JPH0513107A - Lithium secondary battery - Google Patents
Lithium secondary batteryInfo
- Publication number
- JPH0513107A JPH0513107A JP3162542A JP16254291A JPH0513107A JP H0513107 A JPH0513107 A JP H0513107A JP 3162542 A JP3162542 A JP 3162542A JP 16254291 A JP16254291 A JP 16254291A JP H0513107 A JPH0513107 A JP H0513107A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- voltage
- electrode active
- active material
- lithium secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 39
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 239000007774 positive electrode material Substances 0.000 claims abstract description 26
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 239000003792 electrolyte Substances 0.000 claims abstract description 4
- 239000003960 organic solvent Substances 0.000 claims abstract description 3
- 238000007599 discharging Methods 0.000 claims description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 7
- 229910001416 lithium ion Inorganic materials 0.000 claims description 7
- 229910015645 LiMn Inorganic materials 0.000 claims description 6
- 229910012851 LiCoO 2 Inorganic materials 0.000 claims description 5
- 229910052596 spinel Inorganic materials 0.000 claims description 4
- 239000011029 spinel Substances 0.000 claims description 4
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 claims description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 claims description 2
- 238000013459 approach Methods 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 3
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 8
- -1 polypropylene Polymers 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- 229910014143 LiMn2 Inorganic materials 0.000 description 2
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910003307 Ni-Cd Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 101150073459 UROS gene Proteins 0.000 description 1
- WBGZQVLIUGPMDB-UHFFFAOYSA-N [Li+].[Co+2].[O-][O-] Chemical compound [Li+].[Co+2].[O-][O-] WBGZQVLIUGPMDB-UHFFFAOYSA-N 0.000 description 1
- VJUWIHSLRKYZSZ-UHFFFAOYSA-N [Ni+2].[O-][O-].[Li+] Chemical compound [Ni+2].[O-][O-].[Li+] VJUWIHSLRKYZSZ-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- KBROVRZXZWNGOZ-UHFFFAOYSA-N lithium cobalt(2+) oxygen(2-) Chemical compound [Li+].[O-2].[Co+2] KBROVRZXZWNGOZ-UHFFFAOYSA-N 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229920000379 polypropylene carbonate Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
(57)【要約】
【目的】本発明はリチウム二次電池に関し、電池交換時
期が明確で且つ電池交換の検出後も十分エネルギが残存
する特性を得ることを目的とする。
【構成】有機溶媒電解液と正極4と負極2を有し、該正
極4を高電圧正極活物質と低電圧正極活物質の混合体と
し、段階状の充・放電特性を示すリチウム二次電池を構
成した。
(57) [Summary] [Object] The present invention relates to a lithium secondary battery, and an object thereof is to obtain a characteristic that the battery replacement timing is clear and sufficient energy remains even after detection of battery replacement. A lithium secondary battery having an organic solvent electrolyte, a positive electrode 4 and a negative electrode 2, wherein the positive electrode 4 is a mixture of a high voltage positive electrode active material and a low voltage positive electrode active material, and exhibits stepwise charge / discharge characteristics. Configured.
Description
【0001】[0001]
【産業上の利用分野】本発明はリチウム二次電池に関す
る。リチウム二次電池はエネルギ密度が大きく、貯蔵
性、自己放電性などに優れ、充電しさえすれば何回でも
繰り返し使用できるという特長を持ち、携帯電話や携帯
型パソコン、ワープロの主電源あるいはメモリーバック
アップ電源として実用化が期待されている。FIELD OF THE INVENTION The present invention relates to a lithium secondary battery. Lithium secondary batteries have high energy density, excellent storage and self-discharging properties, and can be used repeatedly as long as they are charged.The main power source or memory backup for mobile phones, portable personal computers, and word processors. Practical application as a power source is expected.
【0002】[0002]
【従来の技術】現在では、これらの機器の電源としてア
ルカリ−マンガン乾電池やニッケル−カドミューム( Ni
-Cd ) 〔 Ni 水素〕二次電池が一般に使用されている。
これらの電池の電圧は1.2 〜1.5V( 開放電圧) であり、
機器の電子回路に使用されるICの動作電圧は3 〜5Vが
必要なため、通常は複数個の電池セルを直列に接続して
使われる。従って、電池の電圧が回路動作電圧に近い
程、電池が保有するエネルギを有効に利用できる。2. Description of the Related Art At present, alkaline-manganese batteries and nickel-cadmium (Ni
-Cd) [Ni hydrogen] Secondary batteries are commonly used.
