[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0512021B2 - - Google Patents

Info

Publication number
JPH0512021B2
JPH0512021B2 JP58121038A JP12103883A JPH0512021B2 JP H0512021 B2 JPH0512021 B2 JP H0512021B2 JP 58121038 A JP58121038 A JP 58121038A JP 12103883 A JP12103883 A JP 12103883A JP H0512021 B2 JPH0512021 B2 JP H0512021B2
Authority
JP
Japan
Prior art keywords
catalyst
carrier layer
combustion
carrier
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58121038A
Other languages
Japanese (ja)
Other versions
JPS6014939A (en
Inventor
Tomiaki Furuya
Terunobu Hayata
Chikau Yamanaka
Junji Hizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58121038A priority Critical patent/JPS6014939A/en
Publication of JPS6014939A publication Critical patent/JPS6014939A/en
Publication of JPH0512021B2 publication Critical patent/JPH0512021B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガスタービン用燃焼触媒に関し、更
に詳しくは、約300〜1500℃の温度範囲において、
高活性を有するガスタービン用燃焼触媒に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a combustion catalyst for a gas turbine, and more particularly, in a temperature range of about 300 to 1500°C.
The present invention relates to a combustion catalyst for gas turbines having high activity.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、石油資源等の枯渇化に伴い、エネルギー
資源を効率的に使用するため、例えば、ガスター
ビン等においては、できるだけ高温において燃料
を燃焼させることが望まれている。
In recent years, with the depletion of petroleum resources and the like, in order to use energy resources efficiently, for example, in gas turbines and the like, it is desired to burn fuel at as high a temperature as possible.

しかしながら、従来の燃焼方法は、燃料と空気
の混合物を、スパークプラグ等を用いて着火し
て、気相燃焼せしめる方法であるため、燃焼器内
には部分的に2000℃を超える高温部が存在するこ
とになる。そして、この場合、高温部において、
窒素酸化物(NOx)が多量に生成し、環境汚染
等の問題を生ずることが知られている。
However, in the conventional combustion method, a mixture of fuel and air is ignited using a spark plug or the like to cause gas phase combustion, so there are parts of the combustor with high temperatures exceeding 2000℃. I will do it. In this case, in the high temperature section,
It is known that large amounts of nitrogen oxides (NO x ) are produced, causing problems such as environmental pollution.

このような問題を解消するために、触媒を用い
て燃料と空気の混合物を燃焼せしめる触媒燃焼方
式が提案されている。この燃焼方式によれば、均
一な燃焼が可能となり、且つ、NOxが生成しな
い上限温度である1500℃程度まで、燃焼温度を高
めることができる。
In order to solve these problems, a catalytic combustion method has been proposed in which a mixture of fuel and air is combusted using a catalyst. According to this combustion method, uniform combustion is possible, and the combustion temperature can be increased to about 1500° C., which is the upper limit temperature at which NO x is not generated.

この触媒燃焼方式をガスタービンに適用する場
合、用いる燃焼触媒には相反する2つの特性が要
求される。すなわち、低温着火性と耐熱性であ
る。
When this catalytic combustion method is applied to a gas turbine, the combustion catalyst used is required to have two contradictory characteristics. That is, low-temperature ignitability and heat resistance.

現在実用されているガスタービンにおいて、燃
焼用空気は300℃程度に予熱された後、圧縮送風
機で燃焼器に導入されている。そして、火炎燃焼
した混合気は1200℃程度に冷却された後タービン
内へ送入される。従つて、ガスタービン燃焼器内
に燃焼用触媒充填部を設置した場合、該燃焼触媒
には300℃程度の温度で燃料用ガスを着火させる
と共に、燃焼ガスによる1200℃程度の温度に耐え
ることが要求されることになる。
In gas turbines currently in use, combustion air is preheated to about 300°C and then introduced into the combustor using a compressor blower. The flaming mixture is then cooled to about 1200°C and then sent into the turbine. Therefore, when a combustion catalyst filling part is installed in a gas turbine combustor, the combustion catalyst is capable of igniting fuel gas at a temperature of about 300°C and can withstand temperatures of about 1200°C caused by the combustion gas. will be required.

