fourth embodiment of the present invention. FIG. 14 is an operation waveform diagram showing a fifth embodiment of the present invention. FIG. 15 is an operation waveform chart showing a sixth embodiment of the present invention. FIG. 16 is an operation waveform diagram showing a seventh embodiment of the present invention. [Explanation of reference numerals] 201 control circuit 202 column electrode drive circuit 203 row electrode drive circuit 204 drive power supply circuit 301 memory circuit 302 holding circuit 303 voltage switching circuit 304 output circuit 305 scanning signal generation circuit 306 output circuit 307 display panel

Claims (1)

【特許請求の範囲】 【請求項1】 列電極駆動電圧が印加される列電極群
と、走査選択信号に基づく行電極駆動電圧が印加される
行電極群を有する表示装置の駆動方式であって、少なく
とも各選択期間の前縁に於いて、各列電極に印可する前
記列電極駆動電圧の電位がほぼ安定するまでの期間、前
記走査選択信号の電位を非選択電位とする事を特徴とす
る表示装置の駆動方式。 【請求項2】 列電極駆動電圧が印加される列電極群
と、走査選択信号に基づく行電極駆動電圧が印加される
行電極群を有する表示装置の駆動方式であって、少なく
とも各選択期間の後縁に於いて、各列電極に印可する前
記列電極駆動電圧の電位変化が開始するに先だって、前
記走査選択信号の電位を非選択電位とする事を特徴とす
る表示装置の駆動方式。 【請求項3】 列電極駆動電圧が印加される列電極群
と、走査選択信号に基づく行電極駆動電圧が印加される
行電極群を有する表示装置の駆動方式であって、前記走
査選択信号を行内反転させると共に、少なくとも該行内
反転直後に於いて、各列電極に印可する前記列電極駆動
電圧の電位がほぼ安定するまでの期間、前記走査選択信
号の電位を非選択電位とする事を特徴とする表示装置の
駆動方式。 【請求項4】 列電極駆動電圧が印加される列電極群
と、走査選択信号に基づく行電極駆動電圧が印加される
行電極群を有する表示装置の駆動方式であって、前記走
査選択信号を行内反転させると共に、少なくとも該行内
反転直前に於いて、各列電極に印可する前記列電極駆動
電圧の電位変化が開始するに先だって、前記走査選択信
号の電位を非選択電位とする事を特徴とする表示装置の
駆動方式。 【請求項5】 列電極駆動電圧が印加される列電極群
と、走査選択信号に基づく行電極駆動電圧が印加される
行電極群を有する表示装置の駆動方式であって、各選択
期間の前縁に於いて、列電極駆動電圧の変化の開始タイ
ミングを、前行の走査選択信号がほぼ非選択電位になっ
てから開始するとともに、該列電極駆動電圧が当該行の
表示データに基づく電圧にほぼ安定するまでの間、当該
行の走査選択信号を非選択電位に固定する事を特徴とす
る表示装置の駆動方式。 【請求項6】 列電極駆動電圧が印加される列電極群
と、走査選択信号に基づく行電極駆動電圧が印加される
行電極群を有する表示装置の駆動方式であって、各選択
期間の後縁に於いて、列電極駆動電圧の変化の開始され
るに先行して、走査選択信号を非選択電位に移行させ、
選択期間の終了に先だって該列電極駆動電圧が次行の表
示データに基づく電圧にほぼ安定させるようにする事を
特徴とする表示装置の駆動方式。 【請求項7】 列電極駆動電圧が印加される列電極群
と、走査選択信号に基づく行電極駆動電圧が印加される
行電極群を有する表示装置の駆動方式であって、各選択
期間の間に全ての走査選択信号が非選択電位になる安定
化期間を設け、該安定期間内に於いて、各列電極駆動電
圧の、前行の表示データに基づく電圧から次行の表示デ
ータに基づく電圧への移行をほぼ完了させる事を特徴と
する表示装置の駆動方式。 【請求項8】 列電極駆動電圧が印加される列電極群
と、走査選択信号に基づく行電極駆動電圧が印加される
行電極群を有する表示装置の駆動方式であって、少なく
とも各列電極駆動電圧が変化していると予測される期
間、各走査選択信号の電位がほぼ非選択電位となる如く
操作する事を特徴とする表示装置の駆動方式。 【請求項9】 列電極駆動電圧が印加される列電極群
と、走査選択信号に基づく行電極駆動電圧が印加される
行電極群を有する表示装置の駆動方式であって全ての走
査選択信号が非選択電位に有る期間内に、列電極駆動電
圧を表示データによらない固定電位に固定した事を特徴
とする、 【請求項1】、 【請求項2】、 【請求項3】、 【請求項4】、 【請求項5】、 【請求項6】、 【請求項7】、 【請求項8】に記載の表示装置の駆動方式。
1. A driving method of a display device having a column electrode group to which a column electrode driving voltage is applied and a row electrode group to which a row electrode driving voltage based on a scan selection signal is applied. , At least at the leading edge of each selection period, the potential of the scan selection signal is set to a non-selection potential until the potential of the column electrode drive voltage applied to each column electrode becomes substantially stable. Display device drive system. 2. A driving method of a display device having a column electrode group to which a column electrode driving voltage is applied and a row electrode group to which a row electrode driving voltage based on a scanning selection signal is applied, the method being at least for each selection period. A driving method for a display device, characterized in that the potential of the scan selection signal is set to a non-selection potential before the potential change of the column electrode drive voltage applied to each column electrode is started at the trailing edge. 3. A driving method of a display device having a column electrode group to which a column electrode driving voltage is applied and a row electrode group to which a row electrode driving voltage based on a scanning selection signal is applied, wherein the scanning selection signal is In addition to performing the in-row inversion, at least immediately after the in-row inversion, the potential of the scan selection signal is set to a non-selection potential until the potential of the column electrode drive voltage applied to each column electrode becomes substantially stable. And driving method of the display device. 