[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05157372A - Electric part box cooler for air conditioner - Google Patents

Electric part box cooler for air conditioner

Info

Publication number
JPH05157372A
JPH05157372A JP32572391A JP32572391A JPH05157372A JP H05157372 A JPH05157372 A JP H05157372A JP 32572391 A JP32572391 A JP 32572391A JP 32572391 A JP32572391 A JP 32572391A JP H05157372 A JPH05157372 A JP H05157372A
Authority
JP
Japan
Prior art keywords
auxiliary cooler
refrigerant
accumulator
compressor
bypass circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32572391A
Other languages
Japanese (ja)
Inventor
Koji Ishikawa
孝治 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32572391A priority Critical patent/JPH05157372A/en
Publication of JPH05157372A publication Critical patent/JPH05157372A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To prevent dew condensation inside an electric part box and simplify a refrigerant circuit. CONSTITUTION:A refrigerant circuit 13 is formed of a compressor 14, a four-way valve 15, a heat exchanger on non-use side 16, a heat exchanger on use side 17, an accumulator 18, a pressure reducing means 19 and an intake piping 20. An auxiliary cooler 22 is additionally provided to work as a heat exchanger with respect to an electric part box 21. A first bypass circuit 23 is connected by piping to the intake piping 20 from the bottom of the accumulator 18 through the auxiliary cooler 22, and a flow rate adjusting means 24 is provided between the accumulator 18 and the auxiliary cooler 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、インバータで圧縮機
の容量制御を行う空気調和機の電気品箱冷却装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric box cooling device for an air conditioner in which the capacity of a compressor is controlled by an inverter.

【0002】[0002]

【従来の技術】従来より、圧縮機の容量を制御するため
にトランジスタインバータを用いた空気調和機がある。
インバータを構成するパワートランジスタ、ダイオード
モジュール、コンデンサなどは、発熱により温度が上昇
するため、長寿命並びに性能の劣化防止の観点より冷却
が必要である。冷却方法としては、風によって強制冷却
を行うのが最も一般的である。
2. Description of the Related Art Conventionally, there is an air conditioner that uses a transistor inverter to control the capacity of a compressor.
The power transistors, diode modules, capacitors, and the like that form the inverter need to be cooled from the viewpoint of long life and prevention of deterioration of performance because the temperature rises due to heat generation. The most common cooling method is forced cooling with wind.

【0003】しかしながら、この風冷却方式の場合、冷
却風中のほこりが電気部品の表面に付着し易く、部品の
信頼性が低下するという問題がある。また、空気調和機
の非利用側熱交換器が機械室に設置される場合には、風
冷却方式では周囲温度の上昇を招くのみで、十分な冷却
効果が得られないという問題がある。
However, in the case of this air cooling system, there is a problem that dust in the cooling air is apt to adhere to the surfaces of the electric parts, which lowers the reliability of the parts. Further, when the non-use side heat exchanger of the air conditioner is installed in the machine room, the wind cooling method only causes an increase in ambient temperature, and there is a problem that a sufficient cooling effect cannot be obtained.

【0004】そこで、空気調和機自体の冷媒を利用して
効率のよい冷却を行わせることが提案されており、例え
ば実開昭55−1156号公報に開示された図3に示す
ようなものがある。図において、1はインバータにより
駆動される容量可変の圧縮機、2は四方弁、3は非利用
側熱交換器、4は暖房用減圧装置、5は冷房用減圧装
置、6は利用側熱交換器、7はアキュムレータ、8、9
は逆止弁である。また、10は減圧装置4、5を接続す
る配管より補助クーラ11を介してアキュムレータ7に
到る回路に設けた毛細管、12は補助クーラ11と熱交
換可能な電気品箱である。
Therefore, it has been proposed to use the refrigerant of the air conditioner itself to perform efficient cooling. For example, the one shown in FIG. 3 disclosed in Japanese Utility Model Laid-Open No. 55-1156 is disclosed. is there. In the figure, 1 is a variable capacity compressor driven by an inverter, 2 is a four-way valve, 3 is a non-use side heat exchanger, 4 is a heating decompression device, 5 is a cooling decompression device, and 6 is a use side heat exchange. Vessel, 7 is accumulator, 8 and 9
Is a check valve. Further, 10 is a capillary tube provided in a circuit that reaches the accumulator 7 through the auxiliary cooler 11 from the pipe connecting the decompression devices 4 and 5, and 12 is an electric component box capable of exchanging heat with the auxiliary cooler 11.

【0005】なお、実線矢印は冷房運転時の冷媒の流れ
方向を示し、破線矢印は暖房運転時の冷媒の流れ方向を
示す。
The solid arrow indicates the flow direction of the refrigerant during the cooling operation, and the broken arrow indicates the flow direction of the refrigerant during the heating operation.

【0006】次に、動作について説明する。まず冷房運
転時には、圧縮機1にて圧縮された高温高圧のガス冷媒
は、四方弁2を介して非利用側熱交換器3に入り、大気
などに放熱し凝縮液化して高圧の液冷媒となる。この高
圧の液冷媒は逆止弁8を介して冷房用減圧装置5に導か
れ、減圧されて低圧の気液二相冷媒となり、利用側熱交
換器6に入り、室内空気より採熱して冷房すると共に、
冷媒は蒸発して低圧のガス冷媒となり、アキュムレータ
7を介して圧縮機1に吸入される。
Next, the operation will be described. First, during the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 enters the non-use side heat exchanger 3 through the four-way valve 2 and radiates heat to the atmosphere to be condensed and liquefied into a high-pressure liquid refrigerant. Become. This high-pressure liquid refrigerant is guided to the cooling decompression device 5 through the check valve 8 and is decompressed into a low-pressure gas-liquid two-phase refrigerant, which enters the use side heat exchanger 6 and takes heat from the indoor air to cool it. As well as
The refrigerant evaporates into a low-pressure gas refrigerant, which is sucked into the compressor 1 via the accumulator 7.

