【発明の詳細な説明】[Detailed description of the invention]
〔産業上の利用分野〕
本発明は、導電性樹脂ペーストで、IC、LSI等
の半導体ペレツトと外部支持電極との接合に用い
る導電性樹脂ペーストに関するものである。更に
詳しくは、硬化性、接着性、導電性に優れた発光
ダイオード用の導電性樹脂ペーストに関するもの
である。
〔従来技術〕
従来、IC、LSI等の半導体素子とリードフレー
ムとの接合には金−シリコン共晶が用いられてい
たが、金が高価であることから最近では、銀粉を
用いた導電性樹脂ペーストが多く使われるように
なつてきた。
この種の導電性樹脂ペーストとしては、通常エ
ポキシ樹脂をバインダーとし、これに銀粉を混合
した銀ペーストが、作業性や接着性が良いため主
として使用されている。
この導電性樹脂ペーストとして必要な特性は、
作業性、効果性、接着性、ワイヤボンデイング
性、導電性、信頼性等があげられる。これらの導
電性樹脂ペーストの硬化性についてみれば、従来
はオーブン中で長時間かけて硬化していたのが、
インライン可能なホツトプレートでの短時間硬化
型のものに対する要求が増えてきている。
一方、発光ダイオード用のペレツトは、IC、
LSI等のチツプに較べて1/10〜1/100と小さいた
め樹脂ペーストにはより接着の強いペーストが必
要であり、更にチツプ裏面より電極をとるので、
導電性樹脂ペーストの固有する導電率が発光ダイ
オート特性に比例するので高い導電性が要求され
る。
従来、この発光ダイオード用の樹脂ペーストは
速硬化性、接着性、導電性等のいずれをも満足す
るものがなかつた。
〔発明の目的〕
本発明は、前記の欠点を解消するために速硬化
で接着性が良く、導電性に優れたペーストを得ん
として研究した結果、銀粉はフレーク状と特定の
球状の銀粉を適正配合することにより導電性の良
くなることを見い出し更に、従来の潜在性アミン
硬化剤だけでは硬化時ペーストの粘度が初期段階
で著しく低下し、銀粒子が下に集まることに着目
し、溶融粘度の高いフエノールノボラツクを併用
することで防げることを見い出し、目的を達成す
ることができた。
〔発明の構成〕
即ち、本発明はフレーク状銀粉および球状銀粉
を必須成分とし前記フレーク状銀粉と球状銀粉の
混合割合はフレーク状銀粉100重量部に対し、球
状銀粉10〜70重量部であり、かつ球状銀粉の粒径
は2〜10μmの銀粉とエポキシ樹脂の硬化剤とし
ては、フエノールノボラツクと潜在性アミン化合
物よりなり、エポキシ樹脂は常温で液状のエポキ
シで沸点が250℃以上のものを必須成分とするこ
とを特徴とする発光ダイオード用導電性樹脂ペー
ストである。
本発明に用いる銀粉は、フレーク状と球状の混
合である。従来、IC、LSI等の導電性ペーストに
用いられる銀粉には、主にフレーク状の銀粉のみ
が用いられてきたが、これは銀粉の接点が多く導
電性に優れ、かつペーストの塗布で必要なチクソ
性が得やすく、作業性に優れているためである。
一方球状の銀粉を単独で用いると銀粉の接触点
が少ないため導電性が悪くなり、又ペーストが広
がりにくくなり作業性に劣る。
又、フレーク状銀粉は、ペレツトマウント後は
横方向に配向し易く縦方向、即ち、真に必要なチ
ツプとリードフレームとの電気的接合に劣ること
がある。
フレーク状の銀粉に球状の銀粉を併用すると、
チツプ裏面と電極面をダイレクトに繋ぐことがで
き、かつペレツトと電極間の厚みを一定に保つこ
とができるので導電率が安定する。
球状の銀粉の径が2μm未満であれば小さすぎ
て接合の、この効果が少なくなる。又10μm以上
のものを用いると、ペーストの広がりが悪くな
り、作業性が劣る。又、フレーク状と球状の混合
割合をフレーク状銀粉100重量部に対し球状銀粉
を10〜70重量部としているのは、球状が10重量部
以下の量で球状の混入の効果は得にくく、また、
70重量より多くなるとペーストの広がりがなくな
り作業性が悪くなる。
また、本発明においては、硬化剤としてフエノ
ールノボラツクと潜在性アミン化合物を併用する
ことを特徴としている。潜在性アミン化合物を用
いると硬化温度が高く、150℃以下では反応しな
いが150℃を越えると急激な反応が進む、従つて
これ等を硬化剤として用いると150℃までは反応
が進行せず、粘度は急激に低下するため、銀粉粒
子が沈降し、結果としてペレツト裏面の直下は樹
脂分が多くなり導電性を低下させる。
これを防ぐために、低温での粘度が高いフエノ
ールノボラツクを併用することにより解決するも
のである。また、フエノールノボラツクは潜在性
アミン化合物に比べ当量が大きく、単独使用の場
合には、ペーストの粘度が著しく上り、実用には
適さない。また、これを改良する目的で溶剤を添
加すると硬化時にボイドが発生し導電性樹脂ペー
ストの要求される特性の低下につながる。
本発明に用いるフエノールノボラツクはフエノ
ールとホルムアルデヒドとを反応させることによ
つて得られる2及3核体を主体とするノボラツク
樹脂である。
潜在性アミン化合物としては、アジピン酸ヒド
ラジド、ドデカン酸ジヒドラジド、イソフタル酸
ヒドラジド、p−オキシ安臭香酸ジヒドラジド等
のカルボン酸ヒドラジド等のカルボン酸ヒドラジ
ドやジシアンジアミドである。
本発明に用いるエポキシ樹脂は常温で液状のも
のであるのに限定しているが、常温で液状のもの
でないと銀粉との混練において溶剤を必要とす
る。溶剤は気泡発生の原因となり、速硬化性を要
求されるインライン用としては使えない。
溶剤を用いることなくペーストにするには常温
で液状であることが必須条件である。
本発明に用いるエポキシ樹脂としては、例えば
ビスフエノールA、ビスフエノールF、フエノー
ルノボラツクとエピクロルヒドリンとの反応で得
られるジグリシジルエーテルで常温で液状のもの
ビニルシクロヘキセンジオキシド、ジシクロペン
タジエンジオキシド、アリサイクリツクジエポキ
シーアジペイトの様な脂指環式エポキシ、更には
n−ブチルグリシジルエーテル、バーサテイツク
酸グリシジルエステル、スチレンオキサイド、フ
エニルグリシジルエーテル、クレジルグリシジル
エーテル、ジシクロペンタジエンジエポキシドの
ような通常エポキシ樹脂の希釈剤として用いられ
るものがある。
更に、上記エポキシ樹脂のうち沸点が250℃以
上のものは非常に有用である。なぜならこれ等用
いた樹脂ペーストは、樹脂の揮発性が少ないた
め、連続使用しても粘度の変化が少ないためであ
る。
また、エポキシに含まれる塩素量は少ない方が
良く、好ましくは500pmm以下が望ましい。
含有塩素量が多いエポキシは導電性樹脂ペース
トより抽出した塩素イオンが半導体素子表面のア
ルミ配線を腐食してしまうからである。
本発明においては、導電性樹脂ペースト中に占
める銀粉の含有率は好ましくは75〜85重量%であ
り、この範囲のものが、デイスペンサー、スクリ
ーン印刷、スタンピング等によりペーストを塗布
するのに最も使い易く、75%以下にすると導電性
が悪くなつてくる。
更に、本発明においては必要により硬化促進
剤、消泡剤等を添加して用いることもできる。
〔発明の効果〕
以上述べたように、本発明による導電性樹脂ペ
ーストは、フレーク状と球状の銀粉、硬化剤とし
てフエノールノボラツクと潜在性アミン化合物、
常温で液状のエポキシを混練して容易に製造でき
るうえに、従来になく速硬化で、接着が強く導電
性に優れたペーストを得ることができる。
このようにして製造した導電ペーストは発光ダ
イオード用ダイボンデイング用導電性樹脂ペース
トとして非常に優れているものである。
実施例 1〜4
第1表に示したように銀粉にフレーク状で粒径
幅1〜10μ、平均粒径5μの銀粉と球状の平均粒径
の異なる銀粉を用い、硬化剤としてフエノールノ
ボラツクと潜在性アミン化合物及びエポキシ樹脂
を配合し、3本ロールで混練し導電ペーストを得
た。これを真空チヤンバーにて2mmHgで20分間
脱泡した後、リードフレーム上にデイスペンサー
