[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05119287A - Waveguige type optical device - Google Patents

Waveguige type optical device

Info

Publication number
JPH05119287A
JPH05119287A JP3281817A JP28181791A JPH05119287A JP H05119287 A JPH05119287 A JP H05119287A JP 3281817 A JP3281817 A JP 3281817A JP 28181791 A JP28181791 A JP 28181791A JP H05119287 A JPH05119287 A JP H05119287A
Authority
JP
Japan
Prior art keywords
electrode
layer
waveguide
modulator
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3281817A
Other languages
Japanese (ja)
Other versions
JP2773492B2 (en
Inventor
Rangaraajiyu Madabushi
ランガラージユ マダブシ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3281817A priority Critical patent/JP2773492B2/en
Publication of JPH05119287A publication Critical patent/JPH05119287A/en
Application granted granted Critical
Publication of JP2773492B2 publication Critical patent/JP2773492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Abstract

PURPOSE:To provide a high speed modulator which is produced without difficulty, produced as the extension of a general electrode producing stage and does not need the special production of a shielding surface. CONSTITUTION:As to the structure of the high speed modulator, the modulator is constituted of electrooptical crystal having at least one produced waveguide 2, 3 or 4, a buffer layer 5, at least a set of electrodes 6, 7 or 8, a dielectric medium 9 on the electrode, a metallic layer 10 on the dielectric medium, and a metallic contact 11 between the metallic layer on the medium 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は種々のシステム、例え
ば、高速光通信,光学スイッチング・ネットワーク,光
学情報処理,および光学イメージ処理等を含む種々のシ
ステムにおける光導波形変調器/スイッチに関する。
FIELD OF THE INVENTION This invention relates to optical waveform modulators / switches in a variety of systems, including high speed optical communications, optical switching networks, optical information processing, and optical image processing.

【0002】[0002]

【従来の技術】光導波形変調器/スイッチは、高速光通
信,光スイッチング・ネットワーク,光情報処理,光イ
メージ処理等を含む種々のシステムを実現するための最
も重要な要素である。光導波形変調器は、種々の製造方
法により、およびいくつかの興味ある基板において作成
されてきた。しかし、光導波形デバイス研究の大半は、
LiNbO3 基板およびGaAs基板を含んでいる。L
iNbO3 基板へのチタンの内部拡散は、良好な電気光
学特性で、基板に低損失のストリップ導波路を製造する
便利で比較的簡単な方法を提供する。導波形変調器の重
要なパラメータは、駆動電力と、変調帯域と、挿入損と
である。変調帯域および駆動電力のパラメータは、トレ
ードオフの関係にある。導波形変調器の研究は、このト
レードオフ関係を最適化することに集中している。
2. Description of the Related Art Optical waveform modulators / switches are the most important elements for realizing various systems including high-speed optical communication, optical switching networks, optical information processing, optical image processing and the like. Optical waveform modulators have been made by various manufacturing methods and in some substrates of interest. However, most of the research on optical waveform devices
It includes a LiNbO 3 substrate and a GaAs substrate. L
The indiffusion of titanium into the iNbO 3 substrate provides a convenient and relatively simple way to fabricate low loss strip waveguides in the substrate with good electro-optical properties. The important parameters of the waveguide modulator are drive power, modulation band, and insertion loss. The parameters of the modulation band and the driving power have a trade-off relationship. Research on waveguide modulators has focused on optimizing this trade-off relationship.

【0003】導波形変調器の帯域は、電極の種類,電極
の幾何学的形状,および基板の比誘電率に主に依存して
いる。広帯域応用に対しては、進行波電極が広く用いら
れる。この考え方は、電極を駆動伝送線の延長のように
見せることである。その場合には、電極はソースやケー
ブルの特性インピーダンスと同じ特性インピーダンスを
有さなければならない。この場合の変調速度は、光マイ
クロ波に対する走行時間(または位相速度または有効指
数)の差によって制限される。帯域を増大させるために
は、マイクロ波有効屈折率nm (値4.2から)減少さ
せることが必要で、それによってマイクロ波有効屈折率
は光有効屈折率n0 (LiNbO3 基板の場合に対する
典型的な値2.2)に近づく。
The bandwidth of a waveguide modulator depends primarily on the electrode type, electrode geometry, and relative permittivity of the substrate. Traveling wave electrodes are widely used for broadband applications. The idea is to make the electrodes look like an extension of the drive transmission line. In that case, the electrodes must have the same characteristic impedance as that of the source or cable. The modulation speed in this case is limited by the difference in transit time (or phase speed or effective index) for the optical microwave. In order to increase the bandwidth, it is necessary to reduce the microwave effective refractive index n m (from the value 4.2), whereby the microwave effective refractive index n 0 (compared to the case of the LiNbO 3 substrate). It approaches the typical value 2.2).

