[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05121739A - Insulating gate semiconductor device - Google Patents

Insulating gate semiconductor device

Info

Publication number
JPH05121739A
JPH05121739A JP27926091A JP27926091A JPH05121739A JP H05121739 A JPH05121739 A JP H05121739A JP 27926091 A JP27926091 A JP 27926091A JP 27926091 A JP27926091 A JP 27926091A JP H05121739 A JPH05121739 A JP H05121739A
Authority
JP
Japan
Prior art keywords
semiconductor region
semiconductor
region
drain
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27926091A
Other languages
Japanese (ja)
Inventor
Isao Yoshida
功 吉田
Mineo Katsueda
嶺雄 勝枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27926091A priority Critical patent/JPH05121739A/en
Publication of JPH05121739A publication Critical patent/JPH05121739A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/4175Source or drain electrodes for field effect devices for lateral devices where the connection to the source or drain region is done through at least one part of the semiconductor substrate thickness, e.g. with connecting sink or with via-hole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce the drain capacitance and thereby to improve the high- frequency characteristics of an MOSFET. CONSTITUTION:A low impurity cencentration drain region 5 and a high impurity cencentration drain region 6 are formed using an insulator spacer 7' formed on the end sidewall of a gate electrode 9. Accordingly, the drain region 5 can have a self-aligned structure using the insulator spacer 7' so that the capacitance of the drain including an offset gate part may be notably decreased, thereby improving the high-frequency characteristics of the MOSFETs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に係り、特に
高周波用途に好適な絶縁ゲート半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to an insulated gate semiconductor device suitable for high frequency applications.

【0002】[0002]

【従来の技術】従来、高周波用途の絶縁ゲート形電界効
果トランジスタ(MOSFET)においては、特開昭5
8−111372号公報、特開平1−268066号公
報に記載のように、高周波特性改善のために、低濃度ド
レイン領域を設け、その長さをフォトエッチングのマス
クにより規定したり、高濃度ドレインをスタックド構造
として、ドレイン−基板間の容量の低減の方策が取られ
ていた。
2. Description of the Related Art Conventionally, an insulated gate field effect transistor (MOSFET) for high frequency use is disclosed in Japanese Unexamined Patent Publication (Kokai) No.
As described in Japanese Patent Application Laid-Open No. 8-111372 and Japanese Patent Application Laid-Open No. 1-268066, a low-concentration drain region is provided and its length is defined by a photoetching mask or a high-concentration drain is provided in order to improve high frequency characteristics. As a stacked structure, a measure for reducing the drain-substrate capacitance has been taken.

【0003】[0003]

【発明が解決しようとする課題】前記従来技術は、MO
SFETのドレイン−基板間の容量の低減に着目しては
いるもののオフセットゲート部を含めたドレイン容量の
低減が十分でなく、なお高周波特性に問題があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Although attention is paid to the reduction of the drain-substrate capacitance of the SFET, the reduction of the drain capacitance including the offset gate portion is not sufficient, and there is still a problem in the high frequency characteristics.