で塗布し、0.5mm角の大きさの半導体素子をマウ
ントした。
しかる後330℃の熱盤上に60秒間のせて硬化さ
せ、半導体素子の剥がれ及び気泡の発生状況を調
べ、更に体積抵抗率を測定した。
その結果を第1表に示した。
比較例 1〜4
第1表の各成分を実施例と同様にして導電性ペ
ーストを製造し同じく試験した。
第1表から明らかなように本発明の導電性ペー
ストは比較例に比べ作業性、接着性、気泡の発生
がなく、導電性が優れていることがわかる。
特に比較例2においては一般ダイボンデイング
性は良いが、フレーク状の銀粉のみであるために
横方向に配向してしまい体積抵抗率が著しく悪く
なつてしまう。
[Industrial Application Field] The present invention relates to a conductive resin paste used for bonding semiconductor pellets such as ICs and LSIs to external support electrodes. More specifically, the present invention relates to a conductive resin paste for light emitting diodes that has excellent curability, adhesiveness, and conductivity. [Prior art] Traditionally, gold-silicon eutectic was used to bond semiconductor elements such as ICs and LSIs to lead frames, but because gold is expensive, conductive resin using silver powder has recently been used. Paste has come to be used more and more. As this type of conductive resin paste, silver paste, which is prepared by using an epoxy resin as a binder and mixing silver powder with it, is mainly used because of its good workability and adhesiveness. The characteristics required for this conductive resin paste are:
Examples include workability, effectiveness, adhesion, wire bonding properties, conductivity, and reliability. Looking at the curing properties of these conductive resin pastes, conventionally they were cured in an oven for a long time, but
There is an increasing demand for short-curing products on hot plates that can be in-line. On the other hand, pellets for light emitting diodes are used for IC,
Since the chips are 1/10 to 1/100 times smaller than chips such as LSI, the resin paste requires a paste with stronger adhesion, and since the electrodes are taken from the back of the chip,
Since the inherent conductivity of the conductive resin paste is proportional to the characteristics of the light emitting diode, high conductivity is required. Conventionally, there has been no resin paste for light emitting diodes that satisfies all of the requirements such as quick curing properties, adhesive properties, and electrical conductivity. [Objective of the Invention] In order to solve the above-mentioned drawbacks, the present invention has been developed to obtain a paste that cures quickly, has good adhesive properties, and has excellent conductivity. They discovered that conductivity could be improved by proper blending.Furthermore, they focused on the fact that when conventional latent amine curing agents were used alone, the viscosity of the paste decreased significantly in the initial stage of curing, causing silver particles to gather at the bottom. We discovered that this can be prevented by using phenol novolac with a high concentration of alcohol, and were able to achieve our goal. [Structure of the Invention] That is, the present invention includes flaky silver powder and spherical silver powder as essential components, and the mixing ratio of the flaky silver powder and spherical silver powder is 10 to 70 parts by weight of spherical silver powder to 100 parts by weight of flaky silver powder. In addition, the particle size of the spherical silver powder is 2 to 10 μm, and the hardening agent for the epoxy resin is phenol novolak and a latent amine compound. This is a conductive resin paste for light emitting diodes, characterized by comprising: The silver powder used in the present invention is a mixture of flaky and spherical silver powder. Conventionally, only