【0004】これを達成する方法の1つは、金属遮蔽を
用いることによって作られた空気層の使用である。これ
は次の論文に述べられている。“new travel
ing−wave electrode Mach−Z
ehnder optical modulator
with 20 GHz bandwidth and
4.7 V driving voltage at
1.52μm wavelength”, Elec
tronics Letters,Vol.25, N
o.20, pp 1382−1383(1989)。
One way to achieve this is to use an air layer created by using a metal screen. This is described in the next paper. "New travel
ing-wave electrode Mach-Z
ehender optical modulator
with 20 GHz bandwidth and and
4.7 V driving voltage at
1.52 μm wavelength ”, Elec
tronics Letters, Vol. 25, N
o. 20, pp 1382-1383 (1989).

【0005】従来の変調器の基本的構成を、図6に示
す。図6(a)は変調器の斜視図、図6(b)はA−
A′線断面図である。この変調器は、zカット,y方向
伝播LiNbO3 結晶ウェハ1上に、2つのY分岐導波
路(入力および出力の両側において、入力端2では電力
分配器として、出力端3では結合器として作動する)と
位相シフタ部4とは、Tiストリップを内部拡散するこ
とにより製作される。SiO2 バッファ層5は、導波路
に被覆されて、電極が導波路上に形成されるとき、TM
モード損を減少させる。
The basic structure of a conventional modulator is shown in FIG. FIG. 6A is a perspective view of the modulator, and FIG. 6B is A-.
It is an A'line sectional view. This modulator operates on a z-cut, y-propagating LiNbO 3 crystal wafer 1 as two Y-branch waveguides (on both sides of the input and the output, as a power distributor at input 2 and as a combiner at output 3). And the phase shifter portion 4 are manufactured by internally diffusing a Ti strip. The SiO 2 buffer layer 5 is coated on the waveguide, and when the electrode is formed on the waveguide, TM
Reduce mode loss.

【0006】入力3dBカプラによって2つの等しい成
分に分離された入射波は、位相シフタ部4の2つのアー
ムの中を伝播する。位相シフトが干渉計アーム間に導入
されないなら、2つの入射成分は位相において結合し、
出力3dBカプラにおいて減衰しないで伝播を続ける。
πの位相シフトに対して、2つの成分が出力カプラにお
いて破壊的干渉を受け、この出力での透過光は最小とな
る。この位相シフトは、共面導波路形(進行導波路)電
極構造に電圧を供給することによって達成される。この
共面導波路形電極構造は、信号電極6と、50オームの
特性インピーダンスを有する2つの接地電極7,8とか
らなる。特別な遮蔽面12は、別に製作され、電極の上
に置かれる。電極構造の出力側では、50オームの抵抗
が接続される。
The incident wave separated into two equal components by the input 3 dB coupler propagates through the two arms of the phase shifter unit 4. If no phase shift is introduced between the interferometer arms, the two incident components will combine in phase,
Propagation continues without attenuation at the output 3 dB coupler.
For a phase shift of π, the two components experience destructive interference at the output coupler and the transmitted light at this output is minimal. This phase shift is achieved by applying a voltage to the coplanar waveguide (traveling waveguide) electrode structure. This coplanar waveguide electrode structure comprises a signal electrode 6 and two ground electrodes 7, 8 having a characteristic impedance of 50 ohms. A special shielding surface 12 is manufactured separately and placed on the electrodes. On the output side of the electrode structure, a 50 ohm resistor is connected.

【0007】[0007]

【発明が解決しようとする課題】進行波変調器の帯域幅
は、マイクロ波と光波との間の位相速度不整合によって
制限を受ける。そのため、マイクロ波有効指数を減らす
必要があり、その結果、マイクロ波有効指数と光波有効
指数との間の差は減少する。この例において、マイクロ
波有効指数は、マイクロ波の大部分を、進行波電極構造
上の空気層を通過させることにより、減少する。これを
達成するためには、正確な寸法の溝を持つ金属被覆特殊
遮蔽を製作する必要があり、これには特殊で複雑な技術
が必要で、製造工程を増大させ、許容製造公差を減少さ
せる。
The bandwidth of a traveling wave modulator is limited by the phase velocity mismatch between the microwave and the light wave. Therefore, it is necessary to reduce the microwave effective index, so that the difference between the microwave effective index and the light wave effective index is reduced. In this example, the microwave effective index is reduced by passing most of the microwave through the air layer above the traveling wave electrode structure. In order to achieve this, it is necessary to fabricate a metallized special shield with precisely sized grooves, which requires special and complex techniques, increases the manufacturing process and reduces the allowable manufacturing tolerances. ..