【0004】本発明の目的は、ドレイン−基板間特にオ
フセットゲート部の容量を極力低減して、MOSFET
の高周波特性を改善することにある。
An object of the present invention is to reduce the capacitance between the drain and the substrate, particularly the offset gate portion as much as possible, and
Is to improve the high frequency characteristics of.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の一実施形態によれば、高不純物濃度の第1
導電型(p+)の第1半導体領域(1)上に低不純物濃
度の第1導電型(p−)の第2半導体領域(2)を設
け、半導体主面から前記第1半導体領域(1)に達する
ように形成した第1導電型(p)の第3半導体領域
(3)をベース領域とし、高不純物濃度の第2導電型
(n+)の第4半導体領域(4)をMOSFETのソー
ス領域とし、前記第2半導体領域(2)内に低不純物濃
度の第2導電型(n)の第5半導体領域(5)並びに高
不純物濃度の第2導電型(n+)の第6半導体領域
(6)を、ゲート電極(9)の端部側壁を覆うように形
成した絶縁物スペーサ(7’)をマスクとして形成し、
低不純物濃度の第2導電型(n)の第5半導体領域
(5)並びに高不純物濃度の第2導電型(n+)の第6
半導体領域(6)をドレイン領域としたことを特徴とす
るものである(図1参照)。
To achieve the above object, according to one embodiment of the present invention, a high impurity concentration first
A second semiconductor region (2) of the first conductivity type (p−) having a low impurity concentration is provided on the first semiconductor region (1) of the conductivity type (p +), and the first semiconductor region (1) is formed from the semiconductor main surface. To the source region of the MOSFET by using the third semiconductor region (3) of the first conductivity type (p) formed so as to reach the base region as the base region and the fourth semiconductor region (4) of the second conductivity type (n +) having a high impurity concentration. In the second semiconductor region (2), a fifth semiconductor region (5) of the second conductivity type (n) having a low impurity concentration and a sixth semiconductor region (6) of the second conductivity type (n +) having a high impurity concentration are provided. ) Is formed using an insulator spacer (7 ′) formed so as to cover the end side wall of the gate electrode (9) as a mask,
A fifth semiconductor region (5) of the second conductivity type (n) having a low impurity concentration and a sixth semiconductor region (5) of the second conductivity type (n +) having a high impurity concentration.
The semiconductor region (6) is a drain region (see FIG. 1).

【0006】本発明の好適な実施形態によれば、前記ベ
ースに接続され、前記ゲート電極(9)のソース側端部
側壁を覆うように形成した絶縁物スペーサ(7’)をマ
スクとして形成した第1導電型(p)の第7半導体領域
(13)を設けたことを特徴とするものである(図3参
照)。
According to a preferred embodiment of the present invention, an insulator spacer (7 ') connected to the base and formed so as to cover the source side end side wall of the gate electrode (9) is formed using a mask. A seventh semiconductor region (13) of the first conductivity type (p) is provided (see FIG. 3).

【0007】さらに、本発明の他の一実施形態によれ
ば、前記低不純物濃度の第1導電型(p−)の第2半導
体領域(2)内に、前記第5半導体領域(5)より浅く
第1導電型(p)の第8半導体領域(14)を設けたこ
とを特徴とするものである(図4参照)。
According to another embodiment of the present invention, the fifth semiconductor region (5) is formed in the second semiconductor region (2) of the first conductivity type (p-) having a low impurity concentration. It is characterized in that a shallow eighth semiconductor region (14) of the first conductivity type (p) is provided (see FIG. 4).

【0008】さらに、本発明の他の一実施形態によれ
ば、前記低不純物濃度の第1導電型(p−)の第2半導
体領域(2)内に、前記第4半導体領域(4)と第5半
導体領域との間に第1導電型(p)の第9半導体領域
(15)を設けたことを特徴とするものである(図5参
照)。
Further, according to another embodiment of the present invention, the fourth semiconductor region (4) is provided in the second semiconductor region (2) of the first conductivity type (p-) having the low impurity concentration. A ninth semiconductor region (15) of the first conductivity type (p) is provided between the fifth semiconductor region and the fifth semiconductor region (see FIG. 5).

【0009】さらに、本発明の他の一実施形態によれ
ば、低不純物濃度の第1導電型(p)の第2半導体領域
(2)に形成したMOSFETにおいて、ゲート電極の
端部側壁を覆うように形成した絶縁物スペーサ(7’)
をマスクとして形成し、高不純物濃度の第2導電型(n
+)の第4半導体領域(4)をソース、低不純物濃度の
第2導電型(n)の第5半導体領域(5)並びに高不純
物濃度の第2導電型(n+)の第6半導体領域(6)を
ドレインとしたことを特徴とする絶縁ゲート半導体装置
(図7参照)。
Furthermore, according to another embodiment of the present invention, in the MOSFET formed in the second semiconductor region (2) of the first conductivity type (p) having a low impurity concentration, the end sidewall of the gate electrode is covered. Insulator spacer (7 ')
Of the second conductivity type (n
+) Fourth semiconductor region (4) as a source, low impurity concentration second conductivity type (n) fifth semiconductor region (5) and high impurity concentration second conductivity type (n +) sixth semiconductor region ( An insulated gate semiconductor device having a drain of 6) (see FIG. 7).

