JPH05148780A - Production of rope composed of fiber-reinforced composite material - Google Patents
Production of rope composed of fiber-reinforced composite materialInfo
- Publication number
- JPH05148780A JPH05148780A JP31501291A JP31501291A JPH05148780A JP H05148780 A JPH05148780 A JP H05148780A JP 31501291 A JP31501291 A JP 31501291A JP 31501291 A JP31501291 A JP 31501291A JP H05148780 A JPH05148780 A JP H05148780A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- reinforced composite
- rope
- composite material
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B7/00—Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
- D07B7/02—Machine details; Auxiliary devices
- D07B7/14—Machine details; Auxiliary devices for coating or wrapping ropes, cables, or component strands thereof
- D07B7/145—Coating or filling-up interstices
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/02—Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2046—Strands comprising fillers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2075—Fillers
- D07B2201/2082—Fillers characterised by the materials used
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/2007—Duroplastics
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/2046—Polyamides, e.g. nylons
- D07B2205/205—Aramides
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/20—Organic high polymers
- D07B2205/206—Epoxy resins
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3003—Glass
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3007—Carbon
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2401/00—Aspects related to the problem to be solved or advantage
- D07B2401/20—Aspects related to the problem to be solved or advantage related to ropes or cables
- D07B2401/202—Environmental resistance
- D07B2401/2025—Environmental resistance avoiding corrosion
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2501/00—Application field
- D07B2501/20—Application field related to ropes or cables
- D07B2501/2015—Construction industries
Landscapes
- Ropes Or Cables (AREA)
- Laminated Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は繊維強化複合材料からな
るロープの製造方法に関するものである。さらに詳細に
は、建材・土木用途に軽量で形状保持性・作業性が良好
な繊維強化樹脂複合材料からなるロープの製造方法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a rope made of fiber reinforced composite material. More specifically, the present invention relates to a method for manufacturing a rope made of a fiber-reinforced resin composite material that is lightweight and has good shape retention and workability for building materials and civil engineering applications.
【0002】[0002]
【従来の技術】従来、建材・土木用途に高強度で低伸度
のロープとしてワイヤーロープが多量に使用されてき
た。これは引張強度が高く、伸びの少ない鋼線を撚合せ
て作られたものである。このロープは加重負荷時にマニ
ラ麻・サイザル麻などの天然繊維やナイロン・ポリエス
テルなどの合成繊維で作られたロープ比較して伸びが少
ないという利点を有している。しかし、鋼線を撚合せて
作ったロープは鉄の比重が大きいことに起因する重さ、
海砂の利用、ウオーターフロント開発時などに起こる腐
食などの問題が提起されている。2. Description of the Related Art Conventionally, a large amount of wire rope has been used as a high strength and low elongation rope for building materials and civil engineering applications. It is made by twisting steel wires with high tensile strength and low elongation. This rope has the advantage that it has less elongation than a rope made of natural fibers such as Manila hemp and sisal or synthetic fibers such as nylon and polyester when loaded. However, the rope made by twisting steel wires is heavy due to the large specific gravity of iron,
Problems such as the use of sea sand and corrosion that occur during waterfront development have been raised.
【0003】建設・土木現場では長尺のロープを容易に
運搬するために、ロープは巻いたり曲げたりできること
が要求される。一方、複合材料においては、繊維による
補強効果を最大限発揮させるためには、ガラス転移点が
ある程度高いマトリックス樹脂を使用する必要があり、
複合材料からなるロープは巻いたり曲げたりしにくくな
る。特公昭62−18679号では、これらの問題点を
解消するために、炭素繊維・ガラス繊維・アラミド繊維
などの高強度低伸度繊維束に熱硬化性樹脂を含浸し、粉
末剤をまぶした後、樹脂の漏れだしを防止するために合
成繊維から成る編組体で包み、半硬化させて得た炭素繊
維束を撚りあわせ、完全硬化させて撚線を得る方法が提
案されている。At the construction / civil engineering site, in order to easily transport a long rope, it is required that the rope can be wound and bent. On the other hand, in the composite material, in order to maximize the reinforcing effect of the fibers, it is necessary to use a matrix resin having a glass transition point that is high to some extent,
Composite ropes are less likely to wind or bend. In Japanese Examined Patent Publication No. 62-18679, in order to solve these problems, a high strength and low elongation fiber bundle of carbon fiber, glass fiber, aramid fiber, etc. is impregnated with a thermosetting resin and then sprinkled with a powder agent. In order to prevent the resin from leaking out, a method has been proposed in which a carbon fiber bundle obtained by wrapping with a braid made of synthetic fibers and semi-cured is twisted and completely cured to obtain a stranded wire.
