JPH05115879A - Treatment of dyestuff aqueous solution - Google Patents
Treatment of dyestuff aqueous solutionInfo
- Publication number
- JPH05115879A JPH05115879A JP30967091A JP30967091A JPH05115879A JP H05115879 A JPH05115879 A JP H05115879A JP 30967091 A JP30967091 A JP 30967091A JP 30967091 A JP30967091 A JP 30967091A JP H05115879 A JPH05115879 A JP H05115879A
- Authority
- JP
- Japan
- Prior art keywords
- dye
- solution
- treatment
- active chlorine
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、染料を含む水溶液の処
理方法、特に染料廃液中の染料成分の電解的分解による
染料水溶液の脱色方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating an aqueous solution containing a dye, and more particularly to a method for decolorizing an aqueous dye solution by electrolytic decomposition of a dye component in a waste dye solution.
【0002】[0002]
【従来技術とその問題点】現在合成染料は数百種にも及
ぶ多種多様のものが合成され、この他に天然染料も使用
されている。該染料は種々の官能基を含む化学構造を有
し化学的安定性が高くなっている。該染料を使用して染