【0008】したがって、簡単な製造工程を容易にし、
一般の電極製造工程の延長となり、余分な特殊遮蔽を必
要としない高速変調器の新しい構成が必要となる。
Therefore, a simple manufacturing process is facilitated,
As a result of the extension of the general electrode manufacturing process, a new structure of the high speed modulator that does not require an extra special shield is required.

【0009】本発明の目的は、このような要求に答えた
導波形光デバイスを提供することにある。
An object of the present invention is to provide a waveguide type optical device which meets such a demand.

【0010】[0010]

【課題を解決するための手段】これらの問題は以下の本
発明によって解決される。本発明は、少なくとも1つの
作製された導波路と、バッファ層と、少なくとも1組の
電極と、その電極上の誘電体と、誘電体上の接地電極構
造とを有する電気光学的結晶からなる光導波形デバイス
である。誘電体層は、さしたる困難もなく、電極作製工
程の延長として被覆することができる。誘電体層厚およ
び誘電体物質を制御することにより、600GHzの帯
域(マイクロ波損の制限のみを受ける)は、10mm波
長の進行波共面電極を達成することができる。
These problems are solved by the present invention described below. The present invention provides an optical optical crystal comprising at least one fabricated waveguide, a buffer layer, at least one set of electrodes, a dielectric on the electrodes, and a ground electrode structure on the dielectric. It is a corrugated device. The dielectric layer can be coated without much difficulty as an extension of the electrode fabrication process. By controlling the dielectric layer thickness and the dielectric material, the 600 GHz band (subject to microwave loss limitation only) can achieve a traveling wave coplanar electrode with a wavelength of 10 mm.

【0011】[0011]

【作用】変調器の帯域を増大させるためには、マイクロ
波有効指数を減少させる必要があり、その結果、マイク
ロ波有効指数と光波有効指数との間の差は減少する。本
発明において、マイクロ波有効指数は、進行波電極構造
の上に置かれた誘電体層を、マイクロ波の大部分に通過
させることにより減少する。誘電体媒質の厚さおよび比
誘電率を制御することにより、マイクロ波有効指数は減
少し、光波有効指数にほぼ等しくすることができる。こ
うして非常に高速の変調器が実現される。
In order to increase the bandwidth of the modulator, it is necessary to reduce the microwave effective index, so that the difference between the microwave effective index and the light wave effective index is reduced. In the present invention, the microwave effective index is reduced by passing a dielectric layer overlying the traveling wave electrode structure to most of the microwave. By controlling the thickness and the relative permittivity of the dielectric medium, the microwave effective index can be reduced to be approximately equal to the light wave effective index. A very fast modulator is thus realized.

【0012】このように、本発明の主たる利点は、簡単
で比較的簡単な製造工程により、および一般的な電極製
造工程の拡張として製造でき、余分な特殊遮蔽を必要と
しない高速変調器を実現できることである。
Thus, the main advantage of the present invention is that a high speed modulator which can be manufactured by a simple and relatively simple manufacturing process, and as an extension of the general electrode manufacturing process, does not require extra special shielding. It is possible.

【0013】[0013]

【実施例】本発明の導波形光デバイスの構成を、図1に
示す。図1(a)は導波形光デバイスの斜視図、図1
(b)はA−A′線断面図である。LiNbO3 結晶ウ
ェハ1の上に、5〜12μm幅のチタン金属膜を堆積さ
せ、900〜1100℃で5〜12時間結晶中に内部拡
散させることにより、幅5〜12μmおよび深さ3〜1
0μmの導波路2,3,4が作成される。これは2個の
Y分岐導波路(入力および出力側において、入力端2で
は電力分配器として、出力端3で結合器として作動す
る)と、位相シフタ部4とからなる。SiO2 バッファ
層5は、導波路上に電極が形成されるとき、TMモード
損を減少させるように導波路上に被覆される。バッファ
層の厚さは0.3〜10μmである。
FIG. 1 shows the structure of a waveguide type optical device of the present invention. FIG. 1A is a perspective view of a waveguide type optical device, and FIG.
(B) is a sectional view taken along the line AA '. A titanium metal film having a width of 5 to 12 μm is deposited on the LiNbO 3 crystal wafer 1 and internally diffused in the crystal at 900 to 1100 ° C. for 5 to 12 hours to give a width of 5 to 12 μm and a depth of 3-1.
Waveguides 2, 3 and 4 of 0 μm are formed. It consists of two Y-branch waveguides (on the input and output sides, which act as a power distributor at the input end 2 and a combiner at the output end 3) and a phase shifter section 4. The SiO 2 buffer layer 5 is coated on the waveguide so as to reduce the TM mode loss when the electrode is formed on the waveguide. The thickness of the buffer layer is 0.3 to 10 μm.