【0010】[0010]

【作用】本発明の代表的な実施形態(図1)では、オフ
セットゲートMOSFETの低濃度を含むドレイン領域
を、絶縁物スペーサを用いた自己整合構造で構成するこ
とができる。これにより、オフセットゲート部を含めた
ドレイン容量(ドレイン−基板間容量)が大幅に低減で
き、MOSFETの高周波特性を向上させることができ
る。本発明のMOSFETを電力用高周波増幅器として
用いた場合の効率は、10GHzの動作周波数において
従来構造と比較すると、約2倍向上する(図6参照)。
In a typical embodiment of the present invention (FIG. 1), the drain region of the offset gate MOSFET including a low concentration can be formed by a self-aligned structure using an insulator spacer. As a result, the drain capacitance (drain-substrate capacitance) including the offset gate portion can be significantly reduced, and the high frequency characteristics of the MOSFET can be improved. When the MOSFET of the present invention is used as a high frequency power amplifier, the efficiency at the operating frequency of 10 GHz is improved by about 2 times as compared with the conventional structure (see FIG. 6).

【0011】[0011]

【実施例】以下、本発明の実施例を図面により詳細に説
明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0012】図1は本発明の第1の実施例の絶縁ゲート
半導体装置の断面図を示してある。本素子はベース領域
がソースと接続されるソース接地型の高周波用MOSF
ETである。本構造は0.02Ωcm以下のP型半導体
基板1上に低濃度P型半導体層2を厚さ5μmのエピタ
キシャル成長したものを用いる。その半導体表面より、
ベースとなるP型領域3をP型半導体基板1に達するよ
うに5μm以上の深さに形成する。ゲート絶縁膜8は厚
さ30nmで、ゲート電極9はモリブデン金属を用い、
ゲート長0.8μmである。ゲート電極の端部側壁を絶
縁物スペーサ7で覆い、その絶縁物下方の半導体表面領
域に表面濃度が1×1018/cm3以下の低濃度N型領
域5が自己整合的に配置されている。ここで、スペーサ
の幅は0.8μmであり、ドレイン電極を取り出すドレ
イン・コンタクト領域の幅は0.6μmである。なおド
レイン電極12及びソース電極10は高濃度N型領域
6、4に接続されている。さらに、裏面のソース電極1
1は前記P型半導体基板1とベースとなるP型領域3を
介して前記ソース電極10に接続されている。
FIG. 1 is a sectional view of an insulated gate semiconductor device according to the first embodiment of the present invention. This element is a source-grounded high-frequency MOSF whose base region is connected to the source.
It is ET. This structure uses a low-concentration P-type semiconductor layer 2 epitaxially grown to a thickness of 5 μm on a P-type semiconductor substrate 1 of 0.02 Ωcm or less. From the semiconductor surface,
A P-type region 3 serving as a base is formed to a depth of 5 μm or more so as to reach the P-type semiconductor substrate 1. The gate insulating film 8 has a thickness of 30 nm, the gate electrode 9 is made of molybdenum metal,
The gate length is 0.8 μm. An end side wall of the gate electrode is covered with an insulator spacer 7, and a low concentration N-type region 5 having a surface concentration of 1 × 10 18 / cm 3 or less is arranged in a self-aligned manner in a semiconductor surface region below the insulator. .. Here, the width of the spacer is 0.8 μm, and the width of the drain / contact region for taking out the drain electrode is 0.6 μm. The drain electrode 12 and the source electrode 10 are connected to the high concentration N type regions 6 and 4. Furthermore, the source electrode 1 on the back surface
1 is connected to the source electrode 10 via the P-type semiconductor substrate 1 and a P-type region 3 serving as a base.

