[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05131120A - Electric regeneration type desalting apparatus - Google Patents

Electric regeneration type desalting apparatus

Info

Publication number
JPH05131120A
JPH05131120A JP3295892A JP29589291A JPH05131120A JP H05131120 A JPH05131120 A JP H05131120A JP 3295892 A JP3295892 A JP 3295892A JP 29589291 A JP29589291 A JP 29589291A JP H05131120 A JPH05131120 A JP H05131120A
Authority
JP
Japan
Prior art keywords
ion
exchange group
ion exchanger
group
graft polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3295892A
Other languages
Japanese (ja)
Other versions
JP2504885B2 (en
Inventor
Takanobu Sugo
高信 須郷
Kunio Fujiwara
邦夫 藤原
Hideo Kawazu
秀雄 河津
Hideaki Sekiguchi
英明 関口
Takayuki Saito
孝行 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Japan Atomic Energy Agency
Original Assignee
Ebara Corp
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Japan Atomic Energy Research Institute filed Critical Ebara Corp
Priority to JP3295892A priority Critical patent/JP2504885B2/en
Publication of JPH05131120A publication Critical patent/JPH05131120A/en
Application granted granted Critical
Publication of JP2504885B2 publication Critical patent/JP2504885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To keep stable water quality over a long time, to enable desalting treatment from small capacity to large capacity and to facilitate maintenance and control. CONSTITUTION:In an electric regeneration type desalting apparatus wherein the desalting chamber of an electrodyalizer is packed with an ion exchanger to remove an ion from a liquid, an amphoteric ion exchanger having both of a cation exchange group and an anion exchange group is used as the ion exchanger. The ion exchanger is produced by utilizing radiation graft polymerization. By this constitution, the scaling-up of the desalting apparatus, the simplification of a production process and the stabilization of treated water quality are achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体中からイオンを除
去する装置に関するものであり、更に詳しくは電力、原
子力、電子産業、医薬品製造業等における純水製造、食
品製造業や化学品製造業におけるプロセス中の高濃度液
を脱塩する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for removing ions from a liquid, and more specifically, to pure water production in the electric power, nuclear power, electronic industry, pharmaceutical manufacturing industry, food manufacturing industry and chemical product manufacturing. The present invention relates to an apparatus for desalting high-concentration liquid in a process in industry.

【0002】[0002]

【従来の技術】液体中からイオンを除去する方法には大
きく分けて、逆浸透、電気透析及びイオン交換の3種類
がある。海水などの高塩類液の脱塩には逆浸透、それよ
りも塩濃度の小さい液には電気透析、更に塩濃度の小さ
い液にはイオン交換が有利だとされている。
2. Description of the Related Art Methods for removing ions from a liquid are roughly classified into three types: reverse osmosis, electrodialysis and ion exchange. It is said that reverse osmosis is advantageous for desalting high salt solutions such as seawater, electrodialysis for solutions having a lower salt concentration, and ion exchange for solutions having a lower salt concentration.

【0003】従来の電気透析は電位差を駆動力としてイ
オンを移動するので、イオン濃度が低くなると、電流効
率が悪くなり、脱塩水濃度は数百ppmが限界であると
いう欠点があった。コールスマン(Kollsman)
の米国特許第2,815,320号には、脱塩室にイオ
ン交換体を充填し、電流効率を上げる方法が開示されて
いる。この特許は30年以上も前のものであったが、膜
やイオン交換樹脂へのスケール付着など問題点が多く、
実用化されなかった。
In conventional electrodialysis, ions are moved by using a potential difference as a driving force. Therefore, when the ion concentration becomes low, the current efficiency becomes poor and the concentration of demineralized water is limited to several hundred ppm. Kollsman
U.S. Pat. No. 2,815,320 discloses a method of filling a desalting chamber with an ion exchanger to increase current efficiency. This patent was over 30 years old, but there are many problems such as scale adhesion to membranes and ion exchange resins,
It was not put to practical use.

【0004】しかし、膜の性能向上、前処理方法の進
歩、複雑な再生設備を必要としない脱塩装置への産業界
からの要求、さらには省資源・省エネルギーを求める社
会的風潮などを背景として、電気再生式脱塩装置が見直
されるようになった。初期の電気再生式脱塩装置を改良
したものは、ミリポア・コーポレーションの米国特許第
4,632,745号に開示されており、市販もされて
いる。
However, against the background of improvement in membrane performance, advancement of pretreatment methods, demand from the industrial world for desalination equipment that does not require complicated regeneration equipment, and social trends demanding resource and energy saving. , Electric regenerative desalination equipment has been reviewed. A modification of the earlier electric regenerative desalination apparatus is disclosed in Millipore Corporation U.S. Pat. No. 4,632,745 and is commercially available.