このようなガスタービン用燃焼触媒としては、
第1図に例示したような構造の貴金属系触媒が知
られている。すなわち、一定の機械的強度を有す
るα−アルミナのような耐熱性担体1の表面にγ
−アルミナのような活性担体の多孔質層2を設
け、該担体層2の表面に各種の貴金属の粒子3を
1種又は2種以上浸漬法などによつて付着・担持
せしめたものである。この場合、担体層2を設け
るに当り、その材料に貴金属の触媒源を混合しこ
の混合物で耐熱性担体1の表面を被覆してもよ
い。いずれにしても、触媒能を有する貴金属は担
体層2の表面に均一に担持されるか又は一部を表
面に露出出した状態で担体層2に均一に分散して
いる。
Such combustion catalysts for gas turbines include:
Noble metal catalysts having a structure as illustrated in FIG. 1 are known. That is, γ is applied to the surface of a heat-resistant support 1 such as α-alumina that has a certain mechanical strength.
- A porous layer 2 of an active carrier such as alumina is provided, and one or more kinds of noble metal particles 3 are attached and supported on the surface of the carrier layer 2 by a dipping method or the like. In this case, when providing the carrier layer 2, a noble metal catalyst source may be mixed with the material and the surface of the heat-resistant carrier 1 may be coated with this mixture. In any case, the noble metal having catalytic ability is uniformly supported on the surface of the carrier layer 2, or is uniformly dispersed in the carrier layer 2 with a portion exposed on the surface.

とくに、この種の触媒においては、貴金属とし
て白金(Pt)、パラジウム(Pd)又はそれらの合
金が多用されている。とくにPtとPdを同時に混
在した状態で担持する触媒が知られている。
In particular, in this type of catalyst, platinum (Pt), palladium (Pd), or an alloy thereof is often used as a noble metal. In particular, catalysts that support Pt and Pd in a mixed state are known.

しかしながら、PtとPdを混在して担持する触
媒には次のような問題がある。すなわち、低温か
ら高温に至る温度域全般に亘つて高活性を示さな
いということである。
However, catalysts that support a mixture of Pt and Pd have the following problems. That is, it does not exhibit high activity over the entire temperature range from low to high temperatures.

したがつて、このような触媒は、300℃〜1500
℃という広範囲な温度域においても高活性を必要
とするようなガスタービン用の燃焼触媒として必
ずしも有効なものではない。
Therefore, such a catalyst is suitable for temperatures between 300℃ and 1500℃
It is not necessarily effective as a combustion catalyst for gas turbines that require high activity even in a wide temperature range of °C.

〔発明の目的〕[Purpose of the invention]

本発明は、上記したような従来のガスタービン
用燃焼触媒における欠点を解消し、低温での着火
性に優れ、300〜1500℃の温度域にあつても高活
性である新規な構造のガスタービン用燃焼触媒の
提供を目的とする。
The present invention eliminates the drawbacks of conventional combustion catalysts for gas turbines as described above, and provides a gas turbine with a novel structure that has excellent ignition performance at low temperatures and is highly active even in the temperature range of 300 to 1500 degrees Celsius. The purpose is to provide combustion catalysts for

〔発明の概要〕[Summary of the invention]

本発明者らは、Pt,Pdを担持する触媒におけ
る上記した問題点を解決すべく鋭意研究を重ねた
結果、天然ガスを燃料にした場合、Pdは600℃以
下の低温域では優れた活性を示し、Ptは600℃以
上の高温域では優れた活性を示すという事実を見
出し、また、活性担体層にPtとPdが混在する場
合には、両者は相互に近接して位置するので使用
中に触媒中のPtとPdがそれぞれ熱移動し遂には
Pdより低温における活性の低いPt/Pdの合金を
形成してしまうという事実を見出した。これらの
事実から、活性担体層におけるPtとPdの存在形
態を、混在した状態ではなく相互に隔離しあつた
状態で存在させれば、使用中の合金化は起らず、
それぞれの活性が有効に利用できるとの着想を
得、本発明のガスタービン用燃焼触媒を開発する
に到つた。
The present inventors have conducted extensive research to solve the above-mentioned problems with catalysts supporting Pt and Pd, and have found that Pd has excellent activity in the low temperature range of 600℃ or less when natural gas is used as fuel. They discovered that Pt exhibits excellent activity in the high temperature range of 600℃ or higher, and also found that when Pt and Pd are mixed in the active carrier layer, they are located close to each other, so it is difficult to use during use. Pt and Pd in the catalyst transfer heat and finally
It was discovered that a Pt/Pd alloy is formed which has lower activity at low temperatures than Pd. From these facts, if Pt and Pd are present in the active carrier layer in a state where they are separated from each other rather than in a mixed state, alloying will not occur during use.
Based on the idea that each activity can be effectively utilized, we have developed the combustion catalyst for gas turbines of the present invention.