【0013】図2は図1の本発明の実施例のMOSFE
Tの主要製造プロセスを示す断面構造図である。
FIG. 2 shows the MOSFE of the embodiment of the present invention shown in FIG.
FIG. 6 is a cross-sectional structure diagram showing a main manufacturing process of T.

【0014】図2(a)に示すように、ゲート絶縁膜8
形成後、モリブデン金属9及び絶縁膜7を被着し、ゲー
ト電極9を形成する。しかる後、図2(b)に示すよう
にCVD法により絶縁膜を厚さ0.8μm被着し、全面
ドライエッチングにより、絶縁膜スペーサ7’を形成す
る。図2(c)に示すように前記絶縁膜スペーサ7’を
マスクにして、低濃度ドレイン領域5および高濃度ソー
ス領域4をそれぞれイオン打ち込みにより形成する。打
ち込み量は、ドレインがリン5×1013/cm2、ソー
スが砒素1×1015/cm2である。図2(d)に示す
ようにドレイン電極コンタクト用の高濃度ドレイン領域
6を形成する。打ち込み量は、砒素1×1015/cm2
である。
As shown in FIG. 2A, the gate insulating film 8
After the formation, the molybdenum metal 9 and the insulating film 7 are deposited to form the gate electrode 9. Thereafter, as shown in FIG. 2B, an insulating film having a thickness of 0.8 μm is deposited by the CVD method, and the entire surface is dry-etched to form an insulating film spacer 7 ′. As shown in FIG. 2C, the low-concentration drain region 5 and the high-concentration source region 4 are formed by ion implantation using the insulating film spacer 7'as a mask. The amount of implantation is 5 × 10 13 / cm 2 for phosphorus in the drain and 1 × 10 15 / cm 2 for arsenic in the source. As shown in FIG. 2D, a high concentration drain region 6 for contacting the drain electrode is formed. The implantation amount is 1 × 10 15 / cm 2 arsenic
Is.

【0015】以下の工程は通常に行なわれる高周波半導
体プロセスを用いて製作できるので説明は省略する。
Since the following steps can be manufactured by using a high frequency semiconductor process which is usually performed, the description thereof will be omitted.

【0016】本構造の特徴は、MOSFETの低濃度ド
レイン領域が絶縁物スペーサの自己整合マスクにより、
精度良く制御されるので、目標のドレイン耐圧を得るた
めに余分な面積を必要としないことである。また、ドレ
イン電極を取るための高濃度領域の面積も必要最小限に
することができるので、ドレイン−基板間の容量が、従
来構造に比して、大幅に低減できる。本実施例によれ
ば、1.2×4mm2チップのパワーMOSFETにお
いて、ドレイン耐圧20V、電流容量20A、カットオ
フ周波数16GHzが得られた。
The feature of this structure is that the low-concentration drain region of the MOSFET is formed by a self-aligning mask of an insulator spacer.
Since it is controlled with high precision, no extra area is required to obtain the target drain breakdown voltage. Also, the area of the high concentration region for taking the drain electrode can be minimized, so that the capacitance between the drain and the substrate can be significantly reduced as compared with the conventional structure. According to this example, a drain MOSFET with a breakdown voltage of 20 V, a current capacity of 20 A, and a cutoff frequency of 16 GHz were obtained in a 1.2 × 4 mm 2 chip power MOSFET.

【0017】本発明の実施例の効果を示す特性説明図を
図6に示す。これは、このパワーMOSFETを高周波
増幅器として用いて、電力効率の動作周波数依存性を測
定し、従来の素子と比較したものである。図より明らか
なように、周波数が高くなるにつれて、本発明の実施例
の効果が現われ、10GHzで効率は約2倍に向上す
る。
FIG. 6 is a characteristic explanatory view showing the effect of the embodiment of the present invention. This is obtained by measuring the operating frequency dependence of power efficiency by using this power MOSFET as a high frequency amplifier and comparing it with a conventional device. As is clear from the figure, as the frequency becomes higher, the effect of the embodiment of the present invention appears, and the efficiency is improved about twice at 10 GHz.