flake-like silver powder has been used for conductive pastes for ICs, LSIs, etc.; This is because it is easy to obtain thixotropy and has excellent workability. On the other hand, if spherical silver powder is used alone, the number of contact points of the silver powder is small, resulting in poor conductivity, and the paste is difficult to spread, resulting in poor workability. Further, after pellet mounting, the flaky silver powder tends to be oriented in the horizontal direction, which may lead to inferior electrical bonding in the vertical direction, that is, the truly necessary electrical bond between the chip and the lead frame. When spherical silver powder is used together with flaky silver powder,
The back surface of the chip and the electrode surface can be directly connected, and the thickness between the pellet and the electrode can be kept constant, resulting in stable electrical conductivity. If the diameter of the spherical silver powder is less than 2 μm, it will be too small and this effect of bonding will be reduced. Furthermore, if a material with a diameter of 10 μm or more is used, the spread of the paste will be poor and workability will be poor. In addition, the mixing ratio of flakes and spheres is 10 to 70 parts by weight of spherical silver powder to 100 parts by weight of flake silver powder, because it is difficult to obtain the effect of mixing spherical particles with less than 10 parts by weight. ,
If the weight exceeds 70, the paste will not spread and workability will deteriorate. Further, the present invention is characterized in that a phenol novolak and a latent amine compound are used together as a curing agent. When latent amine compounds are used, the curing temperature is high; they do not react below 150°C, but the reaction rapidly progresses when the temperature exceeds 150°C. Therefore, when these are used as curing agents, the reaction does not proceed up to 150°C, Since the viscosity rapidly decreases, the silver powder particles settle, and as a result, the resin content increases directly under the back surface of the pellet, reducing the conductivity. In order to prevent this, a solution is to use phenol novolac, which has a high viscosity at low temperatures, in combination. Furthermore, phenol novolac has a larger equivalent weight than latent amine compounds, and when used alone, the viscosity of the paste increases significantly, making it unsuitable for practical use. Furthermore, if a solvent is added for the purpose of improving this, voids will occur during curing, leading to a decrease in the required properties of the conductive resin paste. The phenol novolak used in the present invention is a novolak resin mainly composed of di- and trinuclear bodies obtained by reacting phenol and formaldehyde. Examples of the latent amine compound include carboxylic acid hydrazides such as adipic acid hydrazide, dodecanoic acid dihydrazide, isophthalic acid hydrazide, p-oxybenzoic acid dihydrazide, and dicyandiamide. The epoxy resin used in the present invention is limited to one that is liquid at room temperature, but if it is not liquid at room temperature, a solvent will be required for kneading with silver powder. Solvents cause bubble generation and cannot be used for in-line applications that require fast curing. In order to make a paste without using a solvent, it must be liquid at room temperature. Epoxy resins used in the present invention include, for