すなわち、本発明のガスタービン用燃焼触媒
は、耐熱性担体と、該担体の表面を被覆して形成
される活性担体層と、該担体層内又は表面に分散
して担持される白金及びパラジウムの粒子とから
成るガスタービン用燃焼触媒において、該白金及
びパラジウムの粒子が、該担体層内又は表面に混
在して分散するのではなく、それぞれ別個に層を
成して存在していることを特徴とする。
That is, the combustion catalyst for gas turbines of the present invention comprises a heat-resistant carrier, an active carrier layer formed by coating the surface of the carrier, and platinum and palladium dispersed and supported within or on the carrier layer. A combustion catalyst for a gas turbine consisting of particles, characterized in that the platinum and palladium particles are not mixed and dispersed in or on the carrier layer, but are present in separate layers. shall be.

本発明の触媒の1例を第2図に示す。図で1は
耐熱性担体である。本発明において使用される耐
熱性担体は、1500℃程度の高温酸化性雰囲気中に
おいても安定な性質を有するものであればいかな
るものでもよく、これらの具体例としては、コー
ジライト、ムライト、α−アルミナ、ジルコニア
スピネル、チタニア製のセラミツク製担体等が挙
げられる。担体の形状は、通常、触媒体として使
用されている形状であれば特に制限はなく、例え
ば、ペレツト状、ハニカム状等が挙げられる。
An example of the catalyst of the present invention is shown in FIG. In the figure, 1 is a heat-resistant carrier. The heat-resistant carrier used in the present invention may be any carrier as long as it has stable properties even in a high-temperature oxidizing atmosphere of about 1500°C, and specific examples thereof include cordierite, mullite, α- Examples include ceramic carriers made of alumina, zirconia spinel, and titania. The shape of the carrier is not particularly limited as long as it is a shape normally used as a catalyst, and examples thereof include pellet shape, honeycomb shape, etc.

2は、耐熱性担体1の表面を被覆して形成され
る活性担体の層で、γ−アルミナ、α−アルミ
ナ、ジルコニアなどの多孔質セラミツクス又はこ
れに各種の希土類を含有せしめて成る層であり、
本発明にあつては特別に限定されるものではな
い。
2 is an active carrier layer formed by coating the surface of the heat-resistant carrier 1, and is a layer made of porous ceramics such as γ-alumina, α-alumina, and zirconia, or a layer containing various rare earth elements therein. ,
The present invention is not particularly limited.

4,5はそれぞれPd,Ptの粒子である。本発
明にあつては、Pd,Ptが担体層2の表面に混在
して存在するのではなく、各金属が担体1の表面
垂直方向にある間隔をおいていわば触媒表面に広
がる層状に別々に存在することを最大の特徴とす
る。
4 and 5 are Pd and Pt particles, respectively. In the present invention, Pd and Pt are not present in a mixed manner on the surface of the carrier layer 2, but each metal is separately present in a layer-like manner spread over the catalyst surface at certain intervals in the direction perpendicular to the surface of the carrier 1. Its greatest feature is that it exists.

活性担体層2へのPd,Ptの担持は次のように
して行なうことができる。第1の方法。まず、ア
ルミナゾル又はγ−アルミナなどの担体層の材料
とPdあるいはPdOの微粉又はPdの塩の微粉を混
合し、この混合物のスラリーで担体1の表面を被
覆した後、乾燥して焼成する。担体層が形成され
そこにはPd4が担持される。このとき用いるPd
の塩としては、塩化パラジウム、PdCl2(NH32
(NH42PdCl4、Pd(OH)2などをあげることがで
きる。
Pd and Pt can be supported on the active carrier layer 2 in the following manner. First method. First, a carrier layer material such as alumina sol or γ-alumina is mixed with fine powder of Pd or PdO or fine powder of Pd salt, and the surface of the carrier 1 is coated with a slurry of this mixture, and then dried and fired. A carrier layer is formed and Pd4 is supported thereon. Pd used at this time
The salts include palladium chloride, PdCl 2 (NH 3 ) 2 ,
Examples include (NH 4 ) 2 PdCl 4 and Pd(OH) 2 .

