[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0513104B2 - - Google Patents

Info

Publication number
JPH0513104B2
JPH0513104B2 JP61285689A JP28568986A JPH0513104B2 JP H0513104 B2 JPH0513104 B2 JP H0513104B2 JP 61285689 A JP61285689 A JP 61285689A JP 28568986 A JP28568986 A JP 28568986A JP H0513104 B2 JPH0513104 B2 JP H0513104B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
weight
oxidizing atmosphere
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61285689A
Other languages
Japanese (ja)
Other versions
JPS63139057A (en
Inventor
Akira Yamakawa
Masaya Myake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61285689A priority Critical patent/JPS63139057A/en
Publication of JPS63139057A publication Critical patent/JPS63139057A/en
Publication of JPH0513104B2 publication Critical patent/JPH0513104B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、常温から高温まで優れた機械的強度
を有する窒化ケイ素質セラミツクスの製造方法に
関する。 〔従来の技術〕 窒化ケイ素質セラミツクスは機械的強度が優れ
ており、耐酸化性及び耐摩耗性にも優れているた
め、新しい構造部材として期待されている。 しかし、窒化ケイ素質セラミツクスは高温にお
いて機械的強度が著しく低下する欠点があるた
め、高温部材等の用途には応用できなかつた。 そこで、窒化ケイ素質セラミツクスの高温強度
を改善する各種の試みがなされている。例えば、
焼結助剤としてAl2O3を用い最終焼結体中でこれ
をSi3N4に固溶させることにより、粒界ガラス相
を残さない方法、あるいは粒界ガラス相を熱処理
により結晶化する方法等が提案されている。 しかるに、このような従来の高温強度改善方法
では、粒界ガラス相の減少に伴なつて逆に常温強
度が低下する欠点があり、常温から高温まで優れ
た強度を安定して維持し得る窒化ケイ素質セラミ
ツクスを提供することは困難であつた。 〔発明が解決しようとする問題点〕 本発明は、かかる従来の事情に鑑み、常温から
高温まで優れた強度を安定して維持し得る窒化ケ
イ素質セラミツクスの製造方法を提供することを
目的とする。 〔問題点を解決するための手段〕 本発明の窒化ケイ素質セラミツクスの製造方法
は、80重量%以上の窒化ケイ素粉末と、0.1〜10
重量%のa族元素の酸化物粉末と、合計量が
0.1〜10重量%で互いのモル比が0.5〜2.0の範囲内
のアルミナ粉末及び窒化アルミニウム粉末とを混
合し、この混合粉末を非酸化性雰囲気中において
1600〜1850℃で焼結し、焼結体を非酸化性雰囲気
中において1600〜2000℃で熱間静水圧プレスして
緻密化し、その後非酸化性雰囲気中において無加
圧にて1200〜1600℃で熱処理することを特徴とす
る。 〔作用〕 本発明の窒化ケイ素質セラミツクスの製造方法
においては、a族元素の酸化物の外に、アルミ
ナ粉末と窒化アルミニウム粉末を互いのモル比が
0.5〜2.0の範囲内で同時に窒化ケイ素粉末に添加
することにより、常温は勿論のこと高温において
も優れた強度を安定して維持する窒化ケイ素質セ
ラミツクスを得ることが出来る。その理由は、上
記モル比の範囲が、アルミナに対する窒化アルミ
ニウムの増加によつて粒界の強度向上と焼結性の
劣化による強度低下がほど好くバランスする領域
であるためと考えられる。 尚、窒化ケイ素粉末を80重量%以上とする理由
は、80重量%未満では耐酸化性及び耐熱性の低下
により窒化ケイ素セラミツクスとしての特性が維
持できないからである。 a族元素の酸化物としては、Y2O3,CeO2
を使用できるが、その添加量が0.1重量%未満で
は焼結助剤としての効果がなく、10重量%を超る
と耐酸化性並びに高温強度の低下が著しい。 アルミナ粉末及び窒化アルミニウム粉末は、合
計量が0.1重量%未満では高温強度の改善効果が
なく、10重量%を超えると高温強度が著しく低下
する。また、アルミナ粉末と窒化アルミニウム粉
末とは等モル数で用いるのが望ましいが、互いの
モル比が0.5〜2.0の範囲内であれば良好な特性の
窒化ケイ素質セラミツクスが得られる。更に、窒
化アルミニウムとして酸化ケイ素を含有したポリ
タイプを用いることも組成を安定させて、好まし
い結果が得られる。 本発明の方法では、上記した各粉末を混合した
混合粉末を窒化ケイ素の酸化を防ぐために真空、
窒素ガス又はアルゴンガスなどの非酸化性雰囲気
中において通常のごとく1600〜1850℃で30分以
上、好ましくは120分以上焼結する。得られた焼
結体は非酸化性雰囲気で1600〜2000℃で熱間静水
圧プレスして緻密化する。熱間静水圧プレスは、
好ましくは100気圧以上の窒素含有ガスで30分以
上行なう。熱間静水圧プレスを経なければ本組成
での緻密化は困難であり、熱間静水圧プレスは本
願発明の不可欠の要件である。最後に、緻密質焼
結体を非酸化性雰囲気中において無加圧にて1200
〜1600℃で好ましくは60分以上の熱処理をするこ
とにより、結晶化の遅れた粒界相が結晶化され
る。 かくして製造された窒化ケイ素質セラミツクス
は空孔率が2%以下であつて、常温での抗折強度
が100Kg/mm2以上及び高温(1200℃)での抗折強
度が85Kg/mm2以上と優れた特性を示す。 〔実施例〕 実施例 1 α型Si3N4粉末(平均粒径0.5μm)に、a族
酸化物としてY2O3、CeO2又はGd2O3粉末(純度
99.9%、平均粒径0.5μm)、α型Al2O3粉末(平均
粒径0.5μm)及びAlN粉末(純度99%、平均粒径
1.0μm)を第1表に示す配合で添加し、ボールミ
ルで3日間混合した。 混合粉末を4気圧の窒素ガス中で1800℃で2時
間焼結した。得られた焼結体を更に1000気圧の窒
素ガス中で1800℃で1時間の熱間静水圧プレスを
行ない、次に窒素ガス中において無加圧にて1400
℃で10時間熱処理した。 得られたSi3N4質セラミツクスの密度(%)、
室温及び高温(1200℃)での曲げ強度(Kg/mm2
を測定し、結果を第1表に示した。