【0004】[0004]
【発明が解決しようとする課題】しかし、上記特公昭6
2−18679号のように複雑な工程を採用する場合に
は、作業工程が煩雑となり、加工費も高くつき、建材・
土木用途に対して軽量で形状保持性、作業性が良好な複
合材料からなるロープを提供することが困難であった。However, the above Japanese Patent Publication No. 6
When a complicated process such as No. 2-18679 is adopted, the work process becomes complicated, the processing cost is high, and
It has been difficult to provide a rope made of a composite material that is lightweight, has good shape-retaining properties and good workability for civil engineering applications.
【0005】すなわち、本発明の課題は、建材・土木用
途に軽量で形状保持性、作業性が良好な複合材料からな
るロープを提供することをその課題とする。That is, an object of the present invention is to provide a rope made of a composite material which is lightweight and has good shape-retaining property and workability for building materials and civil engineering applications.
【0006】[0006]
【課題を解決するための手段】本発明の繊維強化複合材
料からなるロープの製造方法は上記課題を解決するため
に次の構成を有する。すなわち、繊維束に繊維含有率4
0〜70wt%でエポキシ樹脂を含浸し、半硬化させ、
直径1〜5mmとした繊維強化複合素線を複数本撚合わ
せて繊維強化複合材料とし、該繊維強化複合材料を加熱
処理することにより硬化させることを特徴とする繊維強
化複合材料からなるロープの製造方法である。In order to solve the above-mentioned problems, the method for manufacturing a rope made of the fiber-reinforced composite material of the present invention has the following constitution. That is, the fiber content rate is 4 in the fiber bundle.
Impregnated with epoxy resin at 0 ~ 70wt%, semi-cured,
Production of a rope made of a fiber-reinforced composite material, characterized in that a plurality of fiber-reinforced composite wires having a diameter of 1 to 5 mm are twisted together to form a fiber-reinforced composite material, and the fiber-reinforced composite material is cured by heat treatment. Is the way.
【0007】以下、本発明を詳細に説明する。本発明に
おいて繊維束とは、繊維強化複合材料の強化用繊維の束
をいい、この繊維の種類としては、強度が高く、クリー
プが少なく、化学的に安定な繊維が好ましく、一般に、
炭素繊維、アラミド繊維、ガラス繊維が用いられる。The present invention will be described in detail below. In the present invention, the fiber bundle refers to a bundle of reinforcing fibers of the fiber-reinforced composite material, as the type of the fiber, high strength, less creep, chemically stable fibers are preferred, generally,
Carbon fiber, aramid fiber, and glass fiber are used.
【0008】本発明の繊維強化複合材料からなるロープ
の製造方法には、マトリックス樹脂としてエポキシ樹脂
を用いるものである。エポキシ樹脂以外の樹脂では繊維
を補強材とした場合、補強効果が十分でなく、樹脂とコ
ンクリートとの接着力が劣るという問題がある。An epoxy resin is used as a matrix resin in the method for producing a rope made of the fiber-reinforced composite material of the present invention. When a fiber other than epoxy resin is used as a reinforcing material, the reinforcing effect is not sufficient, and there is a problem that the adhesive strength between the resin and concrete is poor.
【0009】繊維強化複合素線の繊維含有率は40〜7
0wt%とするものである。繊維含有率が40wt%に
満たないと断面積当りの強度が低下したりコスト面で不
利になる。一方、繊維含有率が70wt%を越えるなら
ば均一含浸が困難となる。The fiber content of the fiber-reinforced composite wire is 40 to 7
It is set to 0 wt%. If the fiber content is less than 40 wt%, the strength per cross-sectional area will be reduced and the cost will be disadvantageous. On the other hand, if the fiber content exceeds 70 wt%, uniform impregnation becomes difficult.
【0010】繊維強化複合素線の直径は1〜5mmとす
るものである。直径が5mmを越えるならばエポキシ樹
脂の均一含浸が困難となり、また硬化後のロープを巻き
取ることが困難となる。逆に1mmに満たない場合には
撚りあわせ工程が煩雑化する。The fiber-reinforced composite wire has a diameter of 1 to 5 mm. If the diameter exceeds 5 mm, it becomes difficult to uniformly impregnate the epoxy resin, and it becomes difficult to wind up the cured rope. On the other hand, if it is less than 1 mm, the twisting process becomes complicated.