次に、この担体層の上を、PtあるいはPdOの
微粉又はその塩の微粉とアルミナゾル又はγ−ア
ルミナなどの担体層の材料から成る混合物スラリ
ーで被覆した後乾燥して焼成する。用いるPtの
塩としては、ヘキサクロロ白金酸、塩化白金、テ
トラクロロ白金酸などをあげることができる。
Next, this carrier layer is coated with a slurry of a mixture consisting of a fine powder of Pt or PdO, or a fine powder of its salt, and a carrier layer material such as alumina sol or γ-alumina, and then dried and fired. Examples of the Pt salt used include hexachloroplatinic acid, platinum chloride, and tetrachloroplatinic acid.

このようにして、第2図のように担体層2の内
側にはPdが担持され、それからある間隔をおい
て外側にはPdが担持されている担体層が構成さ
れる。
In this way, as shown in FIG. 2, a carrier layer is formed in which Pd is supported on the inside of the carrier layer 2, and Pd is supported on the outside at a certain interval.

第2の方法。担体1の表面に例えばアルミナゾ
ル、γ−アルミナのスラリーのみを用いて活性担
体層2を形成する。つぎに、これを所定濃度の例
えば塩化パラジウム溶液に浸漬して活性担体層2
の表面にPdを担持させる。その後、この上に上
記と同様にして再び活性担体層を形成し、それを
例えばヘキサクロロ白金溶液に浸漬してPtを第
2の活性担体層に担持させる。かくして、担体、
第1の活性担体層、Pdの層、第2の活性担体層、
Ptの層がそれぞれ所定の間隔を置いて形成され
る。すなわち、この場合もPd,Ptは互いに近接
することなく存在することになる。この場合、活
性担体層は多孔質なので内側のPdにも燃料と空
気の混合気は接触することができる。
Second method. An active carrier layer 2 is formed on the surface of the carrier 1 using only a slurry of, for example, alumina sol or γ-alumina. Next, this is immersed in, for example, a palladium chloride solution of a predetermined concentration to form an active carrier layer 2.
Pd is supported on the surface. Thereafter, an active carrier layer is formed thereon again in the same manner as above, and it is immersed in, for example, a hexachloroplatinum solution to support Pt on the second active carrier layer. Thus, the carrier,
a first active carrier layer, a layer of Pd, a second active carrier layer,
Pt layers are formed at predetermined intervals. That is, in this case as well, Pd and Pt exist without being close to each other. In this case, since the active carrier layer is porous, the fuel-air mixture can also come into contact with the Pd inside.

なお、2つの方法において、活性担体層への
Pd,Ptの存在順序を逆にしても何ら不都合を生
じないことはいうまでもない。
In addition, in the two methods, the active carrier layer is
It goes without saying that no inconvenience will occur even if the order of existence of Pd and Pt is reversed.

〔発明の実施例〕[Embodiments of the invention]

(1) 触媒の調製 アルミナゾル100g、硝酸セリウム7g、塩化
パラジウム水溶液20gを適当量の水に分散させて
スラリー()を調製した。また、アルミナゾル
100g、硝酸セリウム7g、ヘキサクロロ白金酸
溶液を15gを適当量の水に分散させてスラリー
()を調製した。
(1) Preparation of catalyst A slurry () was prepared by dispersing 100 g of alumina sol, 7 g of cerium nitrate, and 20 g of an aqueous palladium chloride solution in an appropriate amount of water. Also, alumina sol
A slurry () was prepared by dispersing 100 g of cerium nitrate, 7 g of cerium nitrate, and 15 g of hexachloroplatinic acid solution in an appropriate amount of water.

内径25mm、長さ150mmのコージライト製のハニ
カム担体をスラリー()で被覆し、乾燥後1000
℃で焼成した。更にこの上をスラリー()で被
覆し、乾燥後1000℃で焼成した。これを触媒Aと
した。
A cordierite honeycomb carrier with an inner diameter of 25 mm and a length of 150 mm was coated with slurry (), and after drying it was
Calcined at ℃. Further, this was coated with slurry (), dried and then fired at 1000°C. This was designated as catalyst A.

同様のハニカム担体をスラリー()で被覆
し、乾燥後1000℃で焼成したものを触媒B、スラ
リー()で被覆し乾燥後焼成したものを触媒
C、スラリー()とスラリー()を混合した
混合スラリーで被覆し乾燥後焼成したものを触媒
Dとした。
Catalyst B is a similar honeycomb carrier coated with slurry (), dried and calcined at 1000℃, and catalyst C is a mixture of slurry () and slurry (). Catalyst D was obtained by coating with slurry, drying, and firing.