【0014】この共面導波路形電極構造は、幅8〜30
μmおよび長さ10〜50mmの信号電極6と、2つの
接地電極7,8(幅100〜5000μm,長さ10〜
50mm,特性インピーダンス50オーム)とからな
る。
This coplanar waveguide electrode structure has a width of 8 to 30.
μm and a length of 10 to 50 mm, and two ground electrodes 7 and 8 (width 100 to 5000 μm, length 10 to 10 μm).
50 mm, characteristic impedance 50 ohms).

【0015】この共面電極は、次に説明する一般的な電
極製造工程によって製造することができる。まず、Si
2 バッファ層5上にCr−Au金属の層(Crは10
0〜300オングストローム,Auは1000〜300
0オングストローム)を堆積する。その上に、2〜20
μmのフォトレジスト層をスピンコートし、フォトレジ
スト層中に電極パターンを作成する。次に、厚さ3〜1
5μmの共面電極を電気めっきによって形成する。厚さ
0.5〜10μmの誘電体被覆層9を、この電極上に堆
積し、その上に金属層10を堆積する。このように、共
面電極上の誘電体の堆積は、一般的な電極製造工程の拡
張となる。フォトレジストの除去および不必要なCr−
Auのドライエッチングにより、電極上に誘電体被覆層
を持つ共面電極構造が形成される。接地電極7,8上の
金属層10と信号電極6上の金属層10との間に金属コ
ンタクト11を形成する。電極構造の出力側に、50オ
ームの抵抗を接続する。
This coplanar electrode can be manufactured by a general electrode manufacturing process described below. First, Si
On the O 2 buffer layer 5, a layer of Cr-Au metal (Cr is 10
0-300 Å, Au 1000-300
0 angstrom) is deposited. On top of that, 2-20
A μm photoresist layer is spin-coated to form an electrode pattern in the photoresist layer. Next, thickness 3-1
A 5 μm coplanar electrode is formed by electroplating. A dielectric coating layer 9 having a thickness of 0.5 to 10 μm is deposited on this electrode, and a metal layer 10 is deposited thereon. Thus, the deposition of the dielectric on the coplanar electrode is an extension of the general electrode manufacturing process. Removal of photoresist and unnecessary Cr-
By dry etching of Au, a coplanar electrode structure having a dielectric coating layer on the electrode is formed. A metal contact 11 is formed between the metal layer 10 on the ground electrodes 7 and 8 and the metal layer 10 on the signal electrode 6. A 50 ohm resistor is connected to the output side of the electrode structure.

【0016】なお、図1(a)は、図面を簡単にするた
めに、誘電体被覆層9および金属層10に省略してあ
る。
In FIG. 1A, the dielectric coating layer 9 and the metal layer 10 are omitted for the sake of simplicity.

【0017】この構造は、過剰緩和法を用いて分析さ
れ、静電容量,有効マイクロ波指数,特性インピーダン
ス,および帯域等が計算される。図2はマイクロ波指数
m の計算値で、誘電体被覆層厚の関数として示され
る。水平軸は誘電体被覆層厚Dをμmの単位で示し、垂
直軸はマイクロ波指数nm を示す。このマイクロ波指数
は、誘電体被覆層(例えば、空気,BaF2,Mg
2 ,SiO2 )の厚さが約4μmのときの光波指数n
0 =2.2にほぼ等しい。
This structure is analyzed using the excess relaxation method, and the capacitance, effective microwave index, characteristic impedance, band, etc. are calculated. FIG. 2 shows the calculated microwave index n m as a function of the dielectric coating thickness. The horizontal axis shows the dielectric coating layer thickness D in the unit of μm, and the vertical axis shows the microwave index nm . This microwave index is determined by the dielectric coating layer (eg, air, BaF 2 , Mg).
Light wave index n when the thickness of F 2 , SiO 2 ) is about 4 μm
It is almost equal to 0 = 2.2.