4. A driving method of a display device having a column electrode group to which a column electrode driving voltage is applied and a row electrode group to which a row electrode driving voltage based on a scanning selection signal is applied, wherein the scanning selection signal is In addition to performing the in-row inversion, at least immediately before the in-row inversion, the potential of the scan selection signal is set to a non-selection potential before the potential change of the column electrode drive voltage applied to each column electrode is started. Driving method of display device. 5. A driving method of a display device having a column electrode group to which a column electrode driving voltage is applied and a row electrode group to which a row electrode driving voltage based on a scan selection signal is applied, which is before each selection period. At the edge, the start timing of the change of the column electrode drive voltage is started after the scanning selection signal of the previous row becomes substantially the non-selection potential, and the column electrode drive voltage is changed to the voltage based on the display data of the row. A driving method of a display device, characterized in that the scanning selection signal of the row is fixed to a non-selection potential until the row is almost stable. 6. A driving method of a display device having a column electrode group to which a column electrode driving voltage is applied and a row electrode group to which a row electrode driving voltage based on a scan selection signal is applied, the method being performed after each selection period. At the edge, prior to the start of the change in the column electrode drive voltage, the scan selection signal is shifted to the non-selection potential,
A driving method of a display device, characterized in that the column electrode driving voltage is made substantially stable to a voltage based on display data of the next row before the end of the selection period. 7. A driving method of a display device having a column electrode group to which a column electrode driving voltage is applied and a row electrode group to which a row electrode driving voltage based on a scan selection signal is applied, wherein the driving method is performed during each selection period. A stabilization period is provided in which all the scan selection signals become non-selection potential, and within the stabilization period, the voltage based on the display data of the previous row of the voltage of each column electrode drive voltage based on the display data of the previous row. The drive system of the display device, which is characterized by almost completing the transition to. 8. A driving method of a display device having a column electrode group to which a column electrode driving voltage is applied and a row electrode group to which a row electrode driving voltage based on a scan selection signal is applied, wherein at least each column electrode driving method is provided. A driving method of a display device, which is operated such that the potential of each scanning selection signal becomes substantially a non-selection potential during a period in which the voltage is expected to change. 9. A driving method of a display device having a column electrode group to which a column electrode driving voltage is applied and a row electrode group to which a row electrode driving voltage based on a scanning selection signal is applied, in which all the scanning selection signals are The column electrode drive voltage is fixed to a fixed potential that does not depend on the display data within the period of the non-selection potential. 1. The claim 1, claim 2, claim 3, and claim 3. A driving method of a display device according to claim 4, claim 5, claim 6, claim 7, and claim 8.
JP33552591A 1991-11-26 1991-11-26 Driving system for display device Pending JPH05150750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33552591A JPH05150750A (en) 1991-11-26 1991-11-26 Driving system for display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33552591A JPH05150750A (en) 1991-11-26 1991-11-26 Driving system for display device