これら触媒のうち触媒Aが本発明の触媒であ
る。
Among these catalysts, catalyst A is the catalyst of the present invention.

(2) 触媒の効果 以上4種類の触媒の中に、濃度3%のメタンガ
ス流を入口流速20m/secで流入し、各触媒温度
におけるメタン転化率を測定した。その結果を第
3図に示した。図から明らかなように、触媒A
(曲線a)、触媒D(曲線d)は低温域からメタン
転化率が大きく500℃以上でガスは完全燃焼した。
触媒B(曲線b)は低温域からメタンガスは転化
するが、600℃以上でも完全燃焼することがない。
触媒C(曲線c)は500℃以下ではほとんどメタン
を転化しないが600℃以上で完全燃焼した。
(2) Effect of catalyst A methane gas flow with a concentration of 3% was introduced into the four types of catalysts at an inlet flow rate of 20 m/sec, and the methane conversion rate at each catalyst temperature was measured. The results are shown in Figure 3. As is clear from the figure, catalyst A
(Curve a) and Catalyst D (Curve d) had a large methane conversion rate in the low temperature range and the gas was completely combusted at 500°C or higher.
Catalyst B (curve b) converts methane gas from a low temperature range, but does not completely burn even at temperatures above 600°C.
Catalyst C (curve c) hardly converted methane at temperatures below 500°C, but completely burned at temperatures above 600°C.

次に、これら4種類の触媒を予め空気中で1000
℃、30時間加熱しておき、それを用いて上と同様
の条件でメタン転化率を測定した。その結果を第
4図に示した。触媒A(曲線a′)は低温域からメ
タン転化率は高く520℃以上で完全燃焼した。触
媒B(曲線b′)は低温域からメタンを転化するが
600℃以上の高温域でもガスを完全燃焼させるこ
とはなかつた。触媒C(曲線c′)は550℃以下の低
温域ではほとんどメタンを転化しなかつたが、
620℃でガスを完全燃焼させた。そして、触媒D
(曲線d′)は、第3図の曲線dとは全く異なり、
540℃の低温域ではほとんどメタンを転化するこ
となく、650℃以上の高温域ではじめてメタンを
完全燃焼させた。
Next, these four types of catalysts were heated in air for 1000 min.
℃ for 30 hours, and then used to measure the methane conversion rate under the same conditions as above. The results are shown in Figure 4. Catalyst A (curve a') had a high methane conversion rate in the low temperature range and was completely combusted at temperatures above 520°C. Catalyst B (curve b') converts methane from the low temperature range.
Even at high temperatures of over 600℃, the gas was not completely combusted. Catalyst C (curve c') hardly converted methane in the low temperature range below 550°C;
The gas was completely combusted at 620℃. And catalyst D
(Curve d') is completely different from curve d in Figure 3,
Almost no methane was converted in the low temperature range of 540°C, and methane was completely combusted for the first time in the high temperature range of 650°C or higher.

〔発明の効果〕〔Effect of the invention〕

本発明のガスタービン用燃焼触媒は、従来の貴
金属系燃焼触媒に比べて、低温着火性を保持しな
がら、その耐熱性が大幅に向上したものである。
従つて、エネルギーの節約及び効率的利用が可能
であり、又、NOx等を発生させることなく燃焼
が可能であるため、環境汚染等の問題を惹き起こ
すことがなく有用である。
The combustion catalyst for gas turbines of the present invention has significantly improved heat resistance while maintaining low-temperature ignitability compared to conventional noble metal-based combustion catalysts.
Therefore, it is possible to save and use energy efficiently, and it is possible to burn it without generating NO x etc., so it is useful without causing problems such as environmental pollution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれガスタービン用の燃
焼触媒の表面部分を模式的に表わす図で、第1図
が従来のもの、第2図が本発明のものである。第
3図は実施例の触媒の入口温度とメタン転化率の
関係図、第4図は実施例の触媒を空気中で1000
℃、30時間加熱した後における入口温度とメタン
転化率の関係図である。 1…耐熱性担体、2…活性担体層、3…貴金属
の粒子、4…Pd、5…Pt。
FIG. 1 and FIG. 2 are diagrams each schematically showing the surface portion of a combustion catalyst for a gas turbine, with FIG. 1 being a conventional one and FIG. 2 being an inventive one. Figure 3 is a diagram showing the relationship between the inlet temperature and methane conversion rate of the catalyst of the example, and Figure 4 shows the relationship between the catalyst of the example and the methane conversion rate in air.
30C is a diagram showing the relationship between inlet temperature and methane conversion rate after heating for 30 hours. DESCRIPTION OF SYMBOLS 1... Heat-resistant carrier, 2... Active carrier layer, 3... Precious metal particles, 4... Pd, 5... Pt.