【0011】なお、最終的に得られる繊維強化複合材料
からなるロープの直径としては、土木・建築用途におい
てワイヤーロープの代用として用いる観点からは3〜5
0mmの範囲が好ましい。また、形態保持性を良好なも
のとし、ロープの巻きあげを容易とし、一方、繊維が引
張方向から外れてロープの強度が低下することのないよ
うにする観点から、ロープの撚数は、1〜10ターン/
mの範囲が好ましい。The diameter of the finally obtained rope made of the fiber-reinforced composite material is 3 to 5 from the viewpoint of using it as a substitute for the wire rope in civil engineering and construction applications.
The range of 0 mm is preferable. In addition, from the viewpoint that the shape retention is good and the rope is easily wound up, while the fiber does not deviate from the pulling direction and the strength of the rope does not decrease, the number of twists of the rope is 1 ~ 10 turns /
A range of m is preferred.
【0012】本発明の繊維強化複合材料からなるロープ
の製造方法においては、エポキシ樹脂を含浸した後、半
硬化させるものである。本発明において、半硬化は、通
常、含浸後のエポキシ樹脂のガラス転移点を0〜40℃
の範囲とすることで行なうことができる。半硬化しない
ならば、ボビンに巻いた繊維強化複合素線が相互に融着
し、解除が困難となるし、一方、硬化が進みすぎて完了
してしまうと曲げたり巻いたりできなくなる。この半硬
化処理の条件は、容易に含浸後のエポキシ樹脂のガラス
転移点を0〜40℃の範囲とする観点から、温度80〜
120℃、処理時間1〜5分が好ましい。In the method for producing a rope made of the fiber-reinforced composite material of the present invention, the epoxy resin is impregnated and then semi-cured. In the present invention, the semi-curing is usually performed at a glass transition point of the epoxy resin after impregnation of 0 to 40 ° C.
It can be performed by setting the range of. If it is not semi-cured, the fiber-reinforced composite strands wound on the bobbin will be fused to each other and will be difficult to release. On the other hand, if the curing is too advanced, it will not be able to bend or wind. The condition of this semi-curing treatment is a temperature of 80 to 80 from the viewpoint of easily setting the glass transition point of the epoxy resin after impregnation to the range of 0 to 40 ° C.
120 ° C. and a treatment time of 1 to 5 minutes are preferable.
【0013】本発明の方法においては、このように半硬
化させた繊維強化複合素線を複数本引き揃えて撚をかけ
た後、加熱処理して硬化させるものである。本発明にお
いて、硬化は、通常、エポキシ樹脂のガラス転移点を8
0〜150℃の範囲とすることで行なうことができる。
硬化後のガラス転移点が80℃未満では、気象条件によ
っては雰囲気温度が硬化後のガラス転移点を越えること
があり、ロープとしての形態保持が不可能となる。一
方、硬化後のガラス転移点が150℃を越えるような場
合には、ロープが剛直になり、巻取が困難となる。な
お、施工時にガラス転移点以上に加熱することによって
曲げに際し曲率をより小さくすることが可能となる観点
から、硬化後のガラス転移点を80〜100℃とするこ
とが好ましい。In the method of the present invention, a plurality of fiber-reinforced composite strands thus semi-cured are aligned and twisted, and then heat-treated to cure. In the present invention, the curing usually takes the glass transition point of the epoxy resin to 8
It can be carried out within the range of 0 to 150 ° C.
If the glass transition point after curing is less than 80 ° C, the ambient temperature may exceed the glass transition point after curing depending on the weather conditions, and it becomes impossible to maintain the shape of the rope. On the other hand, when the glass transition point after curing exceeds 150 ° C., the rope becomes rigid and winding becomes difficult. In addition, it is preferable to set the glass transition point after curing to 80 to 100 ° C. from the viewpoint that it is possible to further reduce the curvature during bending by heating the glass transition point or higher during the construction.
【0014】硬化させるための加熱処理条件としては、
含浸したエポキシ樹脂の硬化が完了する条件、具体的に
は150〜180℃で2〜5分が好ましい。加熱処理の
手段としては、熱風による方法、ダイスによる方法など
がある。The heat treatment conditions for curing are:
Conditions for completing the curing of the impregnated epoxy resin, specifically, 150 to 180 ° C. and 2 to 5 minutes are preferable. As the heat treatment means, there are a hot air method and a die method.
【0015】以下の実施例において適用したロープの破
断強度および弾性係数の測定方法は次の通りである。ロ
ープの外径より10mm大きい肉厚5mmの長さ200
mmの両面にネジを切った炭素鋼パイプで長さ1000
mmのロープの両端を小野田セメント(株)製膨張セメ
ント(ブライスター100)で定着した。外ネジを使っ
て引張試験機(50トンインストロン)で破断強度を測
定した。同時にロープに歪ゲージを取付け、変位を実測
して弾性係数を測定した。The methods for measuring the breaking strength and elastic modulus of ropes applied in the following examples are as follows. Length 200 with a wall thickness of 5 mm, which is 10 mm larger than the outer diameter of the rope
Length is 1000 mm with carbon steel pipe threaded on both sides of mm
Both ends of the mm rope were fixed with expansion cement (Bryster 100) manufactured by Onoda Cement Co., Ltd. The breaking strength was measured with a tensile tester (50 ton Instron) using an external screw. At the same time, a strain gauge was attached to the rope, the displacement was measured, and the elastic coefficient was measured.
【0016】[0016]
【実施例】以下、本発明を実施例によりさらに具体的に
説明する。 (実施例1〜3、比較例1〜4)東レ(株)製の炭素繊
維“トレカ”(登録商標)T300−12K解撚糸の本
数をかえて引き揃え、1m/分の速度で図1に示す含浸
装置に導き、エポキシ樹脂を含浸した。エポキシ樹脂組
成は油化シェルエポキシ(株)製EP−827:50
部、チバガイギー社製XB−4122:50部、エチル
メチルイミダゾール:2部であった。ダイスの直径を
2.5mmとし余分の樹脂を除去し、繊維の含有率が4
0〜70wt%になるように調節した。ダイスで100
℃、3分間加熱することによりエポキシ樹脂は半硬化
し、そのガラス転移点は30℃であった。EXAMPLES The present invention will be described in more detail below with reference to examples. (Examples 1 to 3 and Comparative Examples 1 to 4) Carbon fiber "Torayca" (registered trademark) T300-12K manufactured by Toray Industries, Inc. was changed in the number of untwisted yarns and aligned. It was led to the impregnation device shown and impregnated with epoxy resin. The epoxy resin composition is EP-827: 50 manufactured by Yuka Shell Epoxy Co., Ltd.
Parts, Ciba Geigy XB-4122: 50 parts, ethylmethylimidazole: 2 parts. The diameter of the die is 2.5 mm, the excess resin is removed, and the fiber content is 4
It was adjusted to be 0 to 70 wt%. 100 with a die
The epoxy resin was semi-cured by heating at 3 ° C for 3 minutes, and its glass transition point was 30 ° C.
【0017】このようにして得た半硬化後の直径2.5
mmの繊維強化複合素線を撚合わせて繊維強化複合材料
とし、温度160℃で2分間加熱処理して硬化させた。
硬化後の含浸エポキシ樹脂のガラス転移点は120℃で
あった。素線の断面を研摩し顕微鏡で観察し空洞の有無
を確認した。また素線形状の繊維複合材料の強度を測定
した。これらの結果を表1に示した。実験番号1−4,
1−5,1−6はそれぞれ実施例1,2,3であり、実
験番号1−1,1−2,1−3,1−7はそれぞれ比較
例1,2,3,4である。The semi-cured diameter 2.5 thus obtained
mm fiber-reinforced composite strands were twisted to form a fiber-reinforced composite material, which was heat-treated at a temperature of 160 ° C. for 2 minutes to be cured.
The glass transition point of the impregnated epoxy resin after curing was 120 ° C. The cross section of the wire was polished and observed with a microscope to confirm the presence or absence of cavities. The strength of the filament-shaped fiber composite material was also measured. The results are shown in Table 1. Experiment number 1-4
1-5, 1-6 are Examples 1, 2, 3 respectively, and experiment numbers 1-1, 1-2, 1-3, 1-7 are Comparative Examples 1, 2, 3, 4 respectively.
【0018】[0018]
【表1】 [Table 1]
【0019】(実施例4〜8)半硬化のための加熱処理
条件のみ100℃、2分間に変更した他は、実施例1の
水準1−5とまったく同じ条件で得た素線形状の繊維複
合材料素線の本数を変えて引き揃え、2ターン/mの撚
りを付与した後、150℃で3分間熱処理して硬化さ
せ、ロープを形成し直径1mのドラムに巻きとった。巻
取は容易であった。このロープの外径より20mm大き
い内径を有する、肉厚5mm、長さ200mmの炭素鋼
にさし込み、水を適量加えた(株)小野田製の膨張セメ
ントを流しこみ2日間常温で硬化させた。50トンの容
量のインストロンで破断強度を測定した。測定結果を表
2にまとめた。実験番号2−1,2−2,2−3,2−
4,2−5はそれぞれ実施例4,5,6,7,8であ
る。ロープの直径が小さいほど破断強度が高く、素線ベ
ースの強度利用率も高いことがわかる。(Examples 4 to 8) Strand-shaped fibers obtained under exactly the same conditions as Level 1-5 of Example 1 except that the heat treatment condition for semi-curing was changed to 100 ° C. for 2 minutes. After arranging and twisting the composite material strands by changing the number of strands of 2 turns / m, the strands were heat-treated at 150 ° C. for 3 minutes to be cured to form a rope and wound on a drum having a diameter of 1 m. Winding up was easy. This rope was inserted into carbon steel having an inner diameter 20 mm larger than the outer diameter and a thickness of 5 mm and a length of 200 mm, and an appropriate amount of water was added to the expanded cement made by Onoda Co., Ltd., and cured at room temperature for 2 days. .. The breaking strength was measured with an Instron with a capacity of 50 tons. The measurement results are summarized in Table 2. Experiment numbers 2-1, 2-2, 2-3, 2-
4, 2-5 are Examples 4, 5, 6, 7, and 8, respectively. It can be seen that the smaller the diameter of the rope, the higher the breaking strength and the higher the strength utilization factor of the wire base.
【0020】[0020]
【表2】 [Table 2]
【0021】[0021]
【発明の効果】本発明の方法によれば、耐蝕性があり、
軽量で作業性の良好な建材・土木用途に適する繊維強化
複合材料からなる安定したロープを提供することができ
る。また、得られたロープは加熱することにより容易に
曲げることができる。本発明の方法によれば、含浸硬化
後に素線から樹脂の漏れだしがないので、素線を編組で
包む必要が無く加工工程を簡略化できる。According to the method of the present invention, there is corrosion resistance,
It is possible to provide a stable rope made of a fiber-reinforced composite material which is lightweight and has good workability and which is suitable for building materials and civil engineering applications. Further, the obtained rope can be easily bent by heating. According to the method of the present invention, since the resin does not leak from the wire after impregnation and curing, it is not necessary to wrap the wire with a braid, and the working process can be simplified.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の繊維強化複合材料からなるロープを製
造する方法の一例を示す概要図である。FIG. 1 is a schematic view showing an example of a method for producing a rope made of the fiber-reinforced composite material of the present invention.
1:エクストルーダー 2:樹脂含浸部 3:ダイス 4:巻き取り装置 5:ドライブステーション 6:強化繊維 1: Extruder 2: Resin impregnation part 3: Die 4: Winding device 5: Drive station 6: Reinforcing fiber
Claims (1)
ポキシ樹脂を含浸し、半硬化させ、直径1〜5mmとし
た繊維強化複合素線を複数本撚合わせて繊維強化複合材
料とし、該繊維強化複合材料を加熱処理することにより
硬化させることを特徴とする繊維強化複合材料からなる
ロープの製造方法。1. A fiber bundle is impregnated with an epoxy resin at a fiber content of 40 to 70 wt%, semi-cured, and a plurality of fiber-reinforced composite wires having a diameter of 1 to 5 mm are twisted together to form a fiber-reinforced composite material. A method for producing a rope made of a fiber-reinforced composite material, which comprises curing the fiber-reinforced composite material by heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31501291A JPH05148780A (en) | 1991-11-28 | 1991-11-28 | Production of rope composed of fiber-reinforced composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31501291A JPH05148780A (en) | 1991-11-28 | 1991-11-28 | Production of rope composed of fiber-reinforced composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05148780A true JPH05148780A (en) | 1993-06-15 |
Family