【0018】図3は、特性インピーダンスZの計算値を
誘電体被覆層厚の関数として示す。水平軸は誘電体層厚
をμmの単位で示し、垂直軸は特性インピーダンスZを
Ωの単位で示す。
FIG. 3 shows the calculated value of the characteristic impedance Z as a function of the thickness of the dielectric coating layer. The horizontal axis represents the dielectric layer thickness in μm units, and the vertical axis represents the characteristic impedance Z in Ω units.

【0019】図4は、誘電体被覆層厚Dの関数として帯
域幅の計算値を示す。水平軸は誘電体層厚Dをμmの単
位で示し、垂直軸は電極長が1cmのときの帯域幅をG
Hzの単位で示す。
FIG. 4 shows the calculated bandwidth as a function of the dielectric coating thickness D. The horizontal axis shows the dielectric layer thickness D in the unit of μm, and the vertical axis shows the bandwidth when the electrode length is 1 cm.
Shown in Hz.

【0020】これらの値から言えることは、本発明によ
れば、非常に高速の変調器が実現できるということであ
る。600GHzの帯域幅(マイクロ波損の制限のみ
で)は、厚さ3〜5μmのBaF2 誘電体層が堆積され
るときの、長さ1cmの進行波共面電極を達成できる。
What can be said from these values is that according to the present invention, a very high speed modulator can be realized. A bandwidth of 600 GHz (only with microwave loss limitation) can achieve a 1 cm long traveling wave coplanar electrode when a 3-5 μm thick BaF 2 dielectric layer is deposited.

【0021】本発明は、非対称進行波電極形導波形デバ
イスをも含み、図5は変調器/スイッチの実施例を示し
ている。なお、図5(a)は斜視図、図5(b)はA−
A′断面図であり、図1と同一の参照番号は、同一の要
素を示している。なお、図5(a)は、図面を簡単にす
るために、誘電体被覆層9および金属層10は省略して
ある。
The present invention also includes an asymmetric traveling wave electrode guided device, and FIG. 5 shows an embodiment of a modulator / switch. 5A is a perspective view and FIG. 5B is A-.
FIG. 3 is a sectional view taken along the line A ′, and the same reference numerals as those in FIG. In FIG. 5A, the dielectric coating layer 9 and the metal layer 10 are omitted to simplify the drawing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である導波形光デバイスを示
す。
FIG. 1 shows a waveguide type optical device according to an embodiment of the present invention.

【図2】マイクロ波指数nm の計算値を、誘電体被覆層
厚の関数として示す図である。
The [2] Calculated for microwave index n m, a diagram as a function of the dielectric coating layer thickness.

【図3】特性インピーダンスの計算値を誘電体被覆層厚
の関数として示す図である。
FIG. 3 shows the calculated characteristic impedance as a function of dielectric coating layer thickness.

【図4】帯域幅の計算値を誘電体被覆層厚の関数として
示す図である。
FIG. 4 shows calculated bandwidth as a function of dielectric coating thickness.

【図5】非対称進行構造における本発明の実施例を示す
図である。
FIG. 5 is a diagram showing an embodiment of the present invention in an asymmetrical traveling structure.

【図6】従来の種類の変調器を示す図である。FIG. 6 shows a conventional type of modulator.

【符号の説明】[Explanation of symbols]

1 ウェハ 2,3,4 導波路 5 バッファ層 6 信号電極 7,8 接地電極 9 誘電体被覆層 10 金属層 11 金属コンタクト 1 Wafer 2, 3, 4 Waveguide 5 Buffer Layer 6 Signal Electrode 7, 8 Ground Electrode 9 Dielectric Cover Layer 10 Metal Layer 11 Metal Contact

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電気光学効果を有する結晶基板の上に形成
された少なくとも1つの光導波路、その上に形成された
バッファ層、その上に形成された少なくとも2つの電
極、その上に形成された誘電体層、さらにその上に形成
された金属層からなり、前記金属層が互いに電気的に短
絡されていることを特徴とする導波形光デバイス。
1. At least one optical waveguide formed on a crystal substrate having an electro-optical effect, a buffer layer formed on the optical waveguide, at least two electrodes formed on the optical waveguide, and at least two electrodes formed on the buffer layer. A waveguide type optical device comprising a dielectric layer and a metal layer formed on the dielectric layer, wherein the metal layers are electrically short-circuited to each other.
JP3281817A 1991-10-29 1991-10-29 Traveling wave electrode type waveguide optical device Expired - Fee Related JP2773492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3281817A JP2773492B2 (en) 1991-10-29 1991-10-29 Traveling wave electrode type waveguide optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3281817A JP2773492B2 (en) 1991-10-29 1991-10-29 Traveling wave electrode type waveguide optical device