【0007】暖房運転時には、四方弁2を切換えること
により、圧縮機1から吐出される高温高圧のガス冷媒
は、利用側熱交換器6に入り、室内空気に放熱して暖房
すると共に、冷媒自体は凝縮して高圧の液冷媒となる。
高圧液冷媒は、逆止弁9を介して暖房用減圧装置4で減
圧され、低圧の気液二相冷媒となり、非利用側熱交換器
3で蒸発して、アキュムレータ7を介して圧縮機1に吸
入される。
During the heating operation, by switching the four-way valve 2, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 enters the heat exchanger 6 on the use side and radiates heat to indoor air to heat the refrigerant, and at the same time, the refrigerant itself. Condenses into a high-pressure liquid refrigerant.
The high-pressure liquid refrigerant is decompressed by the heating decompression device 4 via the check valve 9, becomes a low-pressure gas-liquid two-phase refrigerant, is evaporated in the non-use side heat exchanger 3, and is stored in the compressor 1 via the accumulator 7. Inhaled into.

【0008】電気品箱12に付設された補助クーラ11
への冷媒供給について説明する。圧縮機1の運転中は、
冷房用減圧装置5と暖房用減圧装置4とを接続する配管
部は高圧液冷媒となっているため、毛細管10で減圧さ
れ低圧の気液二相冷媒が補助クーラ11に入り、電気品
箱12より採熱して電気品箱12を冷却する。
Auxiliary cooler 11 attached to electrical component box 12
The refrigerant supply to the printer will be described. During operation of the compressor 1,
Since the pipe portion connecting the cooling decompression device 5 and the heating decompression device 4 is a high-pressure liquid refrigerant, the low-pressure gas-liquid two-phase refrigerant decompressed by the capillary tube 10 enters the auxiliary cooler 11 and the electrical component box 12 More heat is collected to cool the electrical equipment box 12.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来の空気調
和機は、補助クーラ11の冷却性能を左右する冷媒流量
を調節する機能を毛細管10で持たせているので、圧縮
機1の負荷変動に対して適正に調節できない。つまり、
毛細管10を通過する冷媒流量は毛細管10の流入部の
高圧圧力により支配されるので、圧縮機1の容量に無関
係にほぼ一定となるが、電気品箱12に収納される電気
発熱部品(図示せず)の発熱量は圧縮機1の容量にほぼ
比例する。このため、圧縮機1の容量低下時には冷却性
能が過大となり、電気品箱12内で結露が生じるという
問題があった。
However, in the conventional air conditioner, since the capillary tube 10 has the function of adjusting the refrigerant flow rate that influences the cooling performance of the auxiliary cooler 11, the load fluctuation of the compressor 1 is prevented. However, it cannot be adjusted properly. That is,
Since the flow rate of the refrigerant passing through the capillary tube 10 is controlled by the high pressure of the inflow portion of the capillary tube 10, it is almost constant regardless of the capacity of the compressor 1, but an electric heat generating component (not shown) housed in the electrical component box 12 is shown. The heat value of () is almost proportional to the capacity of the compressor 1. Therefore, when the capacity of the compressor 1 is reduced, the cooling performance becomes excessive, and there is a problem that dew condensation occurs in the electric component box 12.

【0010】また、冷房運転時に比べて暖房運転時の周
囲温度は低下するので、補助クーラ11での必要冷却性
能は小さくてよいが、調節機能がなく前述と同様の問題
がある。
Further, since the ambient temperature during the heating operation is lower than that during the cooling operation, the required cooling performance of the auxiliary cooler 11 may be small, but there is no adjusting function, and there is the same problem as described above.

【0011】さらに、冷房運転時でも暖房運転時でも補
助クーラ11へ冷媒を供給する必要があるため、いずれ
の運転モードでも常時高圧液冷媒部分を構成する必要が
あり、冷媒回路的に複雑になるという問題もあった。
Further, since it is necessary to supply the refrigerant to the auxiliary cooler 11 during both the cooling operation and the heating operation, it is necessary to always form the high-pressure liquid refrigerant portion in any operation mode, which complicates the refrigerant circuit. There was also a problem.

【0012】この発明の目的は、電気品箱内に結露が生
じるのを防止でき、かつ冷媒回路の簡略化が図れる空気
調和機の電気品箱冷却装置を提供することである。
An object of the present invention is to provide an electric component box cooling device for an air conditioner capable of preventing dew condensation in the electric component box and simplifying the refrigerant circuit.

【0013】[0013]

【課題を解決するための手段】請求項1の空気調和機の
電気品箱冷却装置は、容量可変の圧縮機、四方弁、非利
用側熱交換器、減圧装置、利用側熱交換器およびアキュ
ムレータからなる冷媒回路を設け、電気発熱部品を収納
した電気品箱を設け、この電気品箱に熱交換可能に補助
クーラを付設し、補助クーラに冷媒を供給可能な第1の
バイパス回路をアキュムレータから補助クーラを通って
圧縮機の吸入配管に接続し、この第1のバイパス回路に
おいてアキュムレータと補助クーラとの間に流量調節手
段を設けたものである。
According to a first aspect of the present invention, there is provided an electric box cooling device for an air conditioner, comprising a variable capacity compressor, a four-way valve, a non-use side heat exchanger, a pressure reducing device, a use side heat exchanger and an accumulator. The first bypass circuit that can supply the refrigerant to the auxiliary cooler from the accumulator is provided with a refrigerant circuit consisting of It is connected to a suction pipe of a compressor through an auxiliary cooler, and a flow rate adjusting means is provided between the accumulator and the auxiliary cooler in this first bypass circuit.