ID=18060361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31501291A Pending JPH05148780A (en) | 1991-11-28 | 1991-11-28 | Production of rope composed of fiber-reinforced composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05148780A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2474860A (en) * | 2009-10-28 | 2011-05-04 | Paradigm B V | Reelable support |
KR101235676B1 (en) * | 2010-09-03 | 2013-02-21 | 주식회사 삼부포리마 | High-strength yarn complex substituting iron rod and method of manufacturing the same |
US20140102760A1 (en) * | 2011-04-12 | 2014-04-17 | Ticona Llc | Composite Core for Electrical Transmission Cables |
CN103835171A (en) * | 2014-03-07 | 2014-06-04 | 江苏神韵绳缆有限公司 | Resin compounding method for high-modulus polyethylene or ultra-high-molecular-weight polyethylene twisting rope |
CN103831203A (en) * | 2014-03-05 | 2014-06-04 | 昆山盛夏复合材料科技有限公司 | Carbon fiber processing machine |
US8921692B2 (en) | 2011-04-12 | 2014-12-30 | Ticona Llc | Umbilical for use in subsea applications |
US9346222B2 (en) | 2011-04-12 | 2016-05-24 | Ticona Llc | Die and method for impregnating fiber rovings |
US9410644B2 (en) | 2012-06-15 | 2016-08-09 | Ticona Llc | Subsea pipe section with reinforcement layer |
US9624350B2 (en) | 2011-12-09 | 2017-04-18 | Ticona Llc | Asymmetric fiber reinforced polymer tape |
US9623437B2 (en) | 2011-04-29 | 2017-04-18 | Ticona Llc | Die with flow diffusing gate passage and method for impregnating same fiber rovings |
US9685257B2 (en) | 2011-04-12 | 2017-06-20 | Southwire Company, Llc | Electrical transmission cables with composite cores |
US9757874B2 (en) | 2011-04-29 | 2017-09-12 | Ticona Llc | Die and method for impregnating fiber rovings |
US10336016B2 (en) | 2011-07-22 | 2019-07-02 | Ticona Llc | Extruder and method for producing high fiber density resin structures |
US10676845B2 (en) | 2011-04-12 | 2020-06-09 | Ticona Llc | Continuous fiber reinforced thermoplastic rod and pultrusion method for its manufacture |
US11118292B2 (en) | 2011-04-12 | 2021-09-14 | Ticona Llc | Impregnation section of die and method for impregnating fiber rovings |
CN114352058A (en) * | 2021-12-30 | 2022-04-15 | 华润水泥(南宁)有限公司 | Building structure reinforced cement rope and reinforcing construction method thereof |
JP7279272B1 (en) * | 2022-03-31 | 2023-05-22 | 日鉄ケミカル&マテリアル株式会社 | FIBER REINFORCED SHEET AND METHOD FOR BENDING FIBER REINFORCED SHEET |
WO2023188703A1 (en) * | 2022-03-31 | 2023-10-05 | 日鉄ケミカル&マテリアル株式会社 | Fiber-reinforced sheet and method for bending fiber-reinforced sheet |
-
1991
- 1991-11-28 JP JP31501291A patent/JPH05148780A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2474860A (en) * | 2009-10-28 | 2011-05-04 | Paradigm B V | Reelable support |
WO2011051677A3 (en) * | 2009-10-28 | 2011-10-06 | Paradigm B.V. | Fiber reinforced reelable slickline |
KR101235676B1 (en) * | 2010-09-03 | 2013-02-21 | 주식회사 삼부포리마 | High-strength yarn complex substituting iron rod and method of manufacturing the same |
US8921692B2 (en) | 2011-04-12 | 2014-12-30 | Ticona Llc | Umbilical for use in subsea applications |
US11118292B2 (en) | 2011-04-12 | 2021-09-14 | Ticona Llc | Impregnation section of die and method for impregnating fiber rovings |
US10676845B2 (en) | 2011-04-12 | 2020-06-09 | Ticona Llc | Continuous fiber reinforced thermoplastic rod and pultrusion method for its manufacture |
US9190184B2 (en) * | 2011-04-12 | 2015-11-17 | Ticona Llc | Composite core for electrical transmission cables |
US9346222B2 (en) | 2011-04-12 | 2016-05-24 | Ticona Llc | Die and method for impregnating fiber rovings |
US20140102760A1 (en) * | 2011-04-12 | 2014-04-17 | Ticona Llc | Composite Core for Electrical Transmission Cables |
US9659680B2 (en) | 2011-04-12 | 2017-05-23 | Ticona Llc | Composite core for electrical transmission cables |
US9685257B2 (en) | 2011-04-12 | 2017-06-20 | Southwire Company, Llc | Electrical transmission cables with composite cores |
US9757874B2 (en) | 2011-04-29 | 2017-09-12 | Ticona Llc | Die and method for impregnating fiber rovings |
US9623437B2 (en) | 2011-04-29 | 2017-04-18 | Ticona Llc | Die with flow diffusing gate passage and method for impregnating same fiber rovings |
US10336016B2 (en) | 2011-07-22 | 2019-07-02 | Ticona Llc | Extruder and method for producing high fiber density resin structures |
US9624350B2 (en) | 2011-12-09 | 2017-04-18 | Ticona Llc | Asymmetric fiber reinforced polymer tape |
US9410644B2 (en) | 2012-06-15 | 2016-08-09 | Ticona Llc | Subsea pipe section with reinforcement layer |
CN103831203A (en) * | 2014-03-05 | 2014-06-04 | 昆山盛夏复合材料科技有限公司 | Carbon fiber processing machine |
CN103835171A (en) * | 2014-03-07 | 2014-06-04 | 江苏神韵绳缆有限公司 | Resin compounding method for high-modulus polyethylene or ultra-high-molecular-weight polyethylene twisting rope |
CN114352058A (en) * | 2021-12-30 | 2022-04-15 | 华润水泥(南宁)有限公司 | Building structure reinforced cement rope and reinforcing construction method thereof |
JP7279272B1 (en) * | 2022-03-31 | 2023-05-22 | 日鉄ケミカル&マテリアル株式会社 | FIBER REINFORCED SHEET AND METHOD FOR BENDING FIBER REINFORCED SHEET |
WO2023188703A1 (en) * | 2022-03-31 | 2023-10-05 | 日鉄ケミカル&マテリアル株式会社 | Fiber-reinforced sheet and method for bending fiber-reinforced sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05148780A (en) | Production of rope composed of fiber-reinforced composite material | |
CA2733530C (en) | Stranded composite cable and method of making and using | |
EP0417612B1 (en) | Filament-reinforced resinous structural rod | |
WO2008111679A1 (en) | Round fiber-reinforced plastic wire, process for producing the same, and fiber-reinforced sheet | |
JPH0686718B2 (en) | Method for manufacturing composite twisted filament | |
WO2022007705A1 (en) | Elastomer-bonded fiber-reinforced composite wire material and preparation method therefor | |
US4813221A (en) | Flexible tension members | |
JPH0533278A (en) | Rope comprising carbon fiber-reinforced composite material and production thereof | |
JPH06143478A (en) | Bar material made of fiber reinforced plastic and production thereof | |
CN109838036A (en) | A kind of pipe-reinforced composite reinforcing of FRP ripple | |
WO2022017106A1 (en) | Exposed continuous deformation composite material profile | |
JP3088061B2 (en) | Fiber reinforced resin composite reinforced material and method for producing the same | |
CN111535178A (en) | Prestressed FRP (fiber reinforced Plastic) rib capable of being used for clamping piece anchoring and preparation method thereof | |
WO2019162390A1 (en) | Strand in glass and/or basalt fibers for prestressed concrete | |
CA2191241A1 (en) | Fibre reinforced resin composite reinforcing material and method for producing the same | |
CN214219190U (en) | Carbon fiber composite material rib with nylon belt wound on surface | |
CN110566134B (en) | Fiber composite material core stranded metal wire sucker rod and preparation method and application thereof | |
JP4336432B2 (en) | Production method of thermoplastic resin-coated FRP bar for shear reinforcement and thermoplastic resin-coated FRP bar for shear reinforcement | |
JPS61153609A (en) | Flexible tensile wire for optical fiber cord and small-capacity optical fiber cable | |
JPH01272889A (en) | Terminal setting of composite filamentous form or twisted form thereof | |
JP2012097386A (en) | Filament body of fiber-reinforced resin and method for producing the same, and electric wire cable using the same and method for manufacturing the same | |
JP2516710B2 (en) | Composite twist type tensile strength body | |
CN218910723U (en) | Brittle fiber rope | |
CN215857225U (en) | Multipurpose high-strength integrated solid carbon fiber inhaul cable | |
JP3669938B2 (en) | Manufacturing method of width stop material made of thermoplastic resin-coated FRP |