【0005】ところで、現在の電気再生式脱塩装置は、
脱塩室にカチオン交換樹脂とアニオン交換樹脂が混合し
て充填されている。このイオン交換樹脂は、直径が0.
4〜0.6mmの真球である。これを2枚のイオン交換
樹脂で仕切られた空間に均一充填してセルと成し、この
ようなセルを何層もフィルタープレス状に重ねて装置を
組み立てる。このように、この方法は製造工程面で細心
の注意を要し、極めて繁雑である。例えば、フレーム端
部からイオン交換樹脂やその粉砕した破片がリークした
りすると脱塩水の純度が低下する。また、差圧の上昇が
大きいので、流量を大きくとることができない。汚染や
厚密化を受けたイオン交換樹脂層を逆洗できるように工
夫したものも見受けられるが、カチオン及びアニオン交
換樹脂を均一に分散させることは存外困難である。
By the way, the current electric regenerative desalination system is
A cation exchange resin and an anion exchange resin are mixed and filled in the desalting chamber. This ion exchange resin has a diameter of 0.
It is a sphere of 4 to 0.6 mm. This is uniformly filled in a space partitioned by two sheets of ion-exchange resin to form a cell, and many layers of such a cell are stacked in a filter press shape to assemble the device. Thus, this method requires great care in the manufacturing process and is extremely complicated. For example, if the ion exchange resin or its crushed debris leaks from the end of the frame, the purity of demineralized water decreases. Further, since the differential pressure increases largely, the flow rate cannot be large. Although some devices are devised so that the ion exchange resin layer that has been contaminated or densified can be backwashed, it is difficult to uniformly disperse the cation and anion exchange resins.

【0006】イオン交換樹脂を充填する最も大きな理由
は、イオンの移動を容易にするためである。従って、両
イオン交換樹脂が分離したり偏在したりすると、イオン
移動の通路が少なくなり、所定の純度が得られなくなる
可能性もある。一方、メンテナンス面では、不良のセル
を交換したい場合に、その部分のみを取り外すことが困
難であるという問題点もある。
The biggest reason for filling the ion exchange resin is to facilitate the movement of ions. Therefore, if the two ion-exchange resins are separated or unevenly distributed, the number of passages for ion movement is reduced, and there is a possibility that a predetermined purity cannot be obtained. On the other hand, in terms of maintenance, when replacing a defective cell, it is difficult to remove only that portion.

【0007】以上のような問題点があるため、電気再生
式脱塩装置は実験室用など小さな容量で、且つ要求水質
の厳しくない特定の用途向きとされている。
Due to the above-mentioned problems, the electric regeneration type desalination apparatus is suitable for a specific application such as a laboratory for which the capacity is small and the required water quality is not strict.

【0008】[0008]

【発明が解決しようとする課題】上述の問題点に鑑み、
本発明はイオン交換樹脂を充填することによって生じて
いた種々の問題点を解消し、安定した水質を長期間にわ
たり維持でき、小容量から大容量の処理が可能で、しか
も維持管理が容易な電気再生式脱塩装置を提供すること
を目的とする。
In view of the above problems,
INDUSTRIAL APPLICABILITY The present invention solves various problems caused by filling with an ion exchange resin, can maintain stable water quality for a long period of time, can process small to large volumes, and is easy to maintain and manage. It is an object to provide a regenerative desalination apparatus.

【0009】[0009]

【課題を解決するための手段】上記課題を解決すべく、
本発明による電気再生式脱塩装置は、電気透析装置の脱
塩室にイオン交換体としてカチオン交換基及びアニオン
交換基の両者を共有する両性イオン交換体を使用するこ
とを特徴とする。
[Means for Solving the Problems] In order to solve the above problems,
The electric regenerative desalting apparatus according to the present invention is characterized in that an amphoteric ion exchanger sharing both a cation exchange group and an anion exchange group is used as an ion exchanger in a desalting chamber of an electrodialysis apparatus.

【0010】両性のイオン交換体を製造することは従来
技術でも不可能ではないが、繊維状や空隙性材料の形状
をしたイオン交換体を得るという点、及び実用上の問題
点等を考慮すると、本発明によるグラフト重合を用いる
ことが最適である。
Although it is not impossible to produce an amphoteric ion exchanger even by the conventional technique, considering the fact that an ion exchanger in the shape of a fibrous or porous material is obtained, and practical problems, etc. It is optimal to use the graft polymerization according to the invention.

【0011】一般に、放射状グラフト重合法は以下に延
べる点において、本発明に好適である。
Generally, the radial graft polymerization method is suitable for the present invention in the following points.

【0012】(第1点)グラフト重合は、接ぎ木重合と
呼ばれるように、ミクロ的に見れば基材の主鎖から共有
結合によってグラフト側鎖がでており、これに官能基を
導入すれば、主鎖である基材の物理的・化学的性質を保
ちながら、新しい機能を付与することができる。従来の
イオン交換樹脂はビーズの形態を保ち、且つ物理的強度
を維持するため、ジビニルベンゼンのような架橋剤を用
い、3次元網目構造を形成していた。従って、この様な
構造の中に導入されたイオン交換基はモビリティが小さ
い。放射線グラフト重合では、イオン交換基のあるグラ
フト鎖が架橋構造ではないためモビリティが大きく、こ
のことは対イオンの移動を容易にしており、本発明に好
ましい。
(First point) Graft polymerization, as called graft polymerization, has a graft side chain formed from a main chain of a base material by a covalent bond from a microscopic point of view. A new function can be imparted while maintaining the physical and chemical properties of the base material that is the main chain. Conventional ion-exchange resins use a cross-linking agent such as divinylbenzene to form a three-dimensional network structure in order to maintain the bead shape and maintain the physical strength. Therefore, the ion exchange group introduced into such a structure has low mobility. In the radiation-induced graft polymerization, the graft chain having an ion-exchange group does not have a crosslinked structure, so that the mobility is large, which facilitates the movement of counterions and is preferable in the present invention.