【0014】請求項2の空気調和機の電気品箱冷却装置
は、容量可変の圧縮機、四方弁、非利用側熱交換器、減
圧装置、利用側熱交換器およびアキュムレータからなる
冷媒回路を設け、電気発熱部品を収納した電気品箱を設
け、この電気品箱に熱交換可能に補助クーラを付設し、
補助クーラに冷媒を供給可能な第1のバイパス回路をア
キュムレータから補助クーラを通って圧縮機の吸入配管
に接続し、この第1のバイパス回路においてアキュムレ
ータと補助クーラとの間に流量調節手段を設け、この流
量調節手段より補助クーラ寄りにおいて補助クーラと並
列に第1のバイパス回路に第2のバイパス回路を接続
し、この第2のバイパス回路の途中に弁を設け、この弁
を開閉制御する制御装置を設けたものである。
According to a second aspect of the present invention, there is provided an electric box cooling device for an air conditioner, which is provided with a refrigerant circuit including a variable capacity compressor, a four-way valve, a non-use side heat exchanger, a pressure reducing device, a use side heat exchanger and an accumulator. , An electric component box containing electric heating components is installed, and an auxiliary cooler is attached to this electric component box to enable heat exchange.
A first bypass circuit capable of supplying a refrigerant to the auxiliary cooler is connected from the accumulator to the suction pipe of the compressor through the auxiliary cooler, and a flow rate adjusting means is provided between the accumulator and the auxiliary cooler in the first bypass circuit. A control for connecting a second bypass circuit to the first bypass circuit in parallel with the auxiliary cooler near the auxiliary cooler from the flow rate adjusting means, providing a valve in the middle of the second bypass circuit, and controlling the opening / closing of the valve. A device is provided.

【0015】請求項3の空気調和機の電気品箱冷却装置
は、請求項2の制御装置が、圧縮機の起動後所定時間、
弁を開路することを特徴とするものである。
According to a third aspect of the present invention, there is provided an electric box cooling device for an air conditioner, wherein the control device according to the second aspect is configured such that a predetermined time after the compressor is started,
It is characterized by opening the valve.

【0016】請求項4の空気調和機の電気品箱冷却装置
は、請求項2の制御装置が、非利用側熱交換器に着霜し
た霜を取り除くデフロスト運転中、弁を開路することを
特徴とするものである。
According to a fourth aspect of the present invention, there is provided an electric component box cooling device for an air conditioner, wherein the control device according to the second aspect opens the valve during a defrost operation for removing frost accumulated on the non-use side heat exchanger. It is what

【0017】請求項5の空気調和機の電気品箱冷却装置
は、請求項2の制御装置が、冷房運転中は弁を閉路し、
暖房運転中は弁を開路することを特徴とするものであ
る。
According to a fifth aspect of the invention, there is provided an electric component box cooling device for an air conditioner, wherein the control device according to the second aspect closes a valve during a cooling operation,
The feature is that the valve is opened during the heating operation.

【0018】[0018]

【作用】請求項1の空気調和機の電気品箱冷却装置によ
ると、容量可変の圧縮機を有した冷媒回路と、電気発熱
部品を収納した電気品箱とからなり、第1のバイパス回
路を冷媒回路のアキュムレータより流量調節手段を介し
て電気品箱に付設した補助クーラを通して圧縮機の吸入
配管に接続したので、第1のバイパス回路の両端の圧力
差は圧縮機の吸入量に左右され、圧縮機の容量に応じて
補助クーラへ供給される冷媒量が変化する。
According to the electric component box cooling device for an air conditioner of the first aspect, the refrigerant circuit having a compressor having a variable capacity and the electric component box accommodating the electric heating component are provided, and the first bypass circuit is provided. Since the accumulator of the refrigerant circuit is connected to the suction pipe of the compressor through the auxiliary cooler attached to the electric component box through the flow rate adjusting means, the pressure difference between the both ends of the first bypass circuit depends on the suction amount of the compressor, The amount of refrigerant supplied to the auxiliary cooler changes according to the capacity of the compressor.

【0019】また、電気品箱を冷却するための第1のバ
イパス回路を、アキュムレータと圧縮機の吸入配管の間
に接続したので、アキュムレータと吸入配管との間の圧
力差により、第1のバイパス回路にはアキュムレータか
ら吸入配管へ向かう冷媒の流れが発生し、補助クーラに
冷媒が供給される。
Further, since the first bypass circuit for cooling the electric component box is connected between the accumulator and the suction pipe of the compressor, the first bypass circuit is caused by the pressure difference between the accumulator and the suction pipe. A refrigerant flow from the accumulator to the suction pipe is generated in the circuit, and the refrigerant is supplied to the auxiliary cooler.

【0020】請求項2の空気調和機の電気品箱冷却装置
によると、補助クーラと並列に弁を有する第2のバイパ
ス回路を設けたので、制御装置で弁を回路することによ
り補助クーラの冷却性能を制御できる。
According to the electric component box cooling device of the air conditioner of the second aspect, since the second bypass circuit having the valve is provided in parallel with the auxiliary cooler, the cooling of the auxiliary cooler is performed by the circuit of the valve in the control device. You can control the performance.

【0021】請求項3の空気調和機の電気品箱冷却装置
によると、第2のバイパス回路の弁を圧縮機起動後の所
定時間回路するよう制御装置で制御したので、圧縮機起
動に伴う急激な圧力変化がある場合でも補助クーラに流
れる冷媒流量を抑制できる。
According to the electric component box cooling device of the air conditioner of the third aspect, the valve of the second bypass circuit is controlled by the control device so as to be circuited for a predetermined time after the compressor is started. Even if there is a large change in pressure, the flow rate of the refrigerant flowing through the auxiliary cooler can be suppressed.

【0022】請求項4の空気調和機の電気品箱冷却装置
によると、第2のバイパス回路の弁をデフロスト運転中
に回路するよう制御装置で制御したので、圧縮機の吸入
圧力の極端な低下に伴い、補助クーラ内の冷媒温度が低
下した場合に、補助クーラに流れる冷媒流量を抑制でき
る。
According to the electric component box cooling device for an air conditioner of the present invention, the control device controls the valve of the second bypass circuit so that the valve is operated during the defrost operation. Therefore, the suction pressure of the compressor is extremely lowered. Accordingly, when the temperature of the refrigerant in the auxiliary cooler decreases, the flow rate of the refrigerant flowing in the auxiliary cooler can be suppressed.

【0023】請求項5の空気調和機の電気品箱冷却装置
によると、第2のバイパス回路の弁を暖房運転中に回路
するよう制御装置で制御したので、暖房運転時に補助ク
ーラに流れる冷媒流量を抑制できる。
According to the electric component box cooling device of the air conditioner of the fifth aspect, the control device controls the valve of the second bypass circuit so that the valve of the second bypass circuit is circuited during the heating operation, so that the flow rate of the refrigerant flowing to the auxiliary cooler during the heating operation. Can be suppressed.

【0024】[0024]

【実施例】【Example】

実施例1.この発明の第1の実施例を図1に示す。図に
おいて、13は冷媒回路であり、冷媒回路13はインバ
ータにより駆動される容量可変な圧縮機14、四方弁1
5、非利用側熱交換器16、利用側熱交換器17、アキ
ュムレータ18、減圧装置19、圧縮機14の吸入配管
20にて構成されている。なお、この冷媒回路13の場
合には、減圧装置19の構成並びに空気調和機として冷
媒封入量の調整により、アキュムレータ18の底部に少
量の液冷媒を確保するようにする。また、21は電気発
熱部品を収納した電気品箱、22は電気品箱21に対し
て熱交換可能となるように付設した補助クーラである。
さらに、23はアキュムレータ18の底部より補助クー
ラ22を介して圧縮機14の吸入配管20に配管接続し
た第1のバイパス回路であり、アキュムレータ18と補
助クーラ22との間には流量調節手段24が設けられて
いる。
Example 1. A first embodiment of the present invention is shown in FIG. In the figure, 13 is a refrigerant circuit, and the refrigerant circuit 13 is a compressor 14 driven by an inverter and having a variable capacity, and a four-way valve 1.
5, the non-use side heat exchanger 16, the use side heat exchanger 17, the accumulator 18, the pressure reducing device 19, and the suction pipe 20 of the compressor 14. In the case of the refrigerant circuit 13, a small amount of liquid refrigerant is secured at the bottom of the accumulator 18 by adjusting the structure of the decompression device 19 and the amount of refrigerant enclosed as an air conditioner. Further, 21 is an electric component box accommodating an electric heating component, and 22 is an auxiliary cooler attached to the electric component box 21 so that heat can be exchanged.
Further, reference numeral 23 is a first bypass circuit pipe-connected from the bottom of the accumulator 18 to the suction pipe 20 of the compressor 14 via the auxiliary cooler 22, and a flow rate adjusting means 24 is provided between the accumulator 18 and the auxiliary cooler 22. It is provided.

【0025】図中、実線矢印は冷房運転時の冷媒の流れ
方向を示し、破線矢印は暖房運転時の冷媒の流れ方向を
示している。冷房運転時には、圧縮機14にて圧縮され
た高温高圧のガス冷媒は、四方弁15を介して非利用側
熱交換器16に入り、大気などに放熱し凝縮液化して高
圧の液冷媒となる。この高圧の液冷媒は減圧装置19で
減圧されて低圧の気液二相冷媒となり、利用側熱交換器
17に入り、室内空気より採熱して冷房すると共に、冷
媒は蒸発して低圧のガス冷媒となり、アキュムレータ1
8を介して圧縮機14に吸入される。暖房運転時には、
四方弁15を切換えることにより、圧縮機14から吐出
される高温高圧のガス冷媒は、利用側熱交換器17に入
り、室内空気に放熱して暖房すると共に、冷媒自体は凝
縮して高圧の液冷媒となる。高圧液冷媒は減圧装置19
で減圧され、低圧の気液二相冷媒となり、非利用側熱交
換器16で蒸発して、アキュムレータ18を介して圧縮
機14に吸入される。
In the figure, the solid arrow indicates the flow direction of the refrigerant during the cooling operation, and the broken arrow indicates the flow direction of the refrigerant during the heating operation. During the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 14 enters the non-use side heat exchanger 16 through the four-way valve 15 and radiates heat to the atmosphere to be condensed and liquefied to become a high-pressure liquid refrigerant. .. This high-pressure liquid refrigerant is decompressed by the decompression device 19 to become a low-pressure gas-liquid two-phase refrigerant, enters the heat exchanger 17 on the use side, takes heat from the indoor air to cool it, and the refrigerant evaporates to form a low-pressure gas refrigerant. Next, accumulator 1
8 and is sucked into the compressor 14 via. During heating operation,
By switching the four-way valve 15, the high-temperature and high-pressure gas refrigerant discharged from the compressor 14 enters the use-side heat exchanger 17 and radiates heat to indoor air to heat the refrigerant, and the refrigerant itself is condensed to form a high-pressure liquid. It becomes a refrigerant. High-pressure liquid refrigerant is the decompression device 19
Is reduced in pressure to become a low-pressure gas-liquid two-phase refrigerant, evaporated in the non-use side heat exchanger 16, and sucked into the compressor 14 via the accumulator 18.