[Industrial Application Field] The present invention relates to a method for manufacturing silicon nitride ceramics that have excellent mechanical strength from room temperature to high temperature. [Prior Art] Silicon nitride ceramics have excellent mechanical strength, oxidation resistance, and wear resistance, and are therefore expected to be used as new structural members. However, silicon nitride ceramics have the disadvantage that their mechanical strength significantly decreases at high temperatures, so they cannot be applied to high-temperature parts and the like. Therefore, various attempts have been made to improve the high temperature strength of silicon nitride ceramics. for example,
A method that leaves no grain boundary glass phase by using Al 2 O 3 as a sintering aid and dissolving it in Si 3 N 4 in the final sintered body, or crystallizing the grain boundary glass phase by heat treatment. Several methods have been proposed. However, such conventional methods for improving high-temperature strength have the disadvantage that room-temperature strength decreases as the grain boundary glass phase decreases, and silicon nitride, which can stably maintain excellent strength from room temperature to high temperature, It has been difficult to provide high-quality ceramics. [Problems to be Solved by the Invention] In view of the conventional circumstances, an object of the present invention is to provide a method for manufacturing silicon nitride ceramics that can stably maintain excellent strength from room temperature to high temperature. . [Means for Solving the Problems] The method for producing silicon nitride ceramics of the present invention includes silicon nitride powder of 80% by weight or more and 0.1 to 10% by weight of silicon nitride powder.
% by weight of group a element oxide powder and the total amount
Mix alumina powder and aluminum nitride powder with a molar ratio of 0.1 to 10% by weight and a mutual molar ratio of 0.5 to 2.0, and place this mixed powder in a non-oxidizing atmosphere.
The sintered body is sintered at 1600-1850℃, densified by hot isostatic pressing at 1600-2000℃ in a non-oxidizing atmosphere, and then heated at 1200-1600℃ without pressure in a non-oxidizing atmosphere. It is characterized by heat treatment. [Function] In the method for producing silicon nitride ceramics of the present invention, in addition to the oxide of a group A element, alumina powder and aluminum nitride powder are used in a molar ratio of
By simultaneously adding it to the silicon nitride powder in the range of 0.5 to 2.0, it is possible to obtain silicon nitride ceramics that stably maintain excellent strength not only at room temperature but also at high temperatures. The reason for this is thought to be that the range of the above molar ratio is a region where an increase in the strength of grain boundaries due to an increase in aluminum nitride relative to alumina and a decrease in strength due to deterioration of sinterability are appropriately balanced. The reason why the amount of silicon nitride powder is 80% by weight or more is