【0013】(第2点)また、放射線グラフト重合は、
基材の形状を比較的自由に選択できるので、膜・繊維や
空隙材料など本用途に適した形状の基材を選ぶことがで
きる。例えば、基材に繊維を選択した場合について説明
すると、次のような特徴がある。
(Second point) Radiation graft polymerization is
Since the shape of the base material can be selected relatively freely, it is possible to select a base material having a shape suitable for this application such as a membrane / fiber or a void material. For example, when a fiber is selected as the base material, the following characteristics are provided.

【0014】単繊維や単繊維の集合体である織布及び不
織布、更にそれらの加工品に放射線グラフト重合を利用
してイオン交換基を導入したものは、膜や布状で取り扱
えるので、イオン交換膜に挟まれた脱塩室に、場合によ
り更に成型加工を行って、容易に装填することができ
る。このことは、装置の大型化を容易ならしめるもので
ある。
Woven and non-woven fabrics, which are single fibers or aggregates of single fibers, and products obtained by introducing ion exchange groups into these processed products by utilizing radiation graft polymerization can be handled in the form of a membrane or cloth, and therefore ion exchange can be performed. The desalting chamber sandwiched between the membranes can be easily loaded by optionally performing a molding process. This facilitates upsizing of the device.

【0015】繊維の長さは、極端に短いと繊維の特徴が
失われ、粉末と同様に取り扱いが面倒なので、イオン交
換膜の膜間距離よりも長いものが好ましい。また、繊維
の断面は通常円形であるが、より表面積の大きな星型断
面、十字型断面、中空繊維など目的にあった繊維又は繊
維の集合体を例えば原水の水質や圧力損失の上昇を考慮
して選択することができる。
If the fiber length is extremely short, the characteristics of the fiber will be lost, and the fiber will be cumbersome to handle like powder, so that the fiber length is preferably longer than the intermembrane distance of the ion exchange membrane. Further, although the cross section of the fiber is usually circular, a fiber or an assembly of fibers such as a star cross section, a cross cross section, and a hollow fiber having a larger surface area, for example, in consideration of the water quality of raw water and an increase in pressure loss. Can be selected.

【0016】(第3点)放射線グラフト重合に基材とし
て繊維を適用することにより、更に次のような利点があ
る。
(Third point) By applying fibers as a base material to radiation-induced graft polymerization, there are the following additional advantages.

【0017】(1)イオン交換樹脂の場合、樹脂中のイ
オンが移動して膜に到達するには、同種の樹脂が近傍に
接していないとイオンの移動が困難である。イオン交換
樹脂を混合して用いると、製造時や逆洗時に分離してし
まう可能性があり、仮に理想的な混合状態であっても、
樹脂どうしは点でしか接触していないため、イオンが移
動するには非常に狭い通路を幾つも通過しなければなら
ない。
(1) In the case of an ion exchange resin, in order for the ions in the resin to move and reach the membrane, it is difficult for the ions of the same type to move unless the resin of the same type is in close contact. If a mixture of ion exchange resins is used, they may separate during manufacturing or backwashing, and even if they are in an ideal mixed state,
Since the resins contact each other only at points, the ions must pass through several very narrow passages in order to move.

【0018】放射線グラフト重合によるイオン交換繊維
の場合には、イオンの通路が一方のイオン交換膜から他
方のイオン交換膜に至るまで連続体として確保されてい
るので、良好な処理水質が安定して得られる。
In the case of ion-exchange fibers produced by radiation-induced graft polymerization, since the passage of ions is secured as a continuum from one ion-exchange membrane to the other ion-exchange membrane, good treated water quality is stable. can get.

【0019】(2)流量、圧力損失及び電流効率等を考
慮して、基材の種類、繊維径や充填密度を選定すること
ができ、更にその基材を加工して使用することができ
る。
(2) The type, fiber diameter and packing density of the base material can be selected in consideration of the flow rate, pressure loss, current efficiency, etc., and the base material can be further processed and used.

【0020】(3)繊維の集合体である織布や不織布等
は膜の間に装填することによってスペーサを兼ねること
もでき、製造時における装置組立や保守点検作業が容易
に行える。
(3) A woven fabric, a non-woven fabric, or the like, which is an aggregate of fibers, can also serve as a spacer by being loaded between the membranes, so that device assembly and maintenance / inspection work during manufacturing can be easily performed.

【0021】(第4点)繊維以外にネットのような網状
の材料やその加工品、膜状材料やその加工品を使用する
ことも可能であり、先に述べた繊維と同様の利点を有し
ている。それ以外にもスポンジ状のものや発泡体等の空
隙性材料及びその加工品も本発明に好適の材料である。
(Fourth point) It is also possible to use a net-like net-like material or a processed product thereof, a film-like material or a processed product thereof in addition to the fiber, and it has the same advantages as those of the fiber described above. is doing. In addition to the above, porous materials such as sponge-like materials and foams and processed products thereof are also suitable materials for the present invention.