example, bisphenol A, bisphenol F, diglycidyl ether obtained by the reaction of phenol novolak and epichlorohydrin, which is liquid at room temperature, vinyl cyclohexene dioxide, dicyclopentadiene dioxide, aryl Cyclic cycloaliphatic epoxies such as cyclic diepoxy adipate, as well as conventional epoxies such as n-butyl glycidyl ether, versatate glycidyl ester, styrene oxide, phenyl glycidyl ether, cresyl glycidyl ether, dicyclopentadiene diepoxide. Some are used as diluents for resins. Furthermore, among the above epoxy resins, those having a boiling point of 250°C or higher are very useful. This is because the resin pastes used have low volatility of the resin, so the viscosity does not change much even when used continuously. Further, the smaller the amount of chlorine contained in the epoxy, the better, and preferably 500 pmm or less. This is because epoxy containing a large amount of chlorine causes chlorine ions extracted from the conductive resin paste to corrode the aluminum wiring on the surface of the semiconductor element. In the present invention, the content of silver powder in the conductive resin paste is preferably 75 to 85% by weight, and this range is most useful for applying the paste by dispenser, screen printing, stamping, etc. If it is less than 75%, the conductivity will deteriorate. Furthermore, in the present invention, a curing accelerator, antifoaming agent, etc. may be added and used if necessary. [Effects of the Invention] As described above, the conductive resin paste according to the present invention contains flaky and spherical silver powder, phenol novolak and latent amine compound as hardening agents,
Not only can it be easily produced by kneading liquid epoxy at room temperature, it also cures faster than ever before, making it possible to obtain a paste with strong adhesion and excellent conductivity. The conductive paste produced in this manner is very excellent as a conductive resin paste for die bonding of light emitting diodes. Examples 1 to 4 As shown in Table 1, flaky silver powder with a particle size width of 1 to 10 μm and an average particle size of 5 μm and spherical silver powder with different average particle sizes were used, and phenol novolak and phenol novolak were used as a hardening agent. A latent amine compound and an epoxy resin were blended and kneaded using three rolls to obtain a conductive paste. After degassing this in a vacuum chamber at 2 mmHg for 20 minutes, it was applied onto a lead frame using a dispenser, and a 0.5 mm square semiconductor element was mounted thereon. Thereafter, it was placed on a hot plate at 330° C. for 60 seconds to cure, and the peeling of the semiconductor element and the occurrence of bubbles were examined, and the volume resistivity was also measured. The results are shown in Table 1. Comparative Examples 1 to 4 Conductive pastes were manufactured using the respective components shown in Table 1 in the same manner as in the examples, and were tested in the same manner. As is clear from Table 1, the conductive paste of the present invention has excellent workability, adhesion, no bubble generation, and excellent conductivity compared to the comparative example. In particular, in Comparative Example 2, the general die bonding properties are good, but since the silver powder is only in the form of flakes, it is oriented in the lateral direction, resulting in a significantly poor volume resistivity.
【表】【table】
【表】【table】