that if it is less than 80% by weight, the properties of silicon nitride ceramics cannot be maintained due to a decrease in oxidation resistance and heat resistance. Y2O3 , CeO2, etc. can be used as oxides of group a elements, but if the amount added is less than 0.1% by weight, it will not be effective as a sintering aid, and if it exceeds 10% by weight, the oxidation resistance will be reduced. There is a significant decrease in hardness and high-temperature strength. When the total amount of alumina powder and aluminum nitride powder is less than 0.1% by weight, there is no effect of improving high-temperature strength, and when the total amount exceeds 10% by weight, high-temperature strength is significantly reduced. Further, it is desirable to use the alumina powder and the aluminum nitride powder in equal molar numbers, but silicon nitride ceramics with good properties can be obtained if the molar ratio is within the range of 0.5 to 2.0. Furthermore, using a polytype containing silicon oxide as aluminum nitride also stabilizes the composition and yields favorable results. In the method of the present invention, a mixed powder obtained by mixing each of the above powders is vacuum-treated to prevent oxidation of silicon nitride.
Sintering is carried out in a non-oxidizing atmosphere such as nitrogen gas or argon gas at 1600 to 1850° C. for 30 minutes or more, preferably 120 minutes or more. The obtained sintered body is densified by hot isostatic pressing at 1600 to 2000°C in a non-oxidizing atmosphere. Hot isostatic press is
Preferably, the heating is carried out for 30 minutes or more using a nitrogen-containing gas at a pressure of 100 atmospheres or more. It is difficult to densify this composition without hot isostatic pressing, and hot isostatic pressing is an essential requirement of the present invention. Finally, the dense sintered body was heated to 1200°C without pressure in a non-oxidizing atmosphere.
By performing heat treatment at ~1600°C, preferably for 60 minutes or more, the grain boundary phase whose crystallization is delayed is crystallized. The silicon nitride ceramic thus produced has a porosity of 2% or less and a flexural strength of 100 Kg/mm 2 or more at room temperature and 85 Kg/mm 2 or more at high temperature (1200°C). Shows excellent properties. [Example] Example 1 Y 2 O 3 , CeO 2 or Gd 2 O 3 powder (purity
99.9%, average particle size 0.5μm), α-type Al 2 O 3 powder (average particle size 0.5μm) and AlN powder (purity 99%, average particle size
1.0 μm) was added in the formulation shown in Table 1, and mixed in a ball mill for 3 days. The mixed powder was sintered at 1800° C. for 2 hours in nitrogen gas at 4 atmospheres. The obtained sintered body was further subjected to hot isostatic pressing at 1800°C for 1 hour in nitrogen gas at 1000 atm, and then heated at 1400°C in nitrogen gas without pressure.
Heat treated at ℃ for 10 hours. Density (%) of the obtained Si 3 N 4 ceramics,
Bending strength at room temperature and high temperature (1200℃) (Kg/mm 2 )
was measured and the results are shown in Table 1.