【0018】図3は、本発明の第2の実施例の絶縁ゲー
ト半導体装置の断面構造図である。本実施例では、MO
SFETのパンチスルー耐圧を向上させるために、P型
ベース領域13を前記絶縁物スペーサ7’をマスクに形
成している。そのイオン打ち込み量はボロン1×1014
/cm2である。これにより、ドレイン耐圧は25Vに
向上した。
FIG. 3 is a sectional structural view of an insulated gate semiconductor device according to the second embodiment of the present invention. In this embodiment, MO
In order to improve the punch-through breakdown voltage of the SFET, the P-type base region 13 is formed using the insulator spacer 7'as a mask. The ion implantation amount is boron 1 × 10 14
/ Cm 2 . As a result, the drain breakdown voltage was improved to 25V.

【0019】図4は、本発明の第3の実施例の絶縁ゲー
ト半導体装置の断面構造図である。本実施例では、MO
SFETのパンチスルー耐圧を向上させるために、P型
不純物領域14を、あらかじめ形成している。この14
の領域の深さは、前記N型低濃度ドレイン領域5よりも
浅く設定してある。これにより、ドレイン−基板間の容
量をほとんど増加させないで、ドレイン耐圧は24Vに
向上させることができた。
FIG. 4 is a sectional structural view of an insulated gate semiconductor device according to the third embodiment of the present invention. In this embodiment, MO
The P-type impurity region 14 is formed in advance in order to improve the punch-through breakdown voltage of the SFET. This 14
The depth of the region is set to be shallower than that of the N type low concentration drain region 5. As a result, the drain breakdown voltage could be improved to 24 V without increasing the drain-substrate capacitance.

【0020】図5は、本発明の第4の実施例の絶縁ゲー
ト半導体装置の断面構造図である。本実施例では、MO
SFETのパンチスルー耐圧を向上させるために、P型
不純物領域15を、あらかじめ部分的に形成している。
これにより、ドレイン−基板間の容量を全く増加させな
いで、ドレイン耐圧は24Vに向上させることができ
た。
FIG. 5 is a sectional structural view of an insulated gate semiconductor device according to the fourth embodiment of the present invention. In this embodiment, MO
In order to improve the punch through breakdown voltage of the SFET, the P-type impurity region 15 is partially formed in advance.
As a result, the drain breakdown voltage could be improved to 24V without increasing the drain-substrate capacitance at all.

【0021】図7は、本発明の第5の実施例の絶縁ゲー
ト半導体装置の断面構造図である。本実施例では、MO
SFETのソース電極10を表面より取り出す構造にし
ている。そして、ソース領域4をも前記絶縁物スペーサ
7’をマスクに形成している。その結果、ソース領域も
低面積化が図れ、集積度が向上した。
FIG. 7 is a sectional structural view of an insulated gate semiconductor device according to the fifth embodiment of the present invention. In this embodiment, MO
The structure is such that the source electrode 10 of the SFET is taken out from the surface. The source region 4 is also formed by using the insulator spacer 7'as a mask. As a result, the area of the source region can be reduced and the degree of integration is improved.

【0022】[0022]

【発明の効果】本発明によれば、ドレイン−基板間の容
量が低減できるので、MOSFETの高周波特性が格段
に向上するという効果がある。
According to the present invention, the capacitance between the drain and the substrate can be reduced, so that there is an effect that the high frequency characteristics of the MOSFET are remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の半導体装置の断面図で
ある。
FIG. 1 is a sectional view of a semiconductor device according to a first embodiment of the present invention.

【図2】図1の本発明の実施例の断面構造を作成するた
めの主要製造プロセスを示す断面構造図である。
FIG. 2 is a sectional structural view showing a main manufacturing process for producing a sectional structure of the embodiment of the present invention in FIG.

【図3】本発明の第2の実施例の半導体装置の断面図で
ある。
FIG. 3 is a sectional view of a semiconductor device according to a second embodiment of the present invention.

【図4】本発明の第3の実施例の半導体装置の断面図で
ある。
FIG. 4 is a sectional view of a semiconductor device according to a third embodiment of the present invention.