Publications (1)

Publication Number Publication Date
JPH05150750A true JPH05150750A (en) 1993-06-18

Family

ID=18289550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33552591A Pending JPH05150750A (en) 1991-11-26 1991-11-26 Driving system for display device

Country Status (1)

Country Link
JP (1) JPH05150750A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870070A (en) * 1995-10-05 1999-02-09 Sharp Kabushiki Kaisha Liquid crystal display device and method for driving display device
US5929832A (en) * 1995-03-28 1999-07-27 Sharp Kabushiki Kaisha Memory interface circuit and access method
KR100604268B1 (en) * 1999-06-03 2006-07-24 엘지.필립스 엘시디 주식회사 Active Matrix Liquid Crystal Display And Driving Method Thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929832A (en) * 1995-03-28 1999-07-27 Sharp Kabushiki Kaisha Memory interface circuit and access method
US5870070A (en) * 1995-10-05 1999-02-09 Sharp Kabushiki Kaisha Liquid crystal display device and method for driving display device
KR100604268B1 (en) * 1999-06-03 2006-07-24 엘지.필립스 엘시디 주식회사 Active Matrix Liquid Crystal Display And Driving Method Thereof

Similar Documents

Publication Publication Date Title
US4645303A (en) Liquid crystal matrix display panel drive method
US20050110737A1 (en) Liquid crystal display device, driving circuit for the same and driving method for the same
US20060028426A1 (en) LCD apparatus for improved inversion drive
JP2008242144A (en) Liquid crystal display device, and driving circuit and driving method thereof
JPH08211364A (en) Bistable liquid crystal display element, data signal generator and addressing method for liquid crystal display element
US7304630B2 (en) Display device and drive method thereof
JP3410952B2 (en) Liquid crystal display device and driving method thereof
JPH05150750A (en) Driving system for display device
KR100806898B1 (en) Liquid crystal display
US6271817B1 (en) Method of driving liquid crystal display device that reduces afterimages
EP0607860B1 (en) Method of driving liquid crystal display device
JP3229720B2 (en) Drive control device for liquid crystal display panel
JP3247410B2 (en) Display drive system
JP3270085B2 (en) Liquid crystal display
JP3270086B2 (en) Liquid crystal display
JP2002072974A (en) Method for driving liquid crystal display device
US20110205203A1 (en) Liquid crystal display drive circuit and liquid crystal display device
JPH05181433A (en) Driving system of display device
JP2652451B2 (en) Driving method of liquid crystal matrix panel
JP2985017B2 (en) Driving method of electro-optical display device
JPH05173513A (en) System for driving display device
JPH0593898A (en) Method for driving active matrix type liquid crystal display device
JPH05341736A (en) Method for driving display panel
JPH11184436A (en) Driving method for liquid crystal display device
JPH0749480A (en) Method for driving matrix of flat type display device

Legal Events

Date Code Title Description
A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041027

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20050513

Free format text: JAPANESE INTERMEDIATE CODE: A912