【表】 (注) *印は比較例である。
実施例 2 実施例1の第1表No.1と同じ配合の粉末を、第
2表に示す条件で各々焼結、熱間静水圧プレス
(HIP)及び熱処理した。熱処理(無加圧)後の
各焼結体の特性を実施例1同様に測定して第2表
に合せて表示した。
[Table] (Note) *marks are comparative examples.
Example 2 Powders having the same composition as No. 1 in Table 1 of Example 1 were sintered, hot isostatically pressed (HIP) and heat treated under the conditions shown in Table 2. The properties of each sintered body after heat treatment (no pressure) were measured in the same manner as in Example 1 and are shown in Table 2.

【表】【table】

【表】 (注) *印は比較例である。
〔発明の効果〕 本発明によれば、常温から高温まで優れた強度
を安定して維持し得る窒化ケイ素質セラミツクス
を提供することができる。
[Table] (Note) *marks are comparative examples.
[Effects of the Invention] According to the present invention, it is possible to provide silicon nitride ceramics that can stably maintain excellent strength from room temperature to high temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 80重量%以上の窒化ケイ素粉末と、0.1〜10
重量%のa族元素の酸化物粉末と、合計量が
0.1〜10重量%で互いのモル比が0.5〜2.0の範囲内
のアルミナ粉末及び窒化アルミニウム粉末とを混
合し、この混合粉末を非酸化性雰囲気中において
1600〜1850℃で焼結し、焼結体を非酸化性雰囲気
中において1600〜2000℃で熱間静水圧プレスして
緻密化し、その後非酸化性雰囲気中において無加
圧にて1200〜1600℃で熱処理することを特徴とす
る窒化ケイ素質セラミツクスの製造方法。
1 80% by weight or more of silicon nitride powder and 0.1 to 10
% by weight of group a element oxide powder and the total amount
Mix alumina powder and aluminum nitride powder with a molar ratio of 0.1 to 10% by weight and a mutual molar ratio of 0.5 to 2.0, and place this mixed powder in a non-oxidizing atmosphere.
The sintered body is sintered at 1600-1850℃, densified by hot isostatic pressing at 1600-2000℃ in a non-oxidizing atmosphere, and then heated at 1200-1600℃ without pressure in a non-oxidizing atmosphere. 1. A method for producing silicon nitride ceramics, characterized by heat-treating the silicon nitride ceramics.
JP61285689A 1986-11-28 1986-11-28 Manufacture of silicon nitride base ceramics Granted JPS63139057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61285689A JPS63139057A (en) 1986-11-28 1986-11-28 Manufacture of silicon nitride base ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61285689A JPS63139057A (en) 1986-11-28 1986-11-28 Manufacture of silicon nitride base ceramics

Publications (2)

Publication Number Publication Date
JPS63139057A JPS63139057A (en) 1988-06-10
JPH0513104B2 true JPH0513104B2 (en) 1993-02-19

Family

ID=17694769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61285689A Granted JPS63139057A (en) 1986-11-28 1986-11-28 Manufacture of silicon nitride base ceramics

Country Status (1)

Country Link
JP (1) JPS63139057A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2973651B2 (en) * 1991-04-10 1999-11-08 住友電気工業株式会社 Composite bearing structure
JP2597774B2 (en) * 1991-10-21 1997-04-09 住友電気工業株式会社 Silicon nitride based sintered body and method for producing the same
JPH05148028A (en) * 1991-11-28 1993-06-15 Sumitomo Electric Ind Ltd Production of sintered silicon nitride
JPH05155663A (en) * 1991-12-05 1993-06-22 Sumitomo Electric Ind Ltd Silicon nitride sintered body

Also Published As

Publication number Publication date
JPS63139057A (en) 1988-06-10

Similar Documents

Publication Publication Date Title
JPS638071B2 (en)
JPH0513104B2 (en)
JP2736386B2 (en) Silicon nitride sintered body
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JPH0826815A (en) Rare earth compound oxide-based sintered compact and its production
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JPH05139840A (en) Siliceous nitride sintered compact and its production
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH07165462A (en) Alumina-beta-sialon-yag composite material
JPH0559073B2 (en)
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP2581128B2 (en) Alumina-sialon composite sintered body
JPH03205363A (en) Sintered silicon nitride and production thereof
JPH035371A (en) Production of si3n4 sintered compact
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2652936B2 (en) Silicon nitride sintered body and method for producing the same
KR920000889B1 (en) Preparation method of beta-sialon sintered body
JP2783702B2 (en) Silicon nitride sintered body
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP3106208B2 (en) Silicon nitride sintered body and method for producing the same
JP2801455B2 (en) Silicon nitride sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JPH03153574A (en) High strength sialon-based sintered body
JPH0559077B2 (en)