Publications (2)

Publication Number Publication Date
JPH05119287A true JPH05119287A (en) 1993-05-18
JP2773492B2 JP2773492B2 (en) 1998-07-09

Family

ID=17644412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3281817A Expired - Fee Related JP2773492B2 (en) 1991-10-29 1991-10-29 Traveling wave electrode type waveguide optical device

Country Status (1)

Country Link
JP (1) JP2773492B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159743A (en) * 1993-12-08 1995-06-23 Japan Aviation Electron Ind Ltd Optical waveguide element
EP0709711A1 (en) * 1994-10-25 1996-05-01 Hughes Aircraft Company Velocity-matched electrodes for electro-optic travelling-wave modulators and method for forming the same
WO2004083953A1 (en) * 2003-03-19 2004-09-30 Nippon Telegraph And Telephone Corporation Optical switch, optical modulator and variable wavelength filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448021A (en) * 1987-08-19 1989-02-22 Nippon Telegraph & Telephone Optical device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448021A (en) * 1987-08-19 1989-02-22 Nippon Telegraph & Telephone Optical device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159743A (en) * 1993-12-08 1995-06-23 Japan Aviation Electron Ind Ltd Optical waveguide element
EP0709711A1 (en) * 1994-10-25 1996-05-01 Hughes Aircraft Company Velocity-matched electrodes for electro-optic travelling-wave modulators and method for forming the same
WO2004083953A1 (en) * 2003-03-19 2004-09-30 Nippon Telegraph And Telephone Corporation Optical switch, optical modulator and variable wavelength filter
US7336854B2 (en) 2003-03-19 2008-02-26 Nippon Telegraph And Telephone Corporation Optical switch, optical modulator and wavelength variable filter
US7340116B2 (en) 2003-03-19 2008-03-04 Nippon Telegraph And Telephone Corporation Optical switch, optical modulator and wavelength variable filter
US7356227B2 (en) 2003-03-19 2008-04-08 Nippon Telegraph And Telephone Corporation Optical switch, optical modulator and wavelength variable filter
CN100410796C (en) * 2003-03-19 2008-08-13 日本电信电话株式会社 Optical switch, optical modulator and variable wavelength filter
US7492975B2 (en) 2003-03-19 2009-02-17 Nippon Telegraph And Telephone Corporation Optical switch, optical modulator and wavelength variable filter

Also Published As

Publication number Publication date
JP2773492B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
US5563965A (en) Optical waveguide device with additional electrode structure
JP2713087B2 (en) Waveguide optical device
JP2603437B2 (en) Periodic domain inversion electro-optic modulator
US7088875B2 (en) Optical modulator
US4866406A (en) Wide-band optical modulator
US6867901B2 (en) Optical modulator and design method therefor
US5005932A (en) Electro-optic modulator
JPH05196902A (en) Traveling-wave optical modulator
US5548668A (en) Velocity-matched electrodes for electro-optic travelling-wave modulators and method for forming the same
US6304685B1 (en) Low drive voltage LiNbO3 intensity modulator with reduced electrode loss
EP0669546B1 (en) Waveguide-type optical device
JP2850950B2 (en) Waveguide type optical device
US6356673B1 (en) Low loss coplanar waveguide horn for low drive LiNbO3 modulators
JP3088988B2 (en) Traveling wave optical modulator and optical modulation method
JPH09211402A (en) Broad-band light modulator
JPH1039266A (en) Optical control device
JPH09304745A (en) Waveguide type optical device
GB2269909A (en) Velocity matching in waveguide structures
US7167607B2 (en) Symmetric optical modulator with low driving voltage
US7088874B2 (en) Electro-optic devices, including modulators and switches
JPS60114821A (en) Integrated light device
JP2848454B2 (en) Waveguide type optical device
JP2773492B2 (en) Traveling wave electrode type waveguide optical device
JP3362105B2 (en) Waveguide type optical modulator
JPS63261219A (en) Optical modulator element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080424

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100424

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees