[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0515540B2 - - Google Patents

Info

Publication number
JPH0515540B2
JPH0515540B2 JP2300734A JP30073490A JPH0515540B2 JP H0515540 B2 JPH0515540 B2 JP H0515540B2 JP 2300734 A JP2300734 A JP 2300734A JP 30073490 A JP30073490 A JP 30073490A JP H0515540 B2 JPH0515540 B2 JP H0515540B2
Authority
JP
Japan
Prior art keywords
phenolic resin
foamable
resin composition
face material
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2300734A
Other languages
Japanese (ja)
Other versions
JPH0418331A (en
Inventor
Kimimichi Masui
Shigetoshi Tanaka
Hiromi Tanigawa
Yoshikazu Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2300734A priority Critical patent/JPH0418331A/en
Publication of JPH0418331A publication Critical patent/JPH0418331A/en
Publication of JPH0515540B2 publication Critical patent/JPH0515540B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 この発明はフエノールフオーム複合体の製造法
に関する。さらに詳しくはこの発明は各種緩衝
材、断熱材、外装パネル、パーテイシヨンボード
等に有用な複合フエノール樹脂発泡成形体(フエ
ノールフオーム)の製造法に関する。 (ロ) 従来の技術 従来からフエノールフオームの製造方法とし
て、型内の底部に面材を置き、この面材の表面に
粉末状の発泡性フエノール樹脂組成物を散布充填
し、さらに間隔をあけて面材を置き、加熱して発
泡・硬化する方法が知られている。 一方、プラスチツク発泡粒子、パーライト等の
軽量骨材と粉末状の発泡性フエノール樹脂組成物
とを混和した後、所定の成形用型にこの混和物を
充填し加熱して発泡する方法が知られている。 (ハ) 発明が解決しようとする課題 しかしながら、かような製造方法では作業中の
振動、衝撃等が発泡性フエノール樹脂組成物粉末
の散布状態を不均一にしたり、パーライト等の骨
材中に沈降したりしてその結果得られたフエノー
ルフオームと面材の積層物は、フエノールフオー
ムの密度にバラツキを生じて品質が安定しなかつ
たり、また面材とフエノールフオームとの密着性
に問題があり、ことに発泡層にパーライトなど骨
材が添加された場合は、骨材と面材と接する部分
が生じて接着性に問題があつた。 この発明の発明者らは上記技術的課題を解決す
るために鋭意検討を行なつた結果、発泡性フエノ
ール樹脂組成物を面材上に被覆して使用すること
に想到し、この発明を完成させるに至つた。 (ニ) 課題を解決するための手段 かくしてこの発明によれば面材の片面または両
面がフエノール樹脂初期縮合物、分解型発泡剤及
び必要に応じて加えられる硬化剤からなる発泡性
フエノール樹脂組成物で被覆されてなる発泡性樹
脂被覆板状体を作製し、この発泡性樹脂被覆板状
体の少なくとも一対を、骨材粒子充填層を介して
上記発泡性フエノール樹脂組成物被覆層が対向す
るように金型内に配置し、次いで上記発泡性フエ
ノール樹脂組成物が発泡硬化する条件に付すこと
により、骨材粒子含有発泡フエノール層と面材が
一体化された複合体を得ることを特徴とするフエ
ノールフオーム複合体の製造法が提供される。 この発明においては、面材の発泡性フエノール
樹脂組成物の溶融物または溶液で予め被覆したも
のが使用され、これを用いて発泡成形すると、そ
の成形品は後述のごとく工業上多々利点がもたさ
れる。 この発明に用いるフエノール樹脂初期縮合物と
しては、ノボラツク型とレゾール型のフエノール
樹脂初期縮合物があげられる。ここで、ノボラツ
ク型フエノール樹脂初期縮合物とは、フエノール
類とアルデヒド類とを酸性触媒の存在下反応させ
て得られる当該分野で知られたいわゆるノボラツ
ク型フエノール樹脂と称せられ、硬化剤の存在下
で更に重合が進行しうるものを意味する。この樹
脂は一般に常温で固体状である。一方、レゾール
型フエノール樹脂初期縮合物とは、フエノール類
と過剰のアルデヒド類とを塩基性触媒の存在下反
応させて得られる当該分野で知られたいわゆるレ
ゾール型フエノール樹脂と称せられ、酸性硬化促
進剤及び加熱で重合が進行しうるものを意味す
る。かようなレゾール型フエノール樹脂は、それ
自体反応水を約20%含んだ液状のものであるが、
これを更に脱水(水分を蒸発)し固形状物(水分
を1%前後含む)とし、次いでこの固形状物を粉
砕して、この発明で使用する粉末状のレゾール型
フエノール樹脂とする。もちろん市販の粉末状レ
ゾール型フエノール樹脂を用いてもよい。 上記フエノール類とは、フエノールの他に、
3,5−キシレノール、m−クレゾール、2,5
−キシレノール、3,4−キシレノール、2,4
−キシレノール、o−クレゾール、p−クレゾー
ルなどが含まれる。又アルデヒド類とは、ホルム
アルデヒド、パラホルムアルデヒド、ヘキサメチ
レンテトラミン、フルフラール、アセトアルデヒ
ド、アセタール類などが含まれる。この発明に使
用するのに好ましい初期縮合物は、フエノールと
ホルムアルデヒドと縮合物である。 この発明における分解型発泡剤とは、フエノー
ル樹脂初期縮合物とを混合して組成物中で加熱硬
化時に分解してガスを発生しうる無機及び有機の
発泡剤を意味する。これらの代表例としてはN,
N′−ジニトロソペンタメチレンテトラミン、ベ
ンゼンスルホニルヒドラジド、アゾビスイソブチ
ロニトリル、アゾジカルボンアミド、パラトルエ
ンスルホニルヒドラジドなどの有機分解型発泡
剤、並びに重炭酸ナトリウム、炭酸アンモニウ
ム、重炭酸アンモニウム、亜硝酸アンモニウム、
アジド化合物(例えばCaN6)などの無機分解型
発泡剤が挙げられる。これらは全て粉末状であ
る。 発泡剤の添加量は、所望する最終の発泡剤の密
度を主に考慮してその所要量とされるが、フエノ
ール樹脂初期縮合物100重量部に対し1〜50重量
部が適当であり、2〜25重量部が好ましい。 硬化剤は、ことにノボラツク型フエノール樹脂
初期縮合物を用いた時に使用される。この硬化剤
は、加熱で分解し、ノボラツク型フエノール樹脂
初期縮合物と架橋反応しうる化合物を意味する。
このような化合物としては、ホルムアルデヒドと
同様にフエノール類との反応でフエノール樹脂成
形に用いられる化合物で通常粉末状のものであ
る。その具体例としては、ヘキサメチレンテトラ
ミン、パラホルムアルデヒド、メチラール、ジオ
キソラン、トリオキサン、テトラオキサン、トリ
メチロールホスフイン、S−トリアジンなどが挙
げられる。 硬化剤の添加量は、一般にノボラツク型フエノ
ール樹脂100重量部に対し、1〜30重量部が適当
であり、4〜15重量部が好ましい。 また、気泡調整剤に混合して、気泡の微細化や
均一化を一層可能にする。この気泡調整剤として
界面活性剤があり、ソルビタン脂肪酸エステル、
シリコングライコール共重合体、ポリオキシエチ
レン系ポリオキシプロピレン共重合体等の非イオ
ン系やアルキルアミン塩等のカチオン系である。 この発明の発泡性フエノール樹脂組成物には、
難燃剤その他の種々の添加剤例えばクレイ炭酸カ
ルシウム、タルク、ガラス粉末等の充填剤が加え
られていてもよい。これらの添加剤は、フエノー
ル樹脂初期縮合物100重量部に対し100重量部以下
であるのが好ましい。 この発明における固体状の樹脂組成物は、通
常、上記したフエノール樹脂初期縮合物、分解型
発泡剤及び必要に応じて硬化剤とを加熱ロール等
により混練して均一に混合し、粉砕して外径1mm
以下の粉末形態で使用される。もちろん、顆粒状
のものを用いてもよい。 この発明における面材の材質は、用途に応じて
適宜選択されるが、たとえば金属質、無機質、木
質、プラスチツク、繊維質またはこれらの積層体
等が挙げられる。 金属質にはたとえばアルミニウム、鉄、鋼、銅
等が、無機質にはたとえばガラス、石綿、石膏、
ケイ酸カルシウム、セメント等が、木質にはたと
えばベニア、紙等が、プラスチツクにはたとえば
ポリカーボネート、ポリエステル、ポリエチレ
ン、ポリ塩化ビニル、ポリプロピレン、メラミン
樹脂等が、繊維質には織布、不織布等が挙げられ
る。 面材の形状は平面状であつてもよく、曲率面状
であつてもよい。また穴開状であつてもよい。 平面状のものには、一平面からなるもの及び多
面による凸凹を生じているもの(異形)が包含さ
れる。曲率面状のものにはたとえばコルゲート
状、円筒状等のものが挙げられる。 面材の被覆面は、面材が発泡材と接着しやすい
状態がよいので、粗面または凹凸を有する方が好
ましい。1つの例として金属箔に不織布等がラミ
ネートされたものを用いるのが好ましい。 この発明に用いる面材の厚みは、その形状を保
持するものであればとくに限定されず用途に応じ
て適宜選択される。 この発明に用いる面材の大きさはとくに限定さ
れないが、巾3cm〜3mのものが適しており、長
さは用途に応じて適宜切断されたものが使用され
る。 この発明における上記発泡性フエノール樹脂組
成物の上記面材への被覆量は、発泡成形体の所望
の厚み及び密度により左右されるが、一般に面材
に対して5g/m2〜10Kg/m2が適しており、好ま
しくは10g/m2〜5Kg/m2である。 なお、上記組成物の被覆量が5g/m2〜10Kg/
m2に対応する最終発泡体の厚みは、この発明に用
いる骨材(たとえば、パーライト、シラスバルー
ン、ガラスバルーン、ガラス発泡粒、粘度粒、粘
度発泡粒、セメント粒、石粒、合成樹脂粒子、合
成樹脂発泡粒子など)の存在により2mm〜300mm
となる。 この発明の発泡性樹脂被覆板状体は、前記発泡
性樹脂組成物を前記面材の意図する面(片面、両
面又はそれらの一部)上に被覆することにより得
られる。 溶融物により被覆する方法としてはたとえば、 1)該組成物粉末を面材に散布後、加熱もしく
は加熱プレスして溶融する、または加熱溶融しロ
ール等で圧着する、2)該組成物をまず容器内で
溶融し、これに面材を移動させながら接触させて
塗布する、3)該粉末を溶射機等を用いて空中で
溶融と同時に吹付け塗布する、4)該粉末を押出
機で混練した後、続けてフイルムまたはシート状
の溶融物にして面材に塗布する、5)面材を粉末
の溶融する温度迄温めて該粉末を面材上に置く、
6)離型紙上で該組成物を溶融し粘性を有してい
る間に面材に転写する等の方法が挙げられる。 5)の方法は面材が異形または曲率面である場
合に適する方法である。また6)の方法は連続形
成に適する方法である。 又、被覆する方法には、発泡性フエノール樹脂
組成物を水、アルコール、トルエン等の溶剤で溶
解させて面材の表面に塗布する方法もある。 更に又、面材表面を水、アルコール、トルエン
等の溶剤で予め湿潤させておいて発泡性フエノー
ル樹脂組成物を散布し溶解被覆することもでき
る。 上記被覆方法は面材の材質及び形状により適宜
選択される。 該組成物は場合によりペレツト、タブレツト状
またはフレーク状等で使用されてもよい。 上記溶剤の使用はまた該組成物が少量であると
き、面材への均一な散布、塗布を行なう点で好ま
しい。 上記組成物の溶融温度は溶融に足る温度でかつ
発泡があまり進行しないような温度(120℃以下)
である。この温度に調整するためには、加熱源の
温度は150〜200℃で短時間で加熱することが適し
ている。 なお、上記発泡性フエノール樹脂組成物が塗布
された際、塗布層における該組成物は50%以下の
発泡状態にしておくことが望ましい。 この発明において発泡性フエノール樹脂組成物
は必ずしも面材全体に被覆される必要はなく、部
分的に被覆されていてもよい。たとえば面材の周
囲のみに被覆されたもの等が挙げられる。 以上の方法によりこの発明に用いる発泡性樹脂
被覆板状体が与えられる。 以下実施例によりこの発明の製造法について詳
細に説明するがこれによりこの発明は限定される
ものではない。 (ホ) 実施例 実施例 1 ノボラツク型フエノール−ホルムアルデヒド樹
脂粉末100重量部に対して、10重量部の発泡剤ジ
ニトロソペンタメチレンテトラミン、10重量部の
硬化剤ヘキサメチレンテトラミンを加え加熱ロー
ルにより混練した。その後粉砕して粉末の樹脂組
成物を得た。この発泡性フエノール樹脂組成物
は、100メツシユ残0.5%の粉末で、融点は81℃で
あり、150℃のゲル化時間は76秒であつた。 次いで、第1図に示すようにこの発泡性フエノ
ール樹脂組成物116.0gを250mm×250mmの大きさ
に離型紙2の上に均一な厚みで敷き、これを第2
図に示すように150℃に加熱したプレートヒータ
3上に1分間置いて溶融させて被覆させる。この
ように発泡性フエノール樹脂組成物で被覆された
発泡性樹脂被覆板状体を2枚造り、一枚を第3図
に示すように下に敷き、その上に250mm×250mm×
15mmの金型4を、250mmの正方形のフエノール発
泡性樹脂組成物1に合わせておく。第4図に示す
ように金型4でつくられたキヤビテイ5の中へ、
パーライト(平均5.3mm)(商品名フヨーライト、
フヨーライト工業株式会社製)6をほぼ一杯(充
填度合100%)に充填し、第5図に示すようにも
う一枚の発泡性樹脂被覆板状体を塗布面を下にし
て置き、その上にふた8をしてプレス材7間に置
き150℃、プレス圧力40Kg/cm2で15分間プレス加
熱を行つた。金型4をプレス機から取り出し、フ
エノールフオーム複合体9を金型4から離形し
た。 得られたフエノールフオーム複合体9はパーラ
イト粒6がフエノールフオーム全体に均一に分散
されており、切断したところ、粒間の空隙(空隙
率40%)にはフエノールフオームが全て充填され
ていた。またパーライト粒に欠損も認められなか
つた。 実施例 2 離型紙に被覆する発泡性フエノール樹脂組成物
を10.7gに変更する以外、実施例1と同一装置、
同一条件にて、フエノールフオーム複合体を25枚
作成した。得られたすべてのフエノールフオーム
複合体はパーライト粒がフエノールフオーム全体
に均一に分散されており、切断したところ、粒間
の空隙にはフエノールフオームが全て充填され、
製品となり得た。 比較例 1 パーライト粒(商品名フヨーライト7号、フヨ
ーライト工業株式会社製)1.5に実施例1と同
一の発泡性フエノール樹脂組成物106gを不均化
するのを人為的にできるだけ均一に混和して、実
施例1と同一の離型紙及び装置を用いて、同一条
件にて、25枚製造した。 この内12枚については、パーライト粒間をフエ
ノールフオームが満たしており製品となり得た
が、残り13枚については、パーライト粒間の一部
が、フエノールフオームが満していないため、パ
ーライトが離脱して製品となり得なかつた。 実施例 3 面材を厚さ50μmのアルミ箔に変更する以外実
施例1とまつたく同様な装置及び方法で行つた。
得られたフエノールフオーム複合体は、両面アル
ミ箔で接着されたものを得た。これを面材の剥離
テストに付した。結果を表にする。 比較例 2 面材を実施例3と同一の厚さ50μmアルミ箔に
変更し、発泡性フエノール樹脂組成物を120gに
変更する以外、比較例1と同一の装置及び方法に
て行つた。得られたフエノールフオーム複合体
は、両面をアルミ箔で接着され、切断したとこ
ろ、粒間の空隙にはフエノールフオームで全て充
填されていた。これについて面材の剥離テストを
行つた。結果を表に示す。 実施例 4 面材を厚さ150μmの不燃紙に変更する以外実施
例3とまつたく同様な装置及び方法で行つた。得
られたフエノールフオーム複合体について面材の
剥離テストを行なつた。結果を表に示す。 比較例 3 面材を実施例4と同一の不燃紙に変更する以外
は、比較例2と同一装置及び同一条件にて行つ
た。得られたフエノールフオーム複合体は、両面
を不燃紙で接着され、切断したところ、粒間の空
隙にはフエノールフオームで全て充填されてい
た。これについて面材の剥離テストを行つた。結
果を表に示す。
(a) Industrial application field This invention relates to a method for producing a phenol foam composite. More specifically, the present invention relates to a method for producing a composite phenolic resin foam molding (phenol foam) useful for various cushioning materials, heat insulating materials, exterior panels, partition boards, etc. (b) Conventional technology The conventional method for producing phenol foam is to place a face material at the bottom of a mold, scatter and fill the surface of this face material with a powdered foamable phenolic resin composition, and then fill the surface with a spacer. A method is known in which a face material is placed and heated to foam and harden. On the other hand, a method is known in which a lightweight aggregate such as expanded plastic particles or perlite is mixed with a powdered foamable phenolic resin composition, and then the mixture is filled into a predetermined mold and heated to foam. There is. (c) Problems to be Solved by the Invention However, in such a manufacturing method, vibrations, shocks, etc. during work may cause the foamable phenolic resin composition powder to be dispersed unevenly or to settle into aggregates such as pearlite. The resulting laminate of phenol foam and face material has inconsistent quality due to variations in the density of the phenol foam, and also has problems with the adhesion between the face material and the phenol foam. In particular, when aggregate such as perlite was added to the foam layer, there were areas where the aggregate came into contact with the face material, causing problems in adhesion. The inventors of this invention conducted intensive studies to solve the above technical problem, and as a result, they came up with the idea of using a foamable phenolic resin composition by coating it on a surface material, and completed this invention. It came to this. (d) Means for Solving the Problems According to the present invention, there is provided a foamable phenolic resin composition in which one or both surfaces of the face material are composed of a phenolic resin initial condensate, a decomposable foaming agent, and a curing agent added as necessary. A foamable resin-coated plate is prepared, and at least one pair of the foamable resin-coated plate is covered with the foamable phenolic resin composition coating layer facing each other with an aggregate particle filled layer interposed therebetween. The foamed phenolic resin composition is placed in a mold and then subjected to conditions for foaming and hardening, thereby obtaining a composite in which the foamed phenol layer containing aggregate particles and the face material are integrated. A method of making a phenol foam complex is provided. In this invention, a face material coated in advance with a melt or solution of a foamable phenolic resin composition is used, and when this is used for foam molding, the molded product has many industrial advantages as described below. be done. Examples of the phenolic resin initial condensate used in this invention include novolac type and resol type phenolic resin initial condensates. Here, the novolak-type phenolic resin initial condensate is a so-called novolak-type phenolic resin known in the art that is obtained by reacting phenols and aldehydes in the presence of an acidic catalyst. means that polymerization can proceed further. This resin is generally solid at room temperature. On the other hand, the resol-type phenolic resin initial condensate is a so-called resol-type phenolic resin known in the art, which is obtained by reacting phenols and excess aldehydes in the presence of a basic catalyst, and is acid-cured. It means a substance that can undergo polymerization by using an agent and heating. Such resol-type phenolic resin itself is a liquid containing about 20% reaction water, but
This is further dehydrated (water is evaporated) to form a solid material (containing approximately 1% water), and this solid material is then pulverized to obtain the powdered resol type phenolic resin used in the present invention. Of course, a commercially available powdered resol type phenolic resin may also be used. The above phenols include, in addition to phenol,
3,5-xylenol, m-cresol, 2,5
-xylenol, 3,4-xylenol, 2,4
-xylenol, o-cresol, p-cresol, etc. The aldehydes include formaldehyde, paraformaldehyde, hexamethylenetetramine, furfural, acetaldehyde, acetals, and the like. A preferred precondensate for use in this invention is a phenol-formaldehyde condensate. The decomposable blowing agent in this invention means an inorganic or organic blowing agent that can be mixed with a phenolic resin initial condensate and decomposed to generate gas when heated and cured in the composition. Typical examples of these are N,
Organic blowing agents such as N′-dinitrosopentamethylenetetramine, benzenesulfonyl hydrazide, azobisisobutyronitrile, azodicarbonamide, paratoluenesulfonyl hydrazide, as well as sodium bicarbonate, ammonium carbonate, ammonium bicarbonate, and ammonium nitrite. ,
Examples include inorganic decomposition type blowing agents such as azide compounds (eg CaN 6 ). All of these are in powder form. The amount of the blowing agent to be added is the required amount, mainly taking into account the desired final density of the blowing agent, but 1 to 50 parts by weight is appropriate for 100 parts by weight of the phenolic resin initial condensate; ~25 parts by weight is preferred. Hardeners are used in particular when novolak-type phenolic resin precondensates are used. This curing agent means a compound that can be decomposed by heating and can undergo a crosslinking reaction with the novolak type phenolic resin initial condensate.
Such a compound is, like formaldehyde, a compound used in phenolic resin molding by reaction with phenols, and is usually in powder form. Specific examples include hexamethylenetetramine, paraformaldehyde, methylal, dioxolane, trioxane, tetraoxane, trimethylolphosphine, S-triazine, and the like. The amount of the curing agent added is generally 1 to 30 parts by weight, preferably 4 to 15 parts by weight, per 100 parts by weight of the novolak type phenolic resin. In addition, it can be mixed with a cell regulator to further make cells finer and more uniform. Surfactants are used as bubble regulators, such as sorbitan fatty acid ester,
These include nonionic types such as silicon glycol copolymers and polyoxyethylene-based polyoxypropylene copolymers, and cationic types such as alkylamine salts. The foamable phenolic resin composition of this invention includes:
Flame retardants and other various additives such as fillers such as clay calcium carbonate, talc, and glass powder may also be added. The amount of these additives is preferably 100 parts by weight or less based on 100 parts by weight of the phenolic resin initial condensate. The solid resin composition of the present invention is usually prepared by kneading the above-mentioned phenolic resin initial condensate, a decomposable foaming agent, and, if necessary, a curing agent, using a heated roll or the like to uniformly mix the mixture, and then crushing it to form an external product. Diameter 1mm
Used in powder form: Of course, granules may also be used. The material of the face material in this invention is appropriately selected depending on the application, and examples include metal, inorganic, wood, plastic, fiber, or a laminate thereof. Examples of metals include aluminum, iron, steel, copper, etc.; examples of inorganics include glass, asbestos, gypsum, etc.
Calcium silicate, cement, etc., wood materials include veneer, paper, etc., plastic materials include polycarbonate, polyester, polyethylene, polyvinyl chloride, polypropylene, melamine resin, etc., and fibrous materials include woven fabrics, non-woven fabrics, etc. It will be done. The shape of the face material may be a planar shape or a curved surface shape. It may also be in the form of a hole. Planar objects include those that have one plane and those that have unevenness due to multiple surfaces (irregular shapes). Examples of the curved surface include corrugated and cylindrical shapes. The covering surface of the facing material preferably has a rough surface or an uneven surface because it is preferable that the facing material easily adheres to the foam material. As one example, it is preferable to use metal foil laminated with nonwoven fabric or the like. The thickness of the face material used in this invention is not particularly limited as long as it maintains its shape, and is appropriately selected depending on the application. The size of the face material used in this invention is not particularly limited, but a width of 3 cm to 3 m is suitable, and the length is appropriately cut depending on the purpose. The amount of the foamable phenolic resin composition coated on the face material in this invention depends on the desired thickness and density of the foam molded product, but is generally 5 g/m 2 to 10 Kg/m 2 with respect to the face material. is suitable, preferably between 10 g/m 2 and 5 Kg/m 2 . In addition, the coating amount of the above composition is 5g/m 2 to 10Kg/
The thickness of the final foam corresponding to m2 is determined by the aggregate used in this invention (for example, perlite, shirasu balloon, glass balloon, glass foam granules, viscosity granules, viscous foam granules, cement granules, stone particles, synthetic resin particles, 2mm to 300mm depending on the presence of foamed synthetic resin particles, etc.
becomes. The foamable resin-coated plate-like body of the present invention is obtained by coating the foamable resin composition on the intended surface (one surface, both surfaces, or a portion thereof) of the surface material. Examples of methods for coating with a molten material include: 1) Spreading the composition powder on the surface material and then heating or hot pressing to melt it, or heating and melting it and pressing it with a roll or the like, 2) First applying the composition to a container. 3) The powder is melted in the air and simultaneously applied by spraying it using a thermal sprayer, etc. at the same time it is melted in the air. 4) The powder is kneaded with an extruder. 5) Warm the facing material to a temperature at which the powder melts and place the powder on the facing material.
6) Methods include melting the composition on a release paper and transferring it to the facing material while it is viscous. Method 5) is suitable when the surface material has an irregular shape or a curved surface. Further, method 6) is a method suitable for continuous formation. Further, as a coating method, there is also a method in which a foamable phenolic resin composition is dissolved in a solvent such as water, alcohol, toluene, etc., and then applied to the surface of the facing material. Furthermore, the surface of the facing material may be pre-moistened with a solvent such as water, alcohol, toluene, etc., and then the foamable phenolic resin composition may be sprayed and dissolved to coat the surface. The above-mentioned coating method is appropriately selected depending on the material and shape of the face material. The composition may optionally be used in the form of pellets, tablets or flakes. The use of the above-mentioned solvent is also preferred in that when the composition is used in a small amount, it can be uniformly spread and applied to the surface material. The melting temperature of the above composition is a temperature that is sufficient for melting and at which foaming does not proceed much (below 120°C).
It is. In order to adjust to this temperature, it is suitable to heat the heating source at a temperature of 150 to 200°C for a short time. Note that when the foamable phenolic resin composition is applied, it is desirable that the composition in the coating layer be in a foamed state of 50% or less. In the present invention, the foamable phenolic resin composition does not necessarily need to cover the entire face material, but may partially cover the surface material. For example, one in which only the periphery of the face material is covered is included. The above method provides a foamable resin-coated plate for use in the present invention. The manufacturing method of the present invention will be explained in detail below with reference to Examples, but the present invention is not limited thereby. (E) Examples Example 1 To 100 parts by weight of novolak type phenol-formaldehyde resin powder, 10 parts by weight of dinitrosopentamethylenetetramine as a blowing agent and 10 parts by weight of hexamethylenetetramine as a curing agent were added and kneaded with a heated roll. . Thereafter, it was pulverized to obtain a powdered resin composition. This foamable phenolic resin composition was a powder with a 100 mesh residue of 0.5%, a melting point of 81°C, and a gelation time of 76 seconds at 150°C. Next, as shown in FIG. 1, 116.0 g of this foamable phenolic resin composition was spread with a uniform thickness on the release paper 2 in a size of 250 mm x 250 mm, and this was spread on the second layer.
As shown in the figure, it is placed on a plate heater 3 heated to 150° C. for 1 minute to melt and coat. In this way, two foamable resin-coated plates coated with the foamable phenolic resin composition were made, one sheet was placed on the bottom as shown in Figure 3, and a sheet of 250 mm x 250 mm x
A 15 mm mold 4 is fitted with a 250 mm square phenol foamable resin composition 1. As shown in Fig. 4, into the cavity 5 made by the mold 4,
Pearlite (average 5.3mm) (product name Fuyolite,
(manufactured by Fuyolite Kogyo Co., Ltd.) 6 to almost the full (filling degree 100%), place another foam resin-coated plate with the coated side facing down, and place it on top of it, as shown in Figure 5. The lid 8 was placed between the press materials 7, and press heating was performed at 150° C. and a press pressure of 40 kg/cm 2 for 15 minutes. The mold 4 was taken out from the press, and the phenol foam composite 9 was released from the mold 4. In the obtained phenol foam composite 9, pearlite grains 6 were uniformly dispersed throughout the phenol foam, and when cut, it was found that all the voids between the grains (porosity: 40%) were filled with phenol foam. Moreover, no defects were observed in the pearlite grains. Example 2 Same equipment as Example 1 except that the foamable phenolic resin composition coated on the release paper was changed to 10.7 g.
Twenty-five phenol foam composites were prepared under the same conditions. In all of the obtained phenol foam composites, pearlite grains were uniformly dispersed throughout the phenol foam, and when cut, all the voids between the grains were filled with phenol foam.
It could become a product. Comparative Example 1 106 g of the same foamable phenolic resin composition as in Example 1 was artificially mixed as homogeneously as possible into 1.5 grams of pearlite grains (trade name: Fuyolite No. 7, manufactured by Fuyolite Kogyo Co., Ltd.). Using the same release paper and equipment as in Example 1, 25 sheets were manufactured under the same conditions. Of these, 12 sheets had phenol foam filling the space between the pearlite grains and could be used as a product, but for the remaining 13 sheets, the phenol foam did not fill some of the spaces between the pearlite grains, so the pearlite separated. Therefore, it could not be used as a product. Example 3 The same equipment and method as in Example 1 were used except that the surface material was changed to aluminum foil with a thickness of 50 μm.
The obtained phenol foam composite was bonded with aluminum foil on both sides. This was subjected to a face material peeling test. Tabulate the results. Comparative Example 2 The same apparatus and method as in Comparative Example 1 were used, except that the face material was changed to the same 50 μm thick aluminum foil as in Example 3, and the foamable phenolic resin composition was changed to 120 g. The obtained phenol foam composite was adhered on both sides with aluminum foil, and when cut, it was found that all the voids between the particles were filled with phenol foam. Regarding this, a peeling test of the face material was conducted. The results are shown in the table. Example 4 The same equipment and method as in Example 3 were used except that the surface material was changed to non-combustible paper with a thickness of 150 μm. A surface material peeling test was conducted on the obtained phenol foam composite. The results are shown in the table. Comparative Example 3 The same equipment and conditions as in Comparative Example 2 were used except that the surface material was changed to the same noncombustible paper as in Example 4. The obtained phenol foam composite was adhered on both sides with non-combustible paper, and when cut, it was found that all the voids between the particles were filled with phenol foam. Regarding this, a peeling test of the face material was conducted. The results are shown in the table.

【表】 測定方法 JIS Z−1528,90゜引きはがし法に準ずる。 実施例 5 離型紙の上面に305g/m2の実施例1と同一の
発泡性フエノール樹脂組成物の、径約2mm、長さ
約4mmの円柱状のペレツトを均一に敷き、その上
に0.3m/mのアルミ箔を置く。さらにアルミ箔
の上面に305g/m2の上記ペレツトを敷き、さら
に上面に離型紙を敷く。それを150℃に加熱した
プレスで、20秒間10Kg/cm2の圧力をかける。上
面、下面の離型紙を取ると、アルミ箔の両面を発
泡性フエノール樹脂組成物で被覆された両面発泡
性フエノール樹脂組成物被覆アルミ箔が出来た。
このフエノール樹脂組成物は若干発泡している。
両面発泡性フエノール樹脂組成物被覆アルミ箔
を、250mm×250mmに切断する。250mm×250mm×20
mmの型の下面にアルミ箔を置き、次にパーライト
(フヨーライト7号 フヨーライト工業株式会社
製)を深さ10mmまで敷き、その上に両面発泡性フ
エノール樹脂被覆アルミ箔を置く。さらに型内に
満すようにパーライトを敷き、アルミ箔を乗せて
型を閉じる。それを150℃、15分間、50Kg/cm2
圧力をかけてプレスする。この得られたフエノー
ルフオーム複合体は表面及び中心部にアルミ箔を
持つものでありパーライト粒がフエノールフオー
ム全体に均一に分散されており、切断したとこ
ろ、粒間の空隙にはフエノールフオームが全て充
填されていた。 実施例 6 面材(商品名シヨーワクロス、昭和アルミニユ
ウム株式会社製)に5c.c./m2の水分を噴霧し、実
施例1と同様な発泡性フエノール樹脂組成物256
g/m2を表面に均一に被覆した後、65℃の乾燥機
内に3時間放置する。できた発泡性フエノール樹
脂組成物被覆クロスは、クロスと発泡性フエノー
ル樹脂との接着が良い。これを実施例1と同様な
方法でプレス成形を行つた。 実施例 7 パーライトに変えて、紙材のハニカム芯材を使
用する以外は実施例1と同様な方法で行つた。 得られたフエノールフオーム複合体を切断した
ところ、全ての空隙にはフエノールフオームが全
て充填されていた。 実施例 8 下面に面材にのみ発泡性フエノール樹脂組成物
を77g/m2被覆した不燃紙を使用し、上面に面材
には、被覆していない不燃紙を使用する。キヤビ
テイの中には何もいれない。これ以外の実施例1
と同様な装置及び方法で行つた。 得られたフエノールフオーム複合体は独立気泡
率65%の発泡体であつた。密度は55Kg/m3であつ
た。 (ヘ) 発明の効果 この発明に用いる発泡性樹脂被覆板状体は、予
め生産して適当な大きさにしておき、塗布された
まま運搬でき、必要時にそれを発泡に供する製品
として提供することができる。 そして、かかる板状体を用いたこの発明の製造
法は、次のような顕著な技術効果を示す。 1)最終発泡成形体において面材と発泡体との
密着性が、従来のように面材上で発泡性樹脂組成
物を充填し、加熱発泡・硬化させて得られたもの
に比べて優れている、2)使用する原料のフエノ
ール量を従来よりも半分位に減らしても使用に耐
えうる成形品を与えるのでフエノールの節約がで
きる。たとえば従来最終発泡体体積に体する必要
量が80g〜100g/であつたものが15g/程
度ですむ、3)面材に均一に被覆しているので発
泡体が均一となる、4)骨材を入れると、同時混
合充填発泡では骨材と面材の接着がないところで
あるが、この発明により行えば骨材と組成物との
接着が必ずあるのでより強い接着成形物が得られ
る、5)面材の両面に同時に発泡成形が可能とな
る、6)面材と発泡体との界面にガス溜りによる
空洞が生じにくい等。
[Table] Measurement method: According to JIS Z-1528, 90° peeling method. Example 5 Cylindrical pellets with a diameter of about 2 mm and a length of about 4 mm made of the same foamable phenolic resin composition as in Example 1 at 305 g/m 2 were spread uniformly on the upper surface of release paper, and 0.3 m /m of aluminum foil. Furthermore, 305 g/m 2 of the above pellets were spread on the top surface of the aluminum foil, and release paper was further spread on the top surface. A press heated to 150°C applies a pressure of 10 kg/cm 2 for 20 seconds. When the release paper on the upper and lower surfaces was removed, a double-sided foamable phenolic resin composition-coated aluminum foil in which both sides of the aluminum foil were coated with the foamable phenolic resin composition was obtained.
This phenolic resin composition is slightly foamed.
The double-sided foamable phenolic resin composition-coated aluminum foil was cut into 250 mm x 250 mm. 250mm×250mm×20
Place aluminum foil on the bottom of a mm mold, then spread perlite (Fuyolite No. 7, manufactured by Fuyolite Kogyo Co., Ltd.) to a depth of 10 mm, and then place double-sided foaming phenol resin coated aluminum foil on top of it. Next, spread perlite to fill the mold, place aluminum foil on top, and close the mold. It is then pressed at 150°C for 15 minutes under a pressure of 50 kg/cm 2 . The obtained phenol foam composite has aluminum foil on the surface and center, and pearlite grains are uniformly dispersed throughout the phenol foam, and when cut, the voids between the grains are completely filled with phenol foam. It had been. Example 6 A surface material (trade name Showa Cloth, manufactured by Showa Aluminum Co., Ltd.) was sprayed with 5 c.c./m 2 of water to form a foamable phenolic resin composition 256 similar to that of Example 1.
After uniformly coating the surface with an amount of g/m 2 , it is left in a dryer at 65° C. for 3 hours. The resulting cloth coated with the foamable phenolic resin composition has good adhesion between the cloth and the foamable phenolic resin. This was press-molded in the same manner as in Example 1. Example 7 The same method as in Example 1 was carried out except that a paper honeycomb core material was used instead of perlite. When the obtained phenol foam composite was cut, all the voids were completely filled with phenol foam. Example 8 A non-combustible paper coated with 77 g/m 2 of a foamable phenolic resin composition is used only for the bottom surface material, and an uncoated non-combustible paper is used for the top surface material. Nothing can be put inside the cavity. Example 1 other than this
It was carried out using the same equipment and method. The obtained phenol foam composite was a foam with a closed cell ratio of 65%. The density was 55Kg/ m3 . (f) Effects of the invention The foamable resin-coated plate used in this invention can be produced in advance to an appropriate size, transported while coated, and provided as a product that can be subjected to foaming when necessary. I can do it. The manufacturing method of the present invention using such a plate-like body exhibits the following remarkable technical effects. 1) The adhesion between the face material and the foam in the final foam molded product is superior to that obtained by filling a foamable resin composition on the face material, heating and foaming and curing it as in the past. 2) Even if the amount of phenol in the raw material used is reduced to about half compared to conventional methods, a molded product that can withstand use can be obtained, so phenol can be saved. For example, the amount required to be added to the final foam volume in the past was 80 to 100 g per volume, but only about 15 g per volume, 3) Since the face material is evenly coated, the foam becomes uniform; 4) Aggregate If this is done, there is no adhesion between the aggregate and the face material in simultaneous mixing and filling foaming, but with this invention, there is always adhesion between the aggregate and the composition, so a stronger adhesive molded product can be obtained.5) It is possible to perform foam molding on both sides of the face material at the same time, and 6) cavities due to gas accumulation are less likely to occur at the interface between the face material and the foam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図はそれぞれこの発明の各工程を
例示する構成説明図である。 1……発泡性フエノール樹脂組成物、2……離
型紙、3……プレートヒータ、4……金型、5…
…キヤビテイ、6……パーライト、7……プレス
材、8……フタ、9……フエノールフオーム複合
体。
FIGS. 1 to 6 are configuration explanatory diagrams illustrating each step of the present invention, respectively. 1... Foamable phenolic resin composition, 2... Release paper, 3... Plate heater, 4... Mold, 5...
...Cavity, 6...Pearlite, 7...Pressed material, 8...Lid, 9...Phenol foam composite.

Claims (1)

【特許請求の範囲】[Claims] 1 面材の片面または両面がフエノール樹脂初期
縮合物、分解型発泡剤及び必要に応じて加えられ
る硬化剤からなる発泡性フエノール樹脂組成物で
被覆されてなる発泡性樹脂被覆板状体を作製し、
この発泡性樹脂被覆板状体の少なくとも一対を、
骨材粒子充填層を介して上記発泡性フエノール樹
脂組成物被覆層が対向するように金型内に配置
し、次いで上記発泡性フエノール樹脂組成物が発
泡硬化する条件に付すことにより、骨材粒子含有
発泡フエノール層と面材が一体化された複合体を
得ることを特徴とするフエノールフオーム複合体
の製造法。
1. Produce a foamable resin-coated plate-like body in which one or both sides of the face material are coated with a foamable phenolic resin composition consisting of a phenolic resin initial condensate, a decomposable foaming agent, and a curing agent added as necessary. ,
At least one pair of this foamable resin-coated plate-like body,
The aggregate particles are placed in a mold so that the foamable phenolic resin composition coating layer faces each other through the aggregate particle filling layer, and then subjected to conditions for foaming and hardening the foamable phenolic resin composition. A method for producing a phenol foam composite, characterized by obtaining a composite in which a foamed phenol-containing layer and a face material are integrated.
JP2300734A 1990-11-05 1990-11-05 Manufacture of phenol form composite body Granted JPH0418331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2300734A JPH0418331A (en) 1990-11-05 1990-11-05 Manufacture of phenol form composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2300734A JPH0418331A (en) 1990-11-05 1990-11-05 Manufacture of phenol form composite body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20598285A Division JPS6264539A (en) 1985-09-17 1985-09-17 Tabular body coated with foaming resin and manufacture

Publications (2)

Publication Number Publication Date
JPH0418331A JPH0418331A (en) 1992-01-22
JPH0515540B2 true JPH0515540B2 (en) 1993-03-01

Family

ID=17888462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2300734A Granted JPH0418331A (en) 1990-11-05 1990-11-05 Manufacture of phenol form composite body

Country Status (1)

Country Link
JP (1) JPH0418331A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081687A (en) * 1994-06-15 1996-01-09 Plantec:Kk Production of phenolic resin molding
JP4763173B2 (en) * 2001-08-09 2011-08-31 株式会社イシダ Weighing device
JP2011149016A (en) * 2009-12-24 2011-08-04 Taiheiyo Materials Corp Granular material for lightweight molding resin and lightweight molding resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637132A (en) * 1979-09-04 1981-04-10 Ig Kogyo Kk Production of sandwitched panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637132A (en) * 1979-09-04 1981-04-10 Ig Kogyo Kk Production of sandwitched panel

Also Published As

Publication number Publication date
JPH0418331A (en) 1992-01-22

Similar Documents

Publication Publication Date Title
JP5947483B2 (en) Composite product molding method and product
JPH0218230B2 (en)
US3764428A (en) Method of foaming fibrous fleece
US3830894A (en) Process for the preparation of filled phenol resin foam materials
JPH0515540B2 (en)
JPS6264539A (en) Tabular body coated with foaming resin and manufacture
JP2577064B2 (en) Fire protection panel
JPH0233301B2 (en)
JPH05222784A (en) Heat-sound-fire preventing panel
JPH0379183B2 (en)
JPH0255223B2 (en)
EP0154794A1 (en) Expandable phenolic resin-coated composite beads, a process for production thereof and a process for molding thereof
JPS61233527A (en) Preparation of plate-shaped expanded composite
JPH0446742B2 (en)
JP2000096737A (en) Fireproof member and its manufacture
JPS61233526A (en) Preparation of composite phenol resin expanded molded product
JPH0464333B2 (en)
JP2720518B2 (en) Manufacturing method of core material reinforced resol type phenol resin foam
JPH0469182B2 (en)
JPH0316899B2 (en)
JPH0379382B2 (en)
JPH0571621B2 (en)
JP3376401B2 (en) Fire resistant composite board
JP3163372B2 (en) Fire resistant composite board
KR20210040840A (en) Phenolic-based metamaterial and method of forming phenol-based metamaterial