【0026】次に、第1のバイパス回路23における作
用について説明する。吸入配管20には、高速の低圧ガ
ス冷媒が流れるため摩擦損失により圧力損失が発生する
ので、アキュムレータ18の内部圧力に比べて吸入配管
20内の圧力は低い。したがって、第1のバイパス回路
23においては、アキュムレータ18から圧縮機14の
吸入配管20に向かう冷媒流れが発生するので、補助ク
ーラ22に低温冷媒が供給され電気品箱21から採熱し
て冷却を行う。
Next, the operation of the first bypass circuit 23 will be described. Since high-speed low-pressure gas refrigerant flows through the suction pipe 20, pressure loss occurs due to friction loss, so the pressure inside the suction pipe 20 is lower than the internal pressure of the accumulator 18. Therefore, in the first bypass circuit 23, a refrigerant flow from the accumulator 18 toward the suction pipe 20 of the compressor 14 is generated, so that the low-temperature refrigerant is supplied to the auxiliary cooler 22 and heat is taken from the electric component box 21 to perform cooling. ..

【0027】なお、流量調節手段24は、圧縮機14に
対する過度の液バック量を防止でき、かつ補助クーラ2
2での冷却性能が確保できる冷媒流量に設定されてお
り、管オリフィスなどにより構成されている。また、第
1のバイパス回路23の両端に発生する圧力差は、圧縮
機14の吸入ガス量(冷媒流量)に依存し、圧縮機14
の吸入ガス量が増加した場合には、圧力差も増大し、補
助クーラ22での冷却能力も増加する。
The flow rate adjusting means 24 is capable of preventing an excessive amount of liquid back to the compressor 14, and the auxiliary cooler 2
The refrigerant flow rate is set so as to ensure the cooling performance in No. 2 and is constituted by a pipe orifice or the like. Further, the pressure difference generated at both ends of the first bypass circuit 23 depends on the intake gas amount (refrigerant flow rate) of the compressor 14, and
When the amount of intake gas is increased, the pressure difference is also increased, and the cooling capacity of the auxiliary cooler 22 is also increased.

【0028】このように構成された空気調和機の電気品
箱冷却装置によると、第1のバイパス回路23をアキュ
ムレータ18の底部より流量調節手段24を介して電気
品箱21に付設した補助クーラ22を通して圧縮機14
の吸入配管20に接続したので、第1のバイパス回路2
3の両端の圧力差は圧縮機14の吸入量に左右される。
したがって、圧縮機14の運転容量に応じて補助クーラ
22に流れる冷媒流量を調節でき、適正な電気品箱21
の冷却が可能となり、過大な冷却に伴う電気部品の結露
の発生を防止できる。
According to the electric component box cooling device of the air conditioner thus configured, the auxiliary cooler 22 is provided with the first bypass circuit 23 attached to the electric component box 21 from the bottom of the accumulator 18 via the flow rate adjusting means 24. Through compressor 14
Connected to the suction pipe 20 of the first bypass circuit 2
The pressure difference between both ends of 3 depends on the suction amount of the compressor 14.
Therefore, the flow rate of the refrigerant flowing through the auxiliary cooler 22 can be adjusted according to the operating capacity of the compressor 14, and the proper electrical component box 21
Therefore, it is possible to prevent the dew condensation of the electric parts due to the excessive cooling.

【0029】また、電気品箱21を冷却するための第1
のバイパス回路23を、アキュムレータ18と圧縮機1
4の吸入配管20の間に接続したので、アキュムレータ
18と吸入配管20との間の圧力差により、第1のバイ
パス回路23にアキュムレータ18から吸入配管20へ
向かう冷媒の流れが発生し、補助クーラ22に冷媒が供
給される。このように、運転モードに関係なく、常時高
圧の液冷媒となる部位を構成する必要がないので、冷媒
回路13の簡略化が図れ、安価な空気調和機が得られ
る。
Further, the first for cooling the electric component box 21
The bypass circuit 23 of the accumulator 18 and the compressor 1
4 is connected between the suction pipes 20, the pressure difference between the accumulator 18 and the suction pipe 20 causes a flow of the refrigerant from the accumulator 18 to the suction pipe 20 in the first bypass circuit 23, and the auxiliary cooler is provided. Refrigerant is supplied to 22. Thus, regardless of the operation mode, it is not necessary to configure a portion that is always a high-pressure liquid refrigerant, so that the refrigerant circuit 13 can be simplified and an inexpensive air conditioner can be obtained.

【0030】実施例2.この発明の第2の実施例を図2
に示す。なお、第1の実施例と同一部分は同一符号を付
してその説明を省略する。
Example 2. The second embodiment of the present invention is shown in FIG.
Shown in. The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0031】図中、25は補助クーラ22と並列に第1
のバイパス回路23間に掛け渡した第2のバイパス回路
であり、第2のバイパス回路25に電磁弁26が接続さ
れている。また、27は電磁弁26の開閉制御を行う制
御装置である。
In the figure, reference numeral 25 is a first parallel to the auxiliary cooler 22.
The second bypass circuit 25 is connected to the second bypass circuit 25, and the solenoid valve 26 is connected to the second bypass circuit 25. Reference numeral 27 is a control device that controls the opening and closing of the solenoid valve 26.

【0032】次に動作について説明する。冷媒による冷
房運転時並びに暖房運転時の動作、並びに補助クーラ2
2による電気品箱21の冷却作用については、図1にて
示した例と同様であるので説明を省略する。
Next, the operation will be described. Operation during cooling operation and heating operation with refrigerant, and auxiliary cooler 2
The cooling action of the electric component box 21 by 2 is the same as that of the example shown in FIG.

【0033】第2のバイパス回路25における作用につ
いて説明する。電磁弁26が開路した場合には、アキュ
ムレータ18より流量調節手段24を介して流出する冷
媒は、補助クーラ22と電磁弁26とに分流されて、吸
入配管20に到達する。したがって、電磁弁26を開路
した場合には補助クーラ22を流れる冷媒流量が低下す
るので、電気品箱21の冷却能力は低下する。
The operation of the second bypass circuit 25 will be described. When the solenoid valve 26 is opened, the refrigerant flowing out of the accumulator 18 via the flow rate adjusting means 24 is split into the auxiliary cooler 22 and the solenoid valve 26 and reaches the suction pipe 20. Therefore, when the electromagnetic valve 26 is opened, the flow rate of the refrigerant flowing through the auxiliary cooler 22 decreases, and the cooling capacity of the electrical component box 21 decreases.

【0034】電磁弁26の制御装置27の作用について
説明する。圧縮機14の起動直後には急激な圧力変化が
発生するので、補助クーラ22への流入冷媒流量が過大
となる可能性が高く、電磁弁26を開路して補助クーラ
22の冷媒流量を抑制する。また、空気調和機を暖房運
転した場合には、非利用側熱交換器16に着霜するので
デフロスト(除霜)運転を定期的に行うのが一般的であ
る。このデフロスト運転中については、圧縮機14の吸
入圧力が極端に低下し補助クーラ22を通過する冷媒温
度が必要以上に低下して冷却能力が過大となるので、電
磁弁26を開路して冷却能力の低下を図る。さらに、暖
房運転時については、電気品箱21の周囲温度が低いの
で、冷媒による電気品箱21の必要冷却能力は小さくて
よく、電磁弁26を開路して、冷却能力の低下を図る。
The operation of the control device 27 for the solenoid valve 26 will be described. Since a rapid pressure change occurs immediately after the compressor 14 is started, the refrigerant flow rate into the auxiliary cooler 22 is likely to be excessive, and the electromagnetic valve 26 is opened to suppress the refrigerant flow rate of the auxiliary cooler 22. .. In addition, when the air conditioner is heated, the non-use side heat exchanger 16 is frosted, so that the defrost (defrost) operation is generally performed regularly. During the defrost operation, the suction pressure of the compressor 14 is extremely lowered, the temperature of the refrigerant passing through the auxiliary cooler 22 is lowered more than necessary, and the cooling capacity becomes excessive. Therefore, the solenoid valve 26 is opened to cool the cooling capacity. To reduce. Further, since the ambient temperature of the electric component box 21 is low during the heating operation, the required cooling capacity of the electric component box 21 by the refrigerant may be small, and the electromagnetic valve 26 is opened to reduce the cooling capacity.

【0035】このように構成された空気調和機の電気品
箱冷却装置においても、第1の実施例と同様の効果が得
られる。さらに、補助クーラ22と並列に電磁弁26を
有する第2のバイパス回路25を設けたので、制御装置
27で電磁弁26を回路することにより補助クーラ22
の冷却性能を抑制できる。つまり、圧縮機起動後の所定
時間、デフロスト運転中ならびに暖房運転中に電磁弁2
6を回路し、補助クーラ22に流れる冷媒流量を抑制
し、冷却能力を抑えることができる。
Also in the electric component box cooling device for an air conditioner thus configured, the same effect as that of the first embodiment can be obtained. Further, since the second bypass circuit 25 having the electromagnetic valve 26 is provided in parallel with the auxiliary cooler 22, the auxiliary cooler 22 is configured by the control device 27 to circuit the electromagnetic valve 26.
The cooling performance of can be suppressed. That is, the solenoid valve 2 is operated during the defrost operation and the heating operation for a predetermined time after the compressor is started.
6, the flow rate of the refrigerant flowing through the auxiliary cooler 22 can be suppressed, and the cooling capacity can be suppressed.

【0036】[0036]

【発明の効果】請求項1の空気調和機の電気品箱冷却装
置によると、容量可変の圧縮機を有した冷媒回路と、電
気発熱部品を収納した電気品箱とからなり、第1のバイ
パス回路を冷媒回路のアキュムレータより流量調節手段
を介して電気品箱に付設した補助クーラを通して圧縮機
の吸入配管に接続したので、第1のバイパス回路の両端
の圧力差は圧縮機の吸入量に左右され、圧縮機の容量に
応じて補助クーラへ供給される冷媒量が変化し、電気品
箱内に結露が生じるのを防止できる。
According to the electric component box cooling device for an air conditioner of the first aspect of the present invention, the first bypass is composed of a refrigerant circuit having a variable capacity compressor and an electric component box accommodating electric heating components. Since the circuit was connected to the suction pipe of the compressor through the auxiliary cooler attached to the electrical box from the accumulator of the refrigerant circuit via the flow rate adjusting means, the pressure difference between both ends of the first bypass circuit depends on the suction amount of the compressor. Therefore, it is possible to prevent the amount of the refrigerant supplied to the auxiliary cooler from changing according to the capacity of the compressor, thereby preventing the occurrence of dew condensation in the electric component box.

【0037】また、電気品箱を冷却するための第1のバ
イパス回路を、アキュムレータと圧縮機の吸入配管の間
に接続したので、アキュムレータと吸入配管との間の圧
力差により、第1のバイパス回路にはアキュムレータか
ら吸入配管へ向かう冷媒の流れが発生し、補助クーラに
冷媒が供給され、冷媒回路の簡略化が図れる。
Further, since the first bypass circuit for cooling the electric component box is connected between the accumulator and the suction pipe of the compressor, the pressure difference between the accumulator and the suction pipe causes the first bypass circuit. The flow of the refrigerant from the accumulator to the suction pipe is generated in the circuit, the refrigerant is supplied to the auxiliary cooler, and the refrigerant circuit can be simplified.

【0038】請求項2の空気調和機の電気品箱冷却装置
によると、補助クーラと並列に弁を有する第2のバイパ
ス回路を設けたので、制御装置で弁を回路することによ
り補助クーラの冷却性能を制御でき、電気品箱内の結露
の発生を防止できる。
According to the electric component box cooling device of the air conditioner of the second aspect, since the second bypass circuit having the valve is provided in parallel with the auxiliary cooler, the cooling of the auxiliary cooler is performed by the circuit of the valve in the control device. The performance can be controlled and the occurrence of dew condensation in the electrical equipment box can be prevented.

【0039】請求項3の空気調和機の電気品箱冷却装置
によると、第2のバイパス回路の弁を圧縮機起動後の所
定時間回路するよう制御装置で制御したので、圧縮機起
動に伴う急激な圧力変化がある場合でも補助クーラに流
れる冷媒流量を抑制できる。
According to the electric component box cooling device for an air conditioner of the third aspect, the control device controls the valve of the second bypass circuit to operate for a predetermined time after the compressor is started. Even if there is a large change in pressure, the flow rate of the refrigerant flowing through the auxiliary cooler can be suppressed.

【0040】請求項4の空気調和機の電気品箱冷却装置
によると、第2のバイパス回路の弁をデフロスト運転中
に回路するよう制御装置で制御したので、圧縮機の吸入
圧力の極端な低下に伴い、補助クーラ内の冷媒温度が低
下した場合に、補助クーラに流れる冷媒流量を抑制でき
る。
According to the electric component box cooling device for an air conditioner of the present invention, the control device controls the valve of the second bypass circuit so that the valve is operated during the defrosting operation. Therefore, the suction pressure of the compressor is extremely lowered. Accordingly, when the temperature of the refrigerant in the auxiliary cooler decreases, the flow rate of the refrigerant flowing in the auxiliary cooler can be suppressed.

【0041】請求項5の空気調和機の電気品箱冷却装置
によると、第2のバイパス回路の弁を暖房運転中に回路
するよう制御装置で制御したので、暖房運転時に補助ク
ーラに流れる冷媒流量を抑制できる。
According to the electric component box cooling device of the air conditioner of the fifth aspect, since the valve of the second bypass circuit is controlled by the control device so as to be circuited during the heating operation, the flow rate of the refrigerant flowing to the auxiliary cooler during the heating operation. Can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例による空気調和機の全
体構成図である。
FIG. 1 is an overall configuration diagram of an air conditioner according to a first embodiment of the present invention.

【図2】この発明の第2の実施例による空気調和機の全
体構成図である。
FIG. 2 is an overall configuration diagram of an air conditioner according to a second embodiment of the present invention.

【図3】従来の空気調和機の全体構成図である。FIG. 3 is an overall configuration diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

13 冷媒回路 14 圧縮機 15 四方弁 16 非利用側熱交換器 17 利用側熱交換器 18 アキュムレータ 19 減圧装置 20 吸入配管 21 電気品箱 22 補助クーラ 23 第1のバイパス回路 24 流量調節手段 25 第2のバイパス回路 26 電磁弁 27 制御装置 13 Refrigerant circuit 14 Compressor 15 Four-way valve 16 Non-use side heat exchanger 17 Use side heat exchanger 18 Accumulator 19 Pressure reducing device 20 Suction pipe 21 Electrical component box 22 Auxiliary cooler 23 First bypass circuit 24 Flow control means 25 Second Bypass circuit 26 Solenoid valve 27 Control device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 容量可変の圧縮機、四方弁、非利用側熱
交換器、減圧装置、利用側熱交換器およびアキュムレー
タからなる冷媒回路と、電気発熱部品を収納した電気品
箱と、この電気品箱に熱交換可能に付設した補助クーラ
と、前記アキュムレータから前記補助クーラを通って前
記圧縮機の吸入配管に接続し前記補助クーラに冷媒を供
給可能な第1のバイパス回路と、この第1のバイパス回
路において前記アキュムレータと前記補助クーラとの間
に設けた流量調節手段とを備えた空気調和機の電気品箱
冷却装置。
1. A refrigerant circuit comprising a variable capacity compressor, a four-way valve, a non-use side heat exchanger, a pressure reducing device, a use side heat exchanger and an accumulator, an electric box for accommodating electric heat-generating parts, and this electric machine. An auxiliary cooler attached to the product box so that heat can be exchanged; a first bypass circuit connected to the suction pipe of the compressor from the accumulator through the auxiliary cooler and capable of supplying a refrigerant to the auxiliary cooler; An electric component box cooling device for an air conditioner, comprising: a flow rate adjusting means provided between the accumulator and the auxiliary cooler in the bypass circuit.
【請求項2】 容量可変の圧縮機、四方弁、非利用側熱
交換器、減圧装置、利用側熱交換器およびアキュムレー
タからなる冷媒回路と、電気発熱部品を収納した電気品
箱と、この電気品箱に熱交換可能に付設した補助クーラ
と、前記アキュムレータから前記補助クーラを通って前
記圧縮機の吸入配管に接続し前記補助クーラに冷媒を供
給可能な第1のバイパス回路と、この第1のバイパス回
路において前記アキュムレータと前記補助クーラとの間
に設けた流量調節手段と、この流量調節手段より前記補
助クーラ寄りにおいて前記補助クーラと並列に前記第1
のバイパス回路に接続した第2のバイパス回路と、この
第2のバイパス回路の途中に設けた弁と、この弁を開閉
制御する制御装置とを備えた空気調和機の電気品箱冷却
装置。
2. A refrigerant circuit comprising a variable capacity compressor, a four-way valve, a non-use side heat exchanger, a pressure reducing device, a use side heat exchanger and an accumulator, an electric component box containing an electric heating component, and this electric machine. An auxiliary cooler attached to the product box so that heat can be exchanged; a first bypass circuit connected to the suction pipe of the compressor from the accumulator through the auxiliary cooler and capable of supplying a refrigerant to the auxiliary cooler; Flow rate adjusting means provided between the accumulator and the auxiliary cooler in the bypass circuit, and the first cooler in parallel with the auxiliary cooler near the auxiliary cooler from the flow rate adjusting means.
An electric component box cooling device for an air conditioner, comprising a second bypass circuit connected to the bypass circuit, a valve provided in the middle of the second bypass circuit, and a control device for controlling the opening / closing of the valve.
【請求項3】 前記制御装置が、前記圧縮機の起動後所
定時間、前記弁を開路することを特徴とする請求項2記
載の空気調和機の電気品箱冷却装置。
3. The electric component box cooling device for an air conditioner according to claim 2, wherein the control device opens the valve for a predetermined time after starting the compressor.
【請求項4】 前記制御装置が、前記非利用側熱交換器
に着霜した霜を取り除くデフロスト運転中、前記弁を開
路することを特徴とする請求項2記載の空気調和機の電
気品箱冷却装置。
4. The electric component box for an air conditioner according to claim 2, wherein the control device opens the valve during a defrost operation for removing frost that has frosted on the non-use side heat exchanger. Cooling system.
【請求項5】 前記制御装置が、冷房運転中は前記弁を
閉路し、暖房運転中は前記弁を開路することを特徴とす
る請求項2記載の空気調和機の電気品箱冷却装置。
5. The electric box cooling device for an air conditioner according to claim 2, wherein the control device closes the valve during the cooling operation and opens the valve during the heating operation.
JP32572391A 1991-12-10 1991-12-10 Electric part box cooler for air conditioner Pending JPH05157372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32572391A JPH05157372A (en) 1991-12-10 1991-12-10 Electric part box cooler for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32572391A JPH05157372A (en) 1991-12-10 1991-12-10 Electric part box cooler for air conditioner

Publications (1)

Publication Number Publication Date
JPH05157372A true JPH05157372A (en) 1993-06-22

Family

ID=18179971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32572391A Pending JPH05157372A (en) 1991-12-10 1991-12-10 Electric part box cooler for air conditioner

Country Status (1)

Country Link
JP (1) JPH05157372A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878589A (en) * 1996-04-10 1999-03-09 Denso Corporation Vehicular air conditioning system for electric vehicles
US6345512B1 (en) * 2001-06-15 2002-02-12 Marconi Communications, Inc. Power efficient, compact DC cooling system
JP2006329556A (en) * 2005-05-27 2006-12-07 Daikin Ind Ltd Heat exchange system
JP2011122779A (en) * 2009-12-11 2011-06-23 Toshiba Carrier Corp Refrigerating cycle device
JP2012247136A (en) * 2011-05-27 2012-12-13 Mitsubishi Electric Corp Booster unit, and air conditioning apparatus combined with water heater including the same
JP2013234817A (en) * 2012-05-10 2013-11-21 Sharp Corp Heat pump type heating device
JP2014122724A (en) * 2012-12-20 2014-07-03 Mitsubishi Electric Corp Air conditioner and freezer
CN106940070A (en) * 2017-03-21 2017-07-11 广东美的暖通设备有限公司 The condensation prevention control method and device of radiator in air-conditioning system and air-conditioning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140056A (en) * 1983-12-28 1985-07-24 株式会社日立製作所 Refrigeration cycle
JPH024170A (en) * 1988-06-17 1990-01-09 Matsushita Refrig Co Ltd Refrigerating cycle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140056A (en) * 1983-12-28 1985-07-24 株式会社日立製作所 Refrigeration cycle
JPH024170A (en) * 1988-06-17 1990-01-09 Matsushita Refrig Co Ltd Refrigerating cycle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878589A (en) * 1996-04-10 1999-03-09 Denso Corporation Vehicular air conditioning system for electric vehicles
US6345512B1 (en) * 2001-06-15 2002-02-12 Marconi Communications, Inc. Power efficient, compact DC cooling system
JP2006329556A (en) * 2005-05-27 2006-12-07 Daikin Ind Ltd Heat exchange system
JP4548224B2 (en) * 2005-05-27 2010-09-22 ダイキン工業株式会社 Heat exchange system
JP2011122779A (en) * 2009-12-11 2011-06-23 Toshiba Carrier Corp Refrigerating cycle device
JP2012247136A (en) * 2011-05-27 2012-12-13 Mitsubishi Electric Corp Booster unit, and air conditioning apparatus combined with water heater including the same
JP2013234817A (en) * 2012-05-10 2013-11-21 Sharp Corp Heat pump type heating device
JP2014122724A (en) * 2012-12-20 2014-07-03 Mitsubishi Electric Corp Air conditioner and freezer
CN106940070A (en) * 2017-03-21 2017-07-11 广东美的暖通设备有限公司 The condensation prevention control method and device of radiator in air-conditioning system and air-conditioning system

Similar Documents

Publication Publication Date Title
CN200996753Y (en) Refrigerating system of intermediate air-compensating compressor with economizer
JP3948919B2 (en) Method and apparatus for controlling at least one compressor of a cooling system with a variable speed drive
KR100465723B1 (en) A cooling drive method of air-conditioner
EP2083229A1 (en) Heat exchanging system
US7210303B2 (en) Transcritical heat pump water heating system using auxiliary electric heater
JP3925545B2 (en) Refrigeration equipment
US8171747B2 (en) Refrigeration device
JPH0634208A (en) Cooling device of electric article box of air conditioner
JP4317793B2 (en) Cooling system
JPH09273876A (en) Cooler with natural circulation loop
JP2000146328A (en) Refrigerating and air-conditioning device
US20060150667A1 (en) Heat exchanger and air conditioner using the same
JPH05157372A (en) Electric part box cooler for air conditioner
US11162723B2 (en) Methods and systems for controlling working fluid in HVACR systems
JP3334601B2 (en) Air conditioner with natural circulation
CN110103672B (en) Air conditioning system of electric automobile
KR100528292B1 (en) Heat-pump type air conditioner
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
EP2309210A1 (en) Reversible cycle air conditioner
JP2000356421A (en) Cooling apparatus
JPH1038421A (en) Refrigerating cycle
JP2000074515A (en) Air conditioner
JP2833339B2 (en) Thermal storage type air conditioner
KR100389640B1 (en) System for controlling air conditioner and method thereof
JP2000154929A (en) Indirect outdoor air cooling device