The voltage of these batteries is 1.2-1.5V (open circuit voltage),
Since the operating voltage of the IC used in the electronic circuit of the device needs to be 3 to 5V, it is usually used by connecting a plurality of battery cells in series. Therefore, the closer the battery voltage is to the circuit operating voltage, the more effectively the energy stored in the battery can be used.
【0003】リチウム電池は、一般に3 〜4Vの開放電圧
を示し、IC電子回路の動作電圧に近く、機器設計の面
から使い易い電池と言える。金属リチウムなどのアルカ
リ金属を負極とするリチウム二次電池にあっては、充電
時に電解液中のリチウムイオンがリチウム負極に析出す
る際に樹枝状析出や粉末状析出が起こり易く、正・負両
極間のセパレータを破ったり、負極からの脱落が起こっ
たりして発熱などの危険な現象の原因となったり、リチ
ウム負極のサイクル寿命の著しい減少が起こる。A lithium battery generally exhibits an open circuit voltage of 3 to 4 V, is close to the operating voltage of an IC electronic circuit, and can be said to be an easy-to-use battery in terms of equipment design. In a lithium secondary battery that uses an alkali metal such as metallic lithium as the negative electrode, dendritic precipitation or powdery precipitation is likely to occur when lithium ions in the electrolytic solution are deposited on the lithium negative electrode during charging. The separator between them may be broken, or the separator may fall off from the negative electrode to cause a dangerous phenomenon such as heat generation, or the cycle life of the lithium negative electrode may be significantly reduced.
【0004】この負極へのリチウムイオンの析出状態の
改善を目的として、リチウム−アルミ( Li-Al)などのリ
チウム合金を負極とする電池が従来提案されているが、
この電池は電流を大きくできないこと、及び負極の硬度
が高いため電池の大型化に際して不可欠のジェリーロー
ル型にする場合、負極を高速で巻き取ることが困難にな
るという欠点がある。For the purpose of improving the state of deposition of lithium ions on the negative electrode, a battery using a lithium alloy such as lithium-aluminum (Li-Al) as a negative electrode has been conventionally proposed.
This battery has a drawback that the current cannot be increased and that the negative electrode has a high hardness, and it is difficult to wind the negative electrode at a high speed when the jelly roll type is indispensable when the battery is made large.
【0005】この金属リチウムやリチウム合金を負極と
する欠点を改良するため、近年カーボンやグラファイト
を負極として充電時にリチウムイオンをこの負極中にイ
ンターカーレートし、放電時に脱インターカーレートさ
せるものが従来提案されている。In order to ameliorate the drawback of using lithium metal or lithium alloy as a negative electrode, there has been a conventional one in which carbon or graphite is used as a negative electrode to intercalate lithium ions into the negative electrode during charging and deintercalate during discharging. Proposed.
【0006】この方式は発火などの危険性はなくなる
が、カーボンやグラファイト負極がリチウム負極に対し
約0.5vの電圧を有するためリチウム系負極電池の電圧よ
り約0.5v低くなる。従って、ICなど3vの電圧を必要と
する機器ではリチウムに対して4v級の正極剤を使用する
必要がある。This method eliminates the danger of ignition, but since the carbon or graphite negative electrode has a voltage of about 0.5v with respect to the lithium negative electrode, it is about 0.5v lower than the voltage of the lithium negative battery. Therefore, it is necessary to use a 4v class positive electrode agent for lithium in a device requiring a voltage of 3v such as an IC.
【0007】ところが、4v級正極剤として周知の酸化リ
チウム−コバルト(LiCoO2)などは放電末期に急激に電圧
が降下するので、過放電により結晶構造の破壊が起こ
り、充放電サイクルが著しく減少する。However, the voltage of lithium oxide-cobalt (LiCoO 2 ) or the like, which is well known as a 4v class positive electrode agent, sharply drops at the end of discharge, so that the crystal structure is destroyed due to overdischarge, and the charge / discharge cycle is significantly reduced. .
【0008】[0008]
【発明が解決しようとする課題】従来のリチウム二次電
池の充・放電特性を調べると、放電時に電池の保有する
エネルギ容量の限界値近くまで使用した場合に急激な電
圧降下を起こす。このことは、パソコンやワープロなど
を使用する場合、極めて不都合な特性となる。When the charge / discharge characteristics of the conventional lithium secondary battery are examined, a sharp voltage drop occurs when the battery is used up to the limit value of the energy capacity of the battery during discharging. This is an extremely inconvenient characteristic when using a personal computer or a word processor.
【0009】例えばパソコンやワープロにより文章作成
する場合を考えると、文章作成が完了した段階でフロッ
ピィディスクなどの記憶媒体に作成した文章を格納する
操作を行う。フロッピィディスクの駆動には、比較的大
きな消費電力を必要とするため、その時点で主電源に用
いる電池にそれだけのエネルギを余分に残存しておかな
ければならない。Considering a case where a text is created by a personal computer or a word processor, for example, when the text creation is completed, an operation of storing the created text in a storage medium such as a floppy disk is performed. Since driving a floppy disk requires relatively large power consumption, extra energy must be left in the battery used for the main power supply at that time.
【0010】ところが、電池の放電電圧が全放電容量の
終了近くで急速に降下するリチウム二次電池や Ni- Cd
電池を使用する場合、電池のエネルギがフロッピィを駆
動するに必要量だけ残存している状態で、機器使用者に
判るように電池交換の警告を出すか、機器の稼働を中止
するなどの処置が必要になる。However, the discharge voltage of the battery drops rapidly near the end of the total discharge capacity, such as a lithium secondary battery or Ni-Cd.
When using a battery, take measures such as issuing a warning to the device user to change the battery or stopping the operation of the device while the energy of the battery remains enough to drive the floppy. You will need it.
【0011】この機能がないと、機器使用者はフロッピ
ィへの文書の格納作業ができなくなる。このことは、電
池が本来保有しているエネルギを十分に使い切らない状
態で電池使用の中止を余儀なくされ、効率面で大きなマ
イナスになる。Without this function, the device user cannot store documents in the floppy disk. This means that the use of the battery must be stopped in a state where the energy originally possessed by the battery is not used up, resulting in a significant negative efficiency.
【0012】本発明はこの従来電池の問題点を解決し、
電池交換時期が明確で且つ電池交換の警告時点でも十分
エネルギが残存するようなリチウム二次電池の提供を目
的とする。The present invention solves the problems of this conventional battery,
An object of the present invention is to provide a lithium secondary battery in which the battery replacement timing is clear and sufficient energy remains even at the battery replacement warning time.
【0013】[0013]
【課題を解決するための手段】本発明の目的は、リチウ
ムイオンを含む有機溶媒電解液と、高電圧正極活物質と
低電圧正極活物質の混合体からなる充放電可能な正極
と、充電時にリチウムイオンをインターカーレートし、
放電時に脱インターカーレートする負極を有し、段階状
の充・放電特性を示すリチウム二次電池の提供により実
現される。The object of the present invention is to provide a chargeable / dischargeable positive electrode comprising a mixture of an organic solvent electrolyte containing lithium ions, a high voltage positive electrode active material and a low voltage positive electrode active material, and Intercalate lithium ion,
This is realized by providing a lithium secondary battery having a negative electrode that deintercalates during discharge and exhibiting stepwise charge / discharge characteristics.
【0014】[0014]
【作用】本発明によると、電池使用状態で放電電圧が段
階状例えば二段階で変化するため、電圧の低い第二段階
まで使用した時点で、なお機器動作に十分なエネルギが
残存している状態において警告を出したり、機器の使用
を一時中断する処置がとれる。しかも、陽極活物質の組
成を制御して、第二段階の放電電圧での残存エネルギ量
をコントロールすることも可能である。According to the present invention, since the discharge voltage changes stepwise, for example, in two steps when the battery is used, a state in which sufficient energy remains for the operation of the equipment at the time when the battery is used up to the second step where the voltage is low. A warning can be given in or a measure can be taken to suspend the use of the device. Moreover, it is possible to control the composition of the anode active material to control the amount of residual energy at the second-stage discharge voltage.
【0015】このような本発明では、例えば3v以下に電
圧が降下した場合に検知するシステムが実現できる。同
様に、本発明では充電時に過充電による構造の破壊を防
止するために例えば4v級正極剤を混入する事により、3v
級電池において電圧の上昇を検知するシステムが実現で
きる。According to the present invention as described above, it is possible to realize a system for detecting a voltage drop of 3 V or less, for example. Similarly, in the present invention, in order to prevent the destruction of the structure due to overcharge during charging, for example, by mixing a 4v class positive electrode agent,
It is possible to realize a system for detecting an increase in voltage in a class battery.
【0016】[0016]
【実施例】図1は本発明に係るリチウム二次電池の断面
図で、1はニッケルメッキしたステンレス鋼の負極とな
る封口板で、内面にリチウム金属よりなる負極2を圧着
している。3はポリプロピレン製の多孔性フィルムより
なるセパレータである。1 is a cross-sectional view of a lithium secondary battery according to the present invention, in which reference numeral 1 denotes a nickel-plated stainless steel negative electrode sealing plate, on the inner surface of which a negative electrode 2 made of lithium metal is pressure-bonded. 3 is a separator made of a polypropylene porous film.
【0017】4は本発明の特徴である高電圧正極活物質
と低電圧正極活物質の混合体からなる充放電可能な正極
で、ステンレス鋼よりなるケース5の内面にスポット溶
接したチタン製集電体6に圧着している。7はポリプロ
ピレン製ガスケットで電解質を封入した後封口してこの
ガスケット7を締め付けることで完成電池となる。Reference numeral 4 denotes a chargeable / dischargeable positive electrode composed of a mixture of a high-voltage positive electrode active material and a low-voltage positive electrode active material, which is a feature of the present invention, and a titanium current collector spot-welded to the inner surface of a case 5 made of stainless steel. It is crimped to the body 6. A polypropylene gasket 7 encloses the electrolyte, then seals it and tightens the gasket 7 to complete the battery.
【0018】高電圧正極活物質としては、二酸化リチウ
ム−コバルト化合物(LiCoO2)、二酸化リチウム−ニッケ
ル化合物(LiNiO2)またはその複合体である二酸化リチウ
ム−コバルト−ニッケル化合物(LiCoxNiyO2)等の4V級正
極活物質の内から一種または二種以上選択する。As the high-voltage positive electrode active material, a lithium dioxide-cobalt compound (LiCoO 2 ), a lithium dioxide-nickel compound (LiNiO 2 ) or a lithium dioxide-cobalt-nickel compound (LiCoxNiyO 2 ) which is a composite thereof is used. One kind or two or more kinds are selected from the high grade positive electrode active materials.
【0019】低電圧正極活物質としては、スピネル型リ
チウム−マンガン化合物であるLiMn 2O4, LiMn3O6または
二酸化マンガン化合物(MnO2)等の3V級正極活物質の内か
ら一種または二種以上選択する。As the low-voltage positive electrode active material, a spinel type lithium
LiMn, which is a thium-manganese compound 2OFour, LiMn3O6Or
Manganese dioxide compound (MnO2) Or other 3V class positive electrode active material
Select one or two or more.
【0020】なお、LiMn3O6 は発明者の一人が見出した
もので(芳尾真幸ら、電気化学58巻5号 477ページ参
照)、各種リチウム塩と二酸化マンガンの比較的低温で
焼成することにより得られるが、特に硝酸リチウムと化
学合成二酸化マンガンとの混合物を300-400℃で焼成し
て得られるものである。 硝酸リチウムの代わりに水酸化
リチウムでもよい。より高温で焼成すると公知のスピネ
ル型LiMn2O4が生成するが、本化合物はこのスピネル型L
iMn2O4にいたる準安定状態として存在する化合物と推定
される。LiMn 3 O 6 was discovered by one of the inventors (see Masayuki Yoshio, Vol. 58, No. 5, page 477), and various lithium salts and manganese dioxide should be calcined at a relatively low temperature. In particular, it is obtained by firing a mixture of lithium nitrate and chemically synthesized manganese dioxide at 300 to 400 ° C. Lithium hydroxide may be used instead of lithium nitrate. The known spinel type LiMn 2 O 4 is formed by firing at higher temperature.
It is presumed to be a compound existing as a metastable state including iMn 2 O 4 .
【0021】そして、高電圧正極活物質と低電圧正極活
物質を混合することで、充・放電電圧が4V近傍と3V近傍
の二段階から成る混合体を形成する。また4v級正極活物
質Aと3v級正極活物質Bの組成比A/Bを9/1〜2/
8の範囲で変化させることで充・放電電圧が制御され、
段階状の充・放電特性を示すリチウム二次電池が得られ
る。更に本電池の充電に際し満充電状態に近づいた充電
末期の電圧が急上昇するような充・放電特性を示すリチ
ウム二次電池が得られる。Then, the high-voltage positive electrode active material and the low-voltage positive electrode active material are mixed to form a two-stage mixture having a charging / discharging voltage of about 4V and about 3V. The composition ratio A / B of the 4v class positive electrode active material A and the 3v class positive electrode active material B is 9/1 to 2 /
The charge / discharge voltage is controlled by changing in the range of 8.
A lithium secondary battery having stepwise charge / discharge characteristics can be obtained. Further, when the battery is charged, a lithium secondary battery having a charge / discharge characteristic in which the voltage at the end of charging, which approaches a fully charged state, rapidly increases can be obtained.
【0022】本発明において使用される3v級正極活物質
は非常に安定で、4v級正極活物質と混入しても、還元さ
れたりせず、その性質は変化しない。また4v以上に過放
電を行っても結晶構造は変化しないことは実験結果から
みて明らかである。The 3v class positive electrode active material used in the present invention is very stable, and even if mixed with the 4v class positive electrode active material, it is not reduced and its property does not change. Also, it is clear from the experimental results that the crystal structure does not change even when over-discharged to 4v or more.
【0023】図2は電池の残量エネルギまたは残量容量
の検知手段を構成するコンパレータ8で、入力端子9に
本リチウム二次電池の電圧 Vbattが、入力端子10には
基準電圧 Vref が印加され、電池電圧 Vbattが基準電圧
Vref 以下に低下した時点でコンパレータ8は出力端子
11より警告信号を出力する。FIG. 2 shows a comparator 8 constituting a means for detecting the remaining energy or remaining capacity of the battery. The input terminal 9 is the voltage V batt of the lithium secondary battery and the input terminal 10 is the reference voltage V ref. Applied , the battery voltage V batt is the reference voltage
When the voltage drops below V ref , the comparator 8 outputs a warning signal from the output terminal 11.
【0024】この基準電圧 Vref は以下の実験結果に示
す充・放電特性における基準0(充・放電を行なわない
状態の電池容量)の電池電圧に対応させる。
(実験例1)15mmに打ち抜いた厚さ100 μm のリチウム
金属を負極、電解液にポリプロピレンカーボネートとエ
チレンカーボネートと1,2−ジメトキシエタンおよび
ベンゼン(容量比40:40:10:10)の混合溶媒に1モル/l
の六フッ化リン酸リチウム(LiPF6) を溶解した溶液を使
用した。This reference voltage V ref is made to correspond to the battery voltage of reference 0 (battery capacity in the state where charging / discharging is not performed) in the charging / discharging characteristics shown in the following experimental results. (Experimental example 1) A lithium metal having a thickness of 100 μm punched into 15 mm was used as a negative electrode, and a mixed solvent of polypropylene carbonate, ethylene carbonate, 1,2-dimethoxyethane and benzene (volume ratio 40: 40: 10: 10) was used as an electrolytic solution. 1 mol / l
A solution in which lithium hexafluorophosphate (LiPF 6 ) was dissolved was used.
【0025】正極としては、4v級正極剤にLiCoO2、3v級
正極剤にLiMn3O6 を用いて導電剤のグラファイトおよび
アセチレンブラック、バインダとしてテフロンバインダ
(重量比50:8:8:12)を混合圧縮してシート状にし、それ
から15 mmに切り抜いたものを用いた。As the positive electrode, LiCoO 2 was used as the 4v class positive electrode agent, LiMn 3 O 6 was used as the 3v class positive electrode agent, and graphite and acetylene black as the conductive agent, and Teflon binder as the binder (weight ratio 50: 8: 8: 12). Was mixed and compressed into a sheet, which was then cut into 15 mm.
【0026】これらを用いて、リチウム二次電池を湿度
が管理された図3のグローブボックス中で組み立て、こ
の電池に対して充放電サイクル試験を実施した。このグ
ローブボックスはステンレス製の陰極12と陽極13の
気密空間を形成しており、その内部にステンレスメッシ
ュ製の陰極シート、上記の15mm×100 μm のリチウム金
属シート、ポリプロピレン製のセパレータシート、上記
の電解液を含浸したガラスフィルタ、上記の15mmに切り
抜いた LiMn3O6が20wt% 、LiCoO2が80wt%Wの混合体から
なる正極シート、ステンレスメッシュ製の陽極シートを
重て、本発明に係る試験用リチウム二次電池14を形成
した。Using these, a lithium secondary battery was assembled in a humidity-controlled glove box of FIG. 3, and a charge / discharge cycle test was carried out on this battery. This glove box forms an airtight space between the cathode 12 and the anode 13 made of stainless steel, and inside the cathode sheet made of stainless mesh, the above-mentioned 15 mm × 100 μm lithium metal sheet, the separator sheet made of polypropylene, and the above-mentioned A glass filter impregnated with an electrolytic solution, a LiMn 3 O 6 cut out in the above 15 mm is 20 wt%, a positive electrode sheet made of a mixture of LiCoO 2 is 80 wt% W, and a positive electrode sheet made of a stainless mesh is overlaid, according to the present invention. A test lithium secondary battery 14 was formed.
【0027】試験は、上限電圧4.3v、下限電圧 2.5vと
して1mAの定電流で行った。この充・放電特性を示す電
圧曲線を図4に示した。該図において、縦軸と横軸は試
験用リチウム二次電池の電圧と容量変化を示し、曲線
(a)部が放電特性を、曲線(b)が充電特性を示している。The test was conducted at a constant current of 1 mA with an upper limit voltage of 4.3v and a lower limit voltage of 2.5v. The voltage curve showing this charge / discharge characteristic is shown in FIG. In the figure, the vertical axis and the horizontal axis represent the voltage and capacity changes of the test lithium secondary battery, and the curves
Part (a) shows discharge characteristics, and curve (b) shows charge characteristics.
【0028】これは電池の製造段階での初期容量を基準
0とし、それに充電と放電を与えることによる電池自体
の容量変化に対する電圧変化を測定した。図の如く、該
充・放電特性曲線は二段階状に変化する特性を示し、2.
8 〜2.9vで電池寿命が検知可能なことが示されている。
また、検知システム(図2の基準電圧を2.8 〜2.9vに設
定)は数十回のサイクルでも明瞭に現れた。The initial capacity at the manufacturing stage of the battery was set to 0, and the voltage change with respect to the capacity change of the battery itself due to charging and discharging was measured. As shown in the figure, the charge / discharge characteristic curve shows a characteristic that changes in two steps.
It has been shown that battery life is detectable at 8-2.9v.
In addition, the detection system (reference voltage set in Fig. 2 set to 2.8 to 2.9v) clearly appeared even after several tens of cycles.
【0029】本実験によるリチウム二次電池は 2.8〜2.
9vの電圧である一定の容量を有しているので、電池寿命
検知後も十分エネルギが残存し、ワープロなどのセービ
ングが可能である。
(実験例2)正極剤を構成する成分として、実験例1の
LiMn3O6 の代わりにスピネル型LiMn 2O4を用いた以外は
実験例1と同様の充放電サイクル試験を実施した。結果
は図5に示すように、充・放電特性曲線が二段階状に変
化する特性となる。
(実施例3)正極剤を構成する成分として実験例2のス
ピネル型LiMn2O4の代わりに電解二酸化マンガン (HEMD)
を 200-400℃で加熱したものを用いた以外は実施例1
と同様の試験を行った。 結果は図6に示すように、放電
特性が二段階で放電特性が階段状に変化する特性とな
る。
(実施例4)正極剤を構成する成分として実験例2のス
ピネル型LiMn2O4とLiCoO2の重量%を逆転したものを用
いた以外は実施例1と同様の試験を行った。 結果は図7
に示すように、充・放電特性曲線が二段階状に変化する
特性となる。The lithium secondary battery used in this experiment is 2.8 to 2.
Battery life as it has a certain capacity with a voltage of 9v
Sufficient energy remains even after detection, making it safe for word processors
Is possible.
(Experimental Example 2) As a component constituting the positive electrode agent,
LiMn3O6Instead of spinel type LiMn 2OFourExcept using
The same charge / discharge cycle test as in Experimental Example 1 was performed. result
As shown in Fig. 5, the charge / discharge characteristic curve changes in two steps.
It becomes a characteristic to be changed.
(Example 3) The components of Experimental Example 2 were used as components constituting the positive electrode agent.
Pinel type LiMn2OFourInstead of electrolytic manganese dioxide (HEMD)
Example 1 except that the one heated at 200-400 ° C. was used
The same test was performed. The result is the discharge as shown in Figure 6.
There are two levels of characteristics, and the discharge characteristics change stepwise.
It
(Example 4) As a component constituting the positive electrode agent,
Pinel type LiMn2OFourAnd LiCoO2Use the one in which the weight% of
The same test as in Example 1 was carried out except that it was not used. The result is Figure 7.
As shown in, the charge / discharge characteristic curve changes in two steps.
It becomes a characteristic.
【0030】[0030]
【発明の効果】以上の本発明によれば、充・放電特性が
段階状のリチウム二次電池が得られ、電池交換時期が明
確に捉えることができ、しかもその交換時期でも十分エ
ネルギが残存する使用上都合の良いリチウム二次電池を
提供できるなど、その効果は多大である。As described above, according to the present invention, a lithium secondary battery having a stepwise charge / discharge characteristic can be obtained, the battery replacement timing can be clearly grasped, and sufficient energy remains at the replacement timing. The effect is great such that a lithium secondary battery which is convenient for use can be provided.
【図1】本発明に係るリチウム二次電池の断面図であ
る。FIG. 1 is a cross-sectional view of a lithium secondary battery according to the present invention.
【図2】本発明に係る電池の残量エネルギまたは残量容
量の検知手段を示す図である。FIG. 2 is a diagram showing a means for detecting remaining energy or remaining capacity of a battery according to the present invention.
【図3】本発明に係る電池の充・放電特性の測定治具と
測定状態を示す図である。FIG. 3 is a diagram showing a charge / discharge characteristic measuring jig and a measuring state of a battery according to the present invention.
【図4】本発明の第1実験例による電池の充・放電特性
図である。FIG. 4 is a charge / discharge characteristic diagram of a battery according to a first experimental example of the present invention.
【図5】本発明の第2実験例による電池の充・放電特性
図である。FIG. 5 is a charge / discharge characteristic diagram of a battery according to a second experimental example of the present invention.
【図6】本発明の第3実験例による電池の充・放電特性
図である。FIG. 6 is a charge / discharge characteristic diagram of a battery according to a third experimental example of the present invention.
【図7】本発明の第4実験例による電池の充・放電特性
図である。FIG. 7 is a charge / discharge characteristic diagram of a battery according to a fourth experimental example of the present invention.
2 負極 3 セパレータ 4 正極 2 Negative electrode 3 separator 4 positive electrode
Claims (6)
高電圧正極活物質と低電圧正極活物質の混合体からなる
充放電可能な正極(4) と、充電時にリチウムイオンをイ
ンターカーレートし、放電時に脱インターカーレートす
る負極(2) を有し、段階状の充・放電特性を示すことを
特徴としたリチウム二次電池。1. An organic solvent electrolyte containing lithium ions,
It has a chargeable / dischargeable positive electrode (4) made of a mixture of a high-voltage positive electrode active material and a low-voltage positive electrode active material, and a negative electrode (2) that intercalates lithium ions during charging and deintercalates during discharging. A lithium secondary battery characterized by exhibiting stepwise charge / discharge characteristics.
たはその複合体LiCoxNiyO2等の4V級正極活物質の内から
一種または二種以上選択され、前記低電圧正極活物質が
スピネル型LiMn2O4, LiMn3O6またはMnO2等の3V級正極活
物質の内から一種または二種以上選択され含有されてい
る充・放電電圧が4V近傍と3V近傍の二段階から成ること
を特徴とする請求項1記載のリチウム二次電池。2. The high-voltage positive electrode active material is selected from one or more kinds of 4V-class positive electrode active materials such as LiCoO 2 , LiNiO 2 or a complex thereof, LiCoxNiyO 2 , and the low-voltage positive electrode active material is spinel type. One or more selected 3V class positive electrode active materials such as LiMn 2 O 4 , LiMn 3 O 6 or MnO 2 are selected and contained, and the charge / discharge voltage is composed of two steps near 4V and near 3V. The lithium secondary battery according to claim 1, which is characterized in that.
質Bの組成比A/Bを9/1〜2/8の範囲で変化させ
て充・放電電圧を制御することを特徴とする請求項2記
載のリチウム二次電池。3. The charge / discharge voltage is controlled by changing the composition ratio A / B of the 4v class positive electrode active material A and the 3v class positive electrode active material B in the range of 9/1 to 2/8. The lithium secondary battery according to claim 2.
量エネルギまたは残量容量が検知できることを可能とし
た請求項1記載のリチウム二次電池。4. The lithium secondary battery according to claim 1, wherein the charge / discharge characteristics are set to two levels so that the remaining energy or the remaining capacity of the battery can be detected.
ことを特徴とする請求項4記載のリチウム二次電池。5. The lithium secondary battery according to claim 4, wherein a voltage sensor is built in and used as a power source for equipment.
充電状態に近づいた充電末期の電圧が急上昇するよう
に、前記高電圧正極活物質と前記低電圧正極活物質の組
成比が制御されていることを特徴とする請求項1のリチ
ウム二次電池。6. The composition ratio of the high-voltage positive electrode active material and the low-voltage positive electrode active material is controlled so that the voltage at the end of charging when the battery is charged approaches a fully charged state when the battery is charged. The lithium secondary battery according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3162542A JPH0513107A (en) | 1991-07-03 | 1991-07-03 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3162542A JPH0513107A (en) | 1991-07-03 | 1991-07-03 | Lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0513107A true JPH0513107A (en) | 1993-01-22 |
Family
ID=15756585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3162542A Withdrawn JPH0513107A (en) | 1991-07-03 | 1991-07-03 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0513107A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980067020A (en) * | 1997-01-30 | 1998-10-15 | 김광호 | Positive electrode active material, manufacturing method thereof, and lithium secondary battery employing the same |
JP2002170567A (en) * | 2000-12-04 | 2002-06-14 | Sony Corp | Nonaqueous electrolyte cell |
US6428930B2 (en) | 1997-12-26 | 2002-08-06 | Sanyo Electric Co., Ltd. | Lithium secondary battery |
WO2002069417A1 (en) * | 2001-02-27 | 2002-09-06 | Nec Corporation | Secondary cell |
JP2004259677A (en) * | 2003-02-27 | 2004-09-16 | Sanyo Electric Co Ltd | Lithium secondary battery |
JP2006127931A (en) * | 2004-10-29 | 2006-05-18 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2006344395A (en) * | 2005-06-07 | 2006-12-21 | Toyota Motor Corp | Positive electrode for lithium secondary battery and its use and production |
JP2008529253A (en) * | 2005-02-02 | 2008-07-31 | アイユーシーエフ エイチワイユー (インダストリー ユニヴァーシティー コオペレイション ファウンデイション ハンヤン ユニヴァーシティー) | 3V-class spinel composite oxide as positive electrode active material for lithium secondary battery, its production method by carbonate coprecipitation method, and lithium secondary battery using the same |
US7799464B2 (en) * | 2001-09-19 | 2010-09-21 | Kawasaki Jukogyo Kabushiki Kaisha | Hybrid battery |
-
1991
- 1991-07-03 JP JP3162542A patent/JPH0513107A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980067020A (en) * | 1997-01-30 | 1998-10-15 | 김광호 | Positive electrode active material, manufacturing method thereof, and lithium secondary battery employing the same |
US6428930B2 (en) | 1997-12-26 | 2002-08-06 | Sanyo Electric Co., Ltd. | Lithium secondary battery |
JP2002170567A (en) * | 2000-12-04 | 2002-06-14 | Sony Corp | Nonaqueous electrolyte cell |
WO2002069417A1 (en) * | 2001-02-27 | 2002-09-06 | Nec Corporation | Secondary cell |
US7799464B2 (en) * | 2001-09-19 | 2010-09-21 | Kawasaki Jukogyo Kabushiki Kaisha | Hybrid battery |
JP2004259677A (en) * | 2003-02-27 | 2004-09-16 | Sanyo Electric Co Ltd | Lithium secondary battery |
JP2006127931A (en) * | 2004-10-29 | 2006-05-18 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2008529253A (en) * | 2005-02-02 | 2008-07-31 | アイユーシーエフ エイチワイユー (インダストリー ユニヴァーシティー コオペレイション ファウンデイション ハンヤン ユニヴァーシティー) | 3V-class spinel composite oxide as positive electrode active material for lithium secondary battery, its production method by carbonate coprecipitation method, and lithium secondary battery using the same |
US8956759B2 (en) | 2005-02-02 | 2015-02-17 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University | 3V class spinel complex oxides as cathode active materials for lithium secondary batteries, method for preparing the same by carbonate coprecipitation, and lithium secondary batteries using the same |
US9553313B2 (en) | 2005-02-02 | 2017-01-24 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | 3V class spinel complex oxides as cathode active materials for lithium secondary batteries, method for preparing the same by carbonate coprecipitation, and lithium secondary batteries using the same |
JP2006344395A (en) * | 2005-06-07 | 2006-12-21 | Toyota Motor Corp | Positive electrode for lithium secondary battery and its use and production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dahn et al. | Rechargeable LiNiO2/carbon cells | |
Tarascon et al. | The Li1+ xMn2O4/C rocking-chair system: a review | |
EP0827231B1 (en) | Non-aqueous electrolyte lithium secondary battery | |
KR101488043B1 (en) | Method for activating high capacity lithium secondary battery | |
JPH0567468A (en) | Electrochemical secondary battery | |
JP2004047180A (en) | Nonaqueous electrolytic solution battery | |
Tarascon et al. | An update of the Li metal-free rechargeable battery based on Li1+ χMn2O4 cathodes and carbon anodes | |
JP2949705B2 (en) | Method for recovering discharge capacity of non-aqueous electrolyte secondary battery and circuit therefor | |
JPH1027626A (en) | Lithium secondary battery | |
JPH0513107A (en) | Lithium secondary battery | |
JP3003431B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2001307781A (en) | Lithium secondary battery and its charging/discharging method | |
JP2000012090A (en) | Lithium secondary battery | |
KR101520118B1 (en) | Method for improving cycle performance of lithium secondary battery | |
JP7628503B2 (en) | High power, extended temperature range, and overcharge-resistant rechargeable battery cells and battery packs | |
JPH11339802A (en) | Manufacture of positive active material for lithium secondary battery | |
JP2003282147A (en) | Lithium ion secondary battery | |
JPH07105935A (en) | Non-aqueous electrolyte secondary battery | |
JP3404929B2 (en) | Non-aqueous electrolyte battery | |
Koehler et al. | High performance nickel-metal hydride and lithium-ion batteries | |
JP2730641B2 (en) | Lithium secondary battery | |
JPH06150929A (en) | Non-aqueous electrolyte secondary battery | |
JP2005071665A (en) | Water-based lithium secondary battery | |
JP2002033132A (en) | Nonaqueous secondary battery | |
JP5036174B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981008 |