【図5】本発明の第4の実施例の半導体装置の断面図で
ある。
FIG. 5 is a sectional view of a semiconductor device according to a fourth embodiment of the present invention.

【図6】図1の本発明の第1の実施例の特性を説明する
図である。
FIG. 6 is a diagram illustrating characteristics of the first embodiment of the present invention in FIG.

【図7】本発明の第5の実施例の半導体装置である。FIG. 7 is a semiconductor device according to a fifth embodiment of the present invention.

【符号の説明】 1…P型高濃度半導体基板、2…P型半導体領域、3…
P型ベース領域、4…N型ソース領域、5…N型低濃度
ドレイン領域、6…N型低濃度ドレイン領域、7…絶縁
膜、7’…絶縁膜スペーサ、8…ゲート絶縁膜、9…ゲ
ート電極、10…ソース電極、11…ソース裏面電極、
12…ドレイン電極、13、14、15…P型低濃度ベ
ース領域。
[Explanation of reference numerals] 1 ... P-type high-concentration semiconductor substrate, 2 ... P-type semiconductor region, 3 ...
P type base region, 4 ... N type source region, 5 ... N type low concentration drain region, 6 ... N type low concentration drain region, 7 ... Insulating film, 7 '... Insulating film spacer, 8 ... Gate insulating film, 9 ... Gate electrode, 10 ... Source electrode, 11 ... Source back surface electrode,
12 ... Drain electrode, 13, 14, 15 ... P type low concentration base region.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の第1半導体領域上に第1導電
型の第2半導体領域を設け、半導体主面から前記第1半
導体領域に達するように形成した第1導電型の第3半導
体領域をベースとし、第2導電型の第4半導体領域をM
OSFETのソースとし、前記第2半導体領域内に、第
2導電型の第5半導体領域並びに第2導電型の第6半導
体領域を、ゲート電極の端部側壁を覆うように形成した
絶縁物スペーサをマスクとして形成し、それらをドレイ
ンとしたことを特徴とする絶縁ゲート半導体装置。
1. A first-conductivity-type third semiconductor formed so that a first-conductivity-type second semiconductor region is provided on a first-conductivity-type first semiconductor region so as to reach the first semiconductor region from a semiconductor main surface. Based on the semiconductor region, the second conductivity type fourth semiconductor region is M
An insulating material spacer, which is a source of the OSFET and has a second conductive type fifth semiconductor region and a second conductive type sixth semiconductor region formed in the second semiconductor region so as to cover the end sidewall of the gate electrode, is formed. An insulated gate semiconductor device, which is formed as a mask and is used as a drain.
【請求項2】前記ベースに接続され、前記ゲート電極の
ソース側端部側壁を覆うように形成した絶縁物スペーサ
をマスクとして形成した第1導電型の第7半導体領域を
設けたことを特徴とする請求項1記載の絶縁ゲート半導
体装置。
2. A seventh semiconductor region of the first conductivity type is provided, which is connected to the base and is formed by using an insulating spacer formed so as to cover an end side wall of the source side of the gate electrode. The insulated gate semiconductor device according to claim 1.
【請求項3】前記第1導電型の第2半導体領域内に、前
記第5半導体領域より浅く第1導電型の第8半導体領域
を設けたことを特徴とする請求項1記載の絶縁ゲート半
導体装置。
3. The insulated gate semiconductor according to claim 1, wherein an eighth semiconductor region of the first conductivity type is provided in the second semiconductor region of the first conductivity type so as to be shallower than the fifth semiconductor region. apparatus.
【請求項4】前記第4半導体領域と第5半導体領域との
間に第1導電型の第9半導体領域を設けたことを特徴と
する請求項1記載の絶縁ゲート半導体装置。
4. The insulated gate semiconductor device according to claim 1, wherein a ninth semiconductor region of the first conductivity type is provided between the fourth semiconductor region and the fifth semiconductor region.
【請求項5】第1導電型の第2半導体領域上に形成した
MOSFETにおいて、ゲート電極の端部側壁を覆うよ
うに形成した絶縁物スペーサをマスクとして形成し、第
2導電型の第4半導体領域をソース、第5半導体領域並
びに第2導電型の第6半導体領域をドレインとしたこと
を特徴とする絶縁ゲート半導体装置。
5. In a MOSFET formed on a second semiconductor region of the first conductivity type, an insulator spacer formed so as to cover an end side wall of a gate electrode is used as a mask to form a fourth semiconductor of the second conductivity type. An insulated gate semiconductor device, wherein the region is a source and the fifth semiconductor region and the second conductivity type sixth semiconductor region are drains.
JP27926091A 1991-10-25 1991-10-25 Insulating gate semiconductor device Pending JPH05121739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27926091A JPH05121739A (en) 1991-10-25 1991-10-25 Insulating gate semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27926091A JPH05121739A (en) 1991-10-25 1991-10-25 Insulating gate semiconductor device

Publications (1)

Publication Number Publication Date
JPH05121739A true JPH05121739A (en) 1993-05-18

Family

ID=17608686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27926091A Pending JPH05121739A (en) 1991-10-25 1991-10-25 Insulating gate semiconductor device

Country Status (1)

Country Link
JP (1) JPH05121739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760440A (en) * 1995-02-21 1998-06-02 Fuji Electric Co., Ltd. Back-source MOSFET
US6552389B2 (en) 2000-12-14 2003-04-22 Kabushiki Kaisha Toshiba Offset-gate-type semiconductor device
US6864533B2 (en) 2000-09-11 2005-03-08 Kabushiki Kaisha Toshiba MOS field effect transistor with reduced on-resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760440A (en) * 1995-02-21 1998-06-02 Fuji Electric Co., Ltd. Back-source MOSFET
US6864533B2 (en) 2000-09-11 2005-03-08 Kabushiki Kaisha Toshiba MOS field effect transistor with reduced on-resistance
US6552389B2 (en) 2000-12-14 2003-04-22 Kabushiki Kaisha Toshiba Offset-gate-type semiconductor device
US7026214B2 (en) 2000-12-14 2006-04-11 Kabushiki Kaisha Toshiba Offset-gate-type semiconductor device
US7061060B2 (en) 2000-12-14 2006-06-13 Kabushiki Kaisha Toshiba Offset-gate-type semiconductor device

Similar Documents

Publication Publication Date Title
JP3528420B2 (en) Semiconductor device and manufacturing method thereof
US5970351A (en) Production method for a MISFET, complementary MISFET
US6518138B2 (en) Method of forming Self-aligned lateral DMOS with spacer drift region
US6207519B1 (en) Method of making semiconductor device having double spacer
JPH0629532A (en) Mosfet and its manufacture
US7550352B2 (en) MOS transistor having a recessed gate electrode and fabrication method thereof
EP1103074A2 (en) Mosfet having self-aligned gate and buried shield and method of making same
US5182222A (en) Process for manufacturing a DMOS transistor
EP0115652B1 (en) Insulated gate field effect transistor and method of manufacturing the same
KR19980047250A (en) Silicon / silicon germanium MOS field transistor (MOSFET) and manufacturing method thereof
US6150698A (en) Semiconductor device and method of forming semiconductor device having non-uniformly doped well
US5451536A (en) Power MOSFET transistor
CN111785774B (en) CMOS device in BCD process and manufacturing method thereof
US5670396A (en) Method of forming a DMOS-controlled lateral bipolar transistor
JPH05121739A (en) Insulating gate semiconductor device
JPH036863A (en) Semiconductor device
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JPH0697447A (en) Insulated gate semiconductor device
JPH0712064B2 (en) Method for manufacturing semiconductor integrated circuit
JPS59149059A (en) Metal insulator semiconductor transistor and manufacture thereof
JP2506947B2 (en) Semiconductor device and manufacturing method thereof
JP2765142B2 (en) Method for manufacturing semiconductor device
JPH04330782A (en) Fine semiconductor device and manufacture thereof
JP3425877B2 (en) Power MOSFET and method of manufacturing the same
JPH07106569A (en) Semiconductor device and its manufacture