【0022】更に解決すべき点 以上述べたように、放射線グラフト重合法は本発明に有
利な方法であるが、カチオン交換体とアニオン交換体と
を別個に製造していたのでは、両者を脱塩室に装填する
に際してイオン交換基を均一に分散させなければならな
いので、更に加工が必要である。例えば、イオン交換繊
維の単繊維や不織布を製造しても、両イオン交換基を分
散させるため、場合によっては切断して混合したり、又
は織る必要があった。
Further points to be solved As described above, the radiation graft polymerization method is an advantageous method for the present invention. However, if the cation exchanger and the anion exchanger were produced separately, both of them would be eliminated. Further processing is necessary because the ion exchange groups must be evenly dispersed when loaded into the salt chamber. For example, even when a single fiber of an ion exchange fiber or a nonwoven fabric is produced, it is necessary to cut and mix or weave in some cases in order to disperse both ion exchange groups.

【0023】解決の方法 しかし、放射線グラフト重合法は照射済みの基材と重合
性単量体との接触の方法などにより、種々の官能基を同
時に導入することが可能な方法である。カチオン交換基
を有するか、又はカチオン交換基に転換可能なモノマ
ー、及びアニオン交換基を有するか、又はアニオン交換
基に転換可能なモノマーを基材に導入することにより容
易に両性イオン交換体を製造し得る。これを利用すれ
ば、イオン交換基を分散させるため、更に加工する必要
がなくなる。
Solution Method However, the radiation graft polymerization method is a method in which various functional groups can be simultaneously introduced by a method of contacting the irradiated substrate with the polymerizable monomer. An amphoteric ion exchanger can be easily produced by introducing a monomer having a cation exchange group or convertible to a cation exchange group and a monomer having an anion exchange group or a monomer convertible to an anion exchange group into a substrate. You can If this is utilized, the ion-exchange groups will be dispersed and further processing will not be necessary.

【0024】(具体的手段)ここで放射線グラフト重合
に用いられる電離性放射線はα、β、γ線、電子線又は
紫外線などがあり、何れも使用可能であるが、γ線や電
子線などが本発明に特に適している。
(Specific Means) The ionizing radiation used in the radiation graft polymerization may be α, β, γ rays, electron rays or ultraviolet rays, and any of them can be used. However, γ rays, electron rays or the like can be used. It is particularly suitable for the present invention.

【0025】基材とモノマーをグラフト重合させる方法
としては、基材とモノマーとを共存下で放射線を照射す
る同時照射法と、基材のみに予め放射線を照射した後、
重合性単量体と基材とを接触させる前照射法があり、本
発明においてはいずれでも可能であるが、前照射法がグ
ラフト重合以外の副反応を生成しにくい特徴を有する。
As a method for graft-polymerizing the substrate and the monomer, a simultaneous irradiation method in which the substrate and the monomer coexist in the presence of radiation, and a method in which only the substrate is previously irradiated with radiation,
There is a pre-irradiation method in which the polymerizable monomer and the substrate are brought into contact with each other, and any of them is possible in the present invention, but the pre-irradiation method has a feature that side reactions other than the graft polymerization are less likely to be generated.

【0026】γ線や電子線を用い、前照射法を利用して
カチオン及びアニオン交換基の両者を有する両性イオン
交換体を製造するには、共グラフトと2段グラフトが適
している。
The co-graft and the two-stage graft are suitable for producing an amphoteric ion exchanger having both cation and anion exchange groups by using the pre-irradiation method using γ rays or electron beams.

【0027】(共グラフトの説明)共グラフトでは、基
材高分子に放射線を照射したのち、カチオン交換基を有
するモノマーか、又はカチオン交換基に転換可能なモノ
マー、及びアニオン交換基を有するモノマーか、又はア
ニオン交換基に転換可能なモノマーを混在の状態で基材
と接触させ、必要ならば二次処理を行って両性イオン交
換体を製造することができる。
(Explanation of Co-Graft) In co-grafting, after irradiating the base polymer with radiation, a monomer having a cation exchange group or a monomer capable of converting into a cation exchange group and a monomer having an anion exchange group is used. Alternatively, the amphoteric ion exchanger can be produced by bringing the monomer capable of converting into an anion exchange group into contact with the substrate in a mixed state and performing a secondary treatment if necessary.

【0028】(2段グラフトの説明)2段グラフトで
は、基材高分子に放射線を照射したのち、カチオン交換
基を有するモノマーか、又はカチオン交換基に転換可能
なモノマーを該基材にグラフト重合し、次にアニオン交
換基を有するモノマーか、又はアニオン交換基に転換可
能なモノマーを該基材にグラフト重合させればよい。2
種類のモノマーは反応させる順序が逆になってもグラフ
ト重合は可能であり、操作性などを考慮し、適宜決める
ことができる。2段目のモノマーを反応させる前に、再
度放射線を照射してもよいが、ラジカルの存在量が十分
なら、そのまま次の反応を行ってもよい。 (気・液相グラフト)基材とモノマーの接触のさせ方に
より、モノマーが蒸気である気相グラフト重合とモノマ
ーが液体である液相グラフト重合とに分類される。本発
明においてはモノマーの蒸気圧や用途などを考慮し、適
宜決めることができる。
(Explanation of Two-Step Graft) In the two-step graft, after irradiation of the base polymer with radiation, a monomer having a cation exchange group or a monomer convertible into a cation exchange group is graft-polymerized on the base. Then, a monomer having an anion exchange group or a monomer convertible to an anion exchange group may be graft-polymerized on the base material. Two
Graft polymerization is possible even if the order in which the monomers are reacted is reversed, and can be appropriately determined in consideration of operability and the like. Radiation may be irradiated again before reacting the second stage monomer, but if the amount of radicals present is sufficient, the next reaction may be performed as it is. (Vapor / Liquid Phase Graft) Depending on how the base material is brought into contact with the monomer, it is classified into vapor phase graft polymerization in which the monomer is vapor and liquid phase graft polymerization in which the monomer is liquid. In the present invention, it can be appropriately determined in consideration of the vapor pressure of the monomer and the use.

【0029】このようにして製造した両性イオン交換体
は、カチオン交換体とアニオン交換体の両者を混ぜ合わ
せたり、織り込むような二次加工を行う必要がないの
で、基材の特徴をその形状のまま活かすことができる。
The amphoteric ion exchanger manufactured in this manner does not require secondary processing such as mixing or weaving both the cation exchanger and the anion exchanger. It can be used as it is.

【0030】(基材の種類)本発明の放射線グラフト重
合に用いられる基材の有機高分子としては、あらゆるも
のが使用できるが、ポリエチレン、ポリプロピレン等に
代表されるポリオレフィン類、PTFE、塩化ビニル等
に代表されるハロゲン化ポリオレフィン類又はエチレン
−テトラフロロエチレン共重合体等に代表されるオレフ
ィン−ハロゲン化オレフィン共重合体類が特に適してい
る。
(Type of Substrate) As the organic polymer of the substrate used in the radiation graft polymerization of the present invention, any one can be used, but polyolefins typified by polyethylene, polypropylene, PTFE, vinyl chloride, etc. Particularly suitable are halogenated polyolefins typified by and olefin-halogenated olefin copolymers typified by ethylene-tetrafluoroethylene copolymer.

【0031】(イオン交換基の種類)基材に導入するイ
オン交換基としては、カチオン交換基ではスルホン基、
カルボキシル基やリン酸基、アニオン交換基では強塩基
性の4級アンモニウム基やより低級のアミン、つまり3
級アミン、2級アミン又は1級アミンを含む弱塩基性基
などの一般的な酸性・塩基性のイオン交換基が実用的で
あり、対象とする液体の種類や要求水質などを考慮して
適宜選択することができる。
(Type of ion exchange group) As the ion exchange group to be introduced into the substrate, a cation exchange group is a sulfone group,
Strongly basic quaternary ammonium groups and lower amines such as carboxyl groups, phosphate groups, and anion exchange groups, that is, 3
General acidic / basic ion exchange groups such as weakly basic groups containing secondary amines, secondary amines or primary amines are practical, and are appropriately selected in consideration of the type of target liquid and required water quality. You can choose.

【0032】(モノマーの種類)本発明に用いられるイ
オン交換基を有するモノマーには、カチオン交換基を有
するモノマーとしてアクリル酸、メタクリル酸、クロト
ン酸、イタコン酸、ビニルスルホン酸ナトリウム、アリ
ールスルホン酸ナトリウム、スチレンスルホン酸ナトリ
ウム、2−アクリルアミド−2−メチルプロパンスルホ
ン酸、又は含リンアクリル酸エステルなどがあるが、こ
の範囲に限定されるものではない。
(Type of Monomer) The monomer having an ion exchange group used in the present invention includes acrylic acid, methacrylic acid, crotonic acid, itaconic acid, sodium vinyl sulfonate and sodium aryl sulfonate as a monomer having a cation exchange group. , Sodium styrene sulfonate, 2-acrylamido-2-methylpropane sulfonic acid, phosphorous acrylate, and the like, but are not limited to this range.

【0033】また、本発明に用いられるアニオン交換基
を有するモノマーとして、アリールアミン、クロロメチ
ルスチレンの4級化物、又はアクリル酸アミノアルキル
エステル類などがあるが、この範囲に限定されるもので
はない。
Examples of the monomer having an anion exchange group used in the present invention include arylamine, quaternary chloromethylstyrene, aminoalkyl acrylates, and the like, but are not limited to this range. ..

【0034】また、イオン交換基を導入できるモノマー
として、スチレン、クロロメチルスチレン、ビニルピリ
ジン、アクリル酸グリシジル、メタクリル酸グリシジ
ル、アクリロニトリル、又はアクロレインなどがある
が、この範囲に限定されるものではない。
Examples of the monomer capable of introducing an ion exchange group include styrene, chloromethylstyrene, vinylpyridine, glycidyl acrylate, glycidyl methacrylate, acrylonitrile, and acrolein, but the monomer is not limited to this range.

【0035】スチレンなどは二次反応によりカチオン交
換基にもアニオン交換基にも転換させることが可能であ
る。この場合は1種類のモノマーをグラフトするだけで
よいが、二次反応を制御して、両イオン交換基の導入量
を決める必要がある。このように1種類のモノマーを用
いるのみで、両イオン交換基を導入できることは、本発
明の特徴の一つである。
Styrene or the like can be converted into a cation exchange group or an anion exchange group by a secondary reaction. In this case, it is sufficient to graft one kind of monomer, but it is necessary to control the secondary reaction and determine the amount of both ion-exchange groups introduced. It is one of the features of the present invention that both ion-exchange groups can be introduced by using only one kind of monomer.

【0036】種々のイオン交換体との併用 本発明においては、放射線グラフト重合により製造した
両性イオン交換体を単独で使用してもよいが、通常のビ
ーズ状イオン交換樹脂と併用してもよい。また、放射線
グラフト重合で製造した両性でないカチオン交換体やア
ニオン交換体と併用してもよい。更に、放射線グラフト
重合によらない両性イオン交換体と放射線グラフト重合
で製造した両性でないカチオン交換体やアニオン交換体
を組み合わせて使用してもよく、経済性や要求水質など
を考慮し、適宜選択することができる。
Combined Use with Various Ion Exchangers In the present invention, the amphoteric ion exchanger produced by radiation graft polymerization may be used alone, or may be used in combination with an ordinary beaded ion exchange resin. Further, it may be used in combination with a non-amphoteric cation exchanger or anion exchanger produced by radiation graft polymerization. Furthermore, an amphoteric ion exchanger that does not depend on radiation graft polymerization and a non-amphoteric cation exchanger or anion exchanger that is produced by radiation graft polymerization may be used in combination, and it is appropriately selected in consideration of economical efficiency and required water quality. be able to.

【0037】以下実施例により本発明を更に詳細に説明
する。
The present invention will be described in more detail with reference to the following examples.

【0038】[0038]

【実施例】【Example】

(実施例1)繊維径30μmのポリプロピレン製繊維よ
りなる目付50g/m2 の不織布に、電子線加速器(加
速電圧2MeV、電子線電流1mA)を用いて、窒素雰
囲気下で加速電子線を100KGy照射した後、これを
アクリル酸とクロロメチルスチレンの混合溶液に浸漬
し、温度50℃で8時間共グラフト重合させ、グラフト
率150%のグラフト重合物を得た。次に、この不織布
を2%水酸化ナトリウム水溶液に浸漬し、カルボキシル
基をナトリウム型に変換した後、10%ジメチルアミン
水溶液に浸漬し、温度50℃で2時間反応させた。この
不織布1g当たりのイオン交換容量はカチオン交換容量
が3.2meq/g、アニオン交換容量が2.1meq
/gであった。この両性のイオン交換不織布を実験用透
析装置の脱塩室に装填し、食塩を溶解した合成原水(電
気伝導率187μs/cm)を処理したところ、処理水
の電気伝導率5.6μs/cmに低下した。両性イオン
交換体を装填する前の同原水の処理結果は同条件で27
μs/cmと悪く、両性イオン交換体を装填した本発明
の電気再生式脱塩装填は脱塩処理に有効であった。
Example 1 A non-woven fabric having a basis weight of 50 g / m 2 made of polypropylene fibers having a fiber diameter of 30 μm was irradiated with 100 KGy of accelerated electron beams in a nitrogen atmosphere using an electron beam accelerator (accelerating voltage 2 MeV, electron beam current 1 mA). After that, this was immersed in a mixed solution of acrylic acid and chloromethylstyrene, and co-graft-polymerized at a temperature of 50 ° C. for 8 hours to obtain a graft polymer having a graft ratio of 150%. Next, this non-woven fabric was immersed in a 2% aqueous solution of sodium hydroxide to convert the carboxyl group into a sodium type, then immersed in a 10% aqueous solution of dimethylamine, and reacted at a temperature of 50 ° C. for 2 hours. The ion exchange capacity per gram of this nonwoven fabric was 3.2 meq / g for cation exchange capacity and 2.1 meq for anion exchange capacity.
/ G. This amphoteric ion-exchange non-woven fabric was loaded into the desalting chamber of the experimental dialysis machine and treated with synthetic raw water (electric conductivity 187 μs / cm) in which salt was dissolved, resulting in an electric conductivity of treated water of 5.6 μs / cm. Fell. The treatment result of the raw water before loading the amphoteric ion exchanger was 27 under the same conditions.
The electric regenerative desalting charge of the present invention loaded with an amphoteric ion exchanger was effective for desalting treatment.

【0039】(実施例2)実施例1と同様の基材に同様
の条件で加速電子線を照射し、アクリル酸を温度45℃
で3時間気相にて反応させた。次いでこれをメタクリル
酸グリシジルの溶液に浸漬し、温度50℃で7時間液相
にて反応させ、2段グラフト重合を行った。この不織布
を10%ジエタノールアミン水溶液に浸漬し、温度70
℃で3時間反応させた。イオン交換容量を測定したとこ
ろ、不織布1g当たりカラオン交換容量が4.1meq
/g、アニオン交換容量が2.4meq/gであった。
この不織布を実施例1の実験用電気透析装置の脱塩室内
に装填し、同様の条件で合成原水を処理したところ、処
理水の電気伝導率は8.3μs/cmにまで低下し、両
性イオン交換体を装填した本発明の電気再生式脱塩装置
は脱塩処理に有効であった。
Example 2 A substrate similar to that in Example 1 was irradiated with an accelerated electron beam under the same conditions, and acrylic acid was heated at a temperature of 45 ° C.
At room temperature for 3 hours. Then, this was immersed in a solution of glycidyl methacrylate and reacted in the liquid phase at a temperature of 50 ° C. for 7 hours to carry out two-step graft polymerization. This non-woven fabric is immersed in a 10% aqueous solution of diethanolamine and the temperature is adjusted to 70
The reaction was carried out at ℃ for 3 hours. When the ion exchange capacity was measured, the calaion exchange capacity was 4.1 meq per 1 g of the nonwoven fabric.
/ G, and the anion exchange capacity was 2.4 meq / g.
When this non-woven fabric was loaded into the desalting chamber of the experimental electrodialyzer of Example 1 and treated with synthetic raw water under the same conditions, the electric conductivity of the treated water was lowered to 8.3 μs / cm, and zwitterion was detected. The electric regenerative desalination apparatus of the present invention loaded with an exchanger was effective for desalination treatment.

【0040】[0040]

【発明の効果】放射線グラフト重合は種々の利点を有し
ているが、カチオン交換体とアニオン交換体を別々に製
造していたのでは、脱塩室に装填するにあたり、両イオ
ン交換体を織るなどの成型加工がさらに必要であった。
しかしながら本発明によれば、対象水質や要求水質さら
に処理流量や圧力損失などを考慮して基材を選定するだ
けでよく、イオン交換体の成型加工は不要である。その
ため、脱塩処理装置の大型化、製造工程の簡素化、及び
処理水質の安定化が図れるようになった。
The radiation graft polymerization has various advantages. However, if the cation exchanger and the anion exchanger were manufactured separately, both ion exchangers were woven before loading into the desalting chamber. Molding processing such as was necessary.
However, according to the present invention, it suffices to select the base material in consideration of the target water quality, the required water quality, the treatment flow rate, the pressure loss, etc., and the ion exchanger is not molded. Therefore, it has become possible to increase the size of the desalination apparatus, simplify the manufacturing process, and stabilize the quality of treated water.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河津 秀雄 東京都太田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 関口 英明 東京都太田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 斉藤 孝行 東京都太田区羽田旭町11番1号 株式会社 荏原製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Kawazu 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION (72) Inventor Hideaki Sekiguchi 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo In the EBARA CORPORATION (72) Inventor Takayuki Saito 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電気透析装置の脱塩室にイオン交換体を
充填して液体中からイオンを除去する装置において、該
イオン交換体としてカチオン交換基及びアニオン交換基
の両者を共有する両性イオン交換体を使用することを特
徴とする電気再生式脱塩装置。
1. A device for removing ions from a liquid by filling a desalting chamber of an electrodialysis device with an ion exchanger, and the amphoteric ion exchange sharing both a cation exchange group and an anion exchange group as the ion exchanger. An electric regeneration type desalination device characterized by using a body.
【請求項2】 前記イオン交換体の少なくとも1種類
が、カチオン交換基及びアニオン交換基の両者を共有す
る両性イオン交換体である、請求項1に記載の装置。
2. The apparatus according to claim 1, wherein at least one of the ion exchangers is an amphoteric ion exchanger sharing both a cation exchange group and an anion exchange group.
【請求項3】 前記イオン交換体の少なくとも1種類
が、放射線グラフト重合を利用して製造したものであ
る、請求項1又は2に記載の装置。
3. The device according to claim 1, wherein at least one kind of the ion exchanger is manufactured by utilizing radiation graft polymerization.
【請求項4】 前記グラフト重合に用いる基材が短繊維
の集合体である織布及び不織布、それらの加工品、網状
の材料及びその加工品、膜状材料及びその加工品、並び
に空隙性材料及びその加工品より成る群から選択された
ものである、請求項1〜3のいずれかに記載の装置。
4. A woven or non-woven fabric in which the base material used for the graft polymerization is an aggregate of short fibers, processed products thereof, reticulated materials and processed products thereof, film materials and processed products thereof, and void materials. A device according to any one of claims 1 to 3, which is selected from the group consisting of: and a processed product thereof.
【請求項5】 前記放射線グラフト重合を利用して製造
したイオン交換体のイオン交換基が、カチオン交換基と
してスルホン基、リン酸基及びカルボキシル基、アニオ
ン交換基として4級アンモニウム、3級アミン、2級ア
ミン及び1級アミンより選択されたものである、請求項
1〜4のいずれかに記載の装置。
5. The ion exchange group of the ion exchanger produced by utilizing the radiation graft polymerization, wherein the cation exchange group is a sulfone group, a phosphate group and a carboxyl group, and the anion exchange group is a quaternary ammonium salt, a tertiary amine, The device according to any one of claims 1 to 4, which is selected from a secondary amine and a primary amine.
JP3295892A 1991-11-12 1991-11-12 Ion exchanger manufacturing method Expired - Lifetime JP2504885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3295892A JP2504885B2 (en) 1991-11-12 1991-11-12 Ion exchanger manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3295892A JP2504885B2 (en) 1991-11-12 1991-11-12 Ion exchanger manufacturing method

Publications (2)

Publication Number Publication Date
JPH05131120A true JPH05131120A (en) 1993-05-28
JP2504885B2 JP2504885B2 (en) 1996-06-05

Family

ID=17826514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3295892A Expired - Lifetime JP2504885B2 (en) 1991-11-12 1991-11-12 Ion exchanger manufacturing method

Country Status (1)

Country Link
JP (1) JP2504885B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192163A (en) * 1995-01-19 1996-07-30 Asahi Glass Co Ltd Electrodialytic production of deionized water
JPH10279713A (en) * 1997-04-04 1998-10-20 Ebara Corp Anion exchanger, its production and chemical filter
JP2001113279A (en) * 1999-10-14 2001-04-24 Kurita Water Ind Ltd Electro-deionizing apparatus
JP2003326270A (en) * 2002-05-13 2003-11-18 Ebara Corp Electric regenerative demineralizer
JPWO2003055604A1 (en) * 2001-12-27 2005-04-28 株式会社荏原製作所 Electric desalination equipment
JP2005152756A (en) * 2003-11-25 2005-06-16 Japan Atom Energy Res Inst Method for collecting and recovering scandium
JP2010253451A (en) * 2009-04-28 2010-11-11 Japan Organo Co Ltd Method for cleaning electrical deionized-water producing apparatus
JP2015167876A (en) * 2014-03-05 2015-09-28 オルガノ株式会社 Amphoteric ion exchanger fiber sheet, method for producing the same and deionization absorbent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102481188B1 (en) * 2021-01-27 2022-12-26 (주)신넥앤테크 Surface modification method of cation-exchange resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107906A (en) * 1984-07-09 1986-05-26 ミリポア・コ−ポレイシヨン Electric deionizing method and device
JPH0326390A (en) * 1989-06-26 1991-02-04 Kurita Water Ind Ltd Pure water producing device
JPH0564726A (en) * 1991-03-13 1993-03-19 Japan Atom Energy Res Inst Electric regeneration type desalting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107906A (en) * 1984-07-09 1986-05-26 ミリポア・コ−ポレイシヨン Electric deionizing method and device
JPH0326390A (en) * 1989-06-26 1991-02-04 Kurita Water Ind Ltd Pure water producing device
JPH0564726A (en) * 1991-03-13 1993-03-19 Japan Atom Energy Res Inst Electric regeneration type desalting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192163A (en) * 1995-01-19 1996-07-30 Asahi Glass Co Ltd Electrodialytic production of deionized water
JPH10279713A (en) * 1997-04-04 1998-10-20 Ebara Corp Anion exchanger, its production and chemical filter
JP2001113279A (en) * 1999-10-14 2001-04-24 Kurita Water Ind Ltd Electro-deionizing apparatus
JPWO2003055604A1 (en) * 2001-12-27 2005-04-28 株式会社荏原製作所 Electric desalination equipment
JP2003326270A (en) * 2002-05-13 2003-11-18 Ebara Corp Electric regenerative demineralizer
JP2005152756A (en) * 2003-11-25 2005-06-16 Japan Atom Energy Res Inst Method for collecting and recovering scandium
JP2010253451A (en) * 2009-04-28 2010-11-11 Japan Organo Co Ltd Method for cleaning electrical deionized-water producing apparatus
JP2015167876A (en) * 2014-03-05 2015-09-28 オルガノ株式会社 Amphoteric ion exchanger fiber sheet, method for producing the same and deionization absorbent

Also Published As

Publication number Publication date
JP2504885B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US5308467A (en) Electrically regenerable demineralizing apparatus
JP3200458B2 (en) Electric regeneration type desalination equipment
KR100980989B1 (en) Electric deionized water-producing apparatus
JP2749094B2 (en) Method for producing multifunctional filtration membrane having iminodiacetic acid group
US6334941B1 (en) Apparatus for producing deionized water
JP4065664B2 (en) Electric desalination equipment
JP4454502B2 (en) Electric desalination equipment
JPH11502764A (en) Improvement of membrane treatment including electrodialysis
JP3394372B2 (en) Electric regeneration type desalination equipment
JP4303242B2 (en) Electric desalination module and apparatus equipped with the module
JPH10258289A (en) Apparatus for producing deionized water
JP2504885B2 (en) Ion exchanger manufacturing method
US3759738A (en) Graft polymeric substrate
JP3245454B2 (en) Production method of ion exchange resin
JP2003190820A (en) Electric demineralizing apparatus
JP2008132492A (en) Electric demineralizer
JPH04284853A (en) Ion exchange filtering method and apparatus therefor
KR100454093B1 (en) Ion exchange textile for electrodeionization process
JP3673452B2 (en) Pollution-resistant porous filtration membrane
JPH10192716A (en) Porous ion exchanger and production of demineralized water
JP4291156B2 (en) Electric desalination equipment
JP2002346400A (en) Anion exchanger and method for manufacturing the same
JP3727586B2 (en) Electric desalination equipment
KR100542297B1 (en) Ultraviolet irradiation grafted ion-exchange textile and its preparing method for electrodeionization equipment
JPH10192717A (en) Porous ion exchanger and production of demineralized water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 16

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 16