Claims (1)

【特許請求の範囲】 1 耐熱性担体と、該担体の表面を被覆して形成
される活性担体層と、該担体層内又は表面に分散
して担持される白金及びパラジウムの粒子とから
成るガスタービン用燃焼触媒において、 該白金及びパラジウムの粒子が、該担体層内又
は表面に混在して分散するのではなく、それぞれ
別個に層を成して存在していることを特徴とする
ガスタービン用燃焼触媒。
[Claims] 1. A gas consisting of a heat-resistant carrier, an active carrier layer formed by coating the surface of the carrier, and platinum and palladium particles dispersed and supported within or on the carrier layer. A combustion catalyst for a gas turbine, characterized in that the platinum and palladium particles are not dispersed in a mixed manner within or on the surface of the carrier layer, but are present in separate layers. combustion catalyst.
JP58121038A 1983-07-05 1983-07-05 Combustion catalyst for gas turbine Granted JPS6014939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58121038A JPS6014939A (en) 1983-07-05 1983-07-05 Combustion catalyst for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121038A JPS6014939A (en) 1983-07-05 1983-07-05 Combustion catalyst for gas turbine

Publications (2)

Publication Number Publication Date
JPS6014939A JPS6014939A (en) 1985-01-25
JPH0512021B2 true JPH0512021B2 (en) 1993-02-17

Family

ID=14801278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121038A Granted JPS6014939A (en) 1983-07-05 1983-07-05 Combustion catalyst for gas turbine

Country Status (1)

Country Link
JP (1) JPS6014939A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326253A (en) * 1990-11-26 1994-07-05 Catalytica, Inc. Partial combustion process and a catalyst structure for use in the process
US5250489A (en) * 1990-11-26 1993-10-05 Catalytica, Inc. Catalyst structure having integral heat exchange
US5281128A (en) * 1990-11-26 1994-01-25 Catalytica, Inc. Multistage process for combusting fuel mixtures
US5258349A (en) * 1990-11-26 1993-11-02 Catalytica, Inc. Graded palladium-containing partial combustion catalyst
US5425632A (en) * 1990-11-26 1995-06-20 Catalytica, Inc. Process for burning combustible mixtures
US5259754A (en) * 1990-11-26 1993-11-09 Catalytica, Inc. Partial combustion catalyst of palladium on a zirconia support and a process for using it
US5248251A (en) * 1990-11-26 1993-09-28 Catalytica, Inc. Graded palladium-containing partial combustion catalyst and a process for using it
JP4868231B2 (en) * 2005-12-02 2012-02-01 三菱マテリアル株式会社 Porous titanium having low contact resistance and method for producing the same

Also Published As

Publication number Publication date
JPS6014939A (en) 1985-01-25

Similar Documents

Publication Publication Date Title
JPS6133233A (en) Combustion catalyst for methane fuel and combustion system using said catalyst
JPH0512021B2 (en)
JPS6014938A (en) Combustion catalyst for gas turbine
JPS60200021A (en) Combustor of gas turbine
JPS5952529A (en) High temperature combustion catalyst
JPS6051543A (en) Oxidizing catalyst
JPH0156325B2 (en)
JPS61252409A (en) Method of igniting methane fuel
JPS60147243A (en) Gas turbine combustor
JPS6352283B2 (en)
JPS60202235A (en) Combustor of gas turbine
JPS59169536A (en) High temperature combustion catalyst
JP2557371B2 (en) Gas turbine combustor catalyst and method for producing the same
JPS60205129A (en) Combustor for gas-turbine
JPH0215254B2 (en)
JP2585212B2 (en) Gas turbine combustor
JPH039771B2 (en)
JPS63209751A (en) Production of oxidation catalyst
JP2633554B2 (en) Method for producing high temperature combustion catalyst
JPH05309272A (en) Production of oxidation catalyst
JPS63232853A (en) Catalyst for gas turbine burner
JPS5949845A (en) Catalyst for high temperature combustion
JPS58183948A (en) High temperature combustion catalyst
JPH10151356A (en) Catalytic member for combustion
JPS63232849A (en) Production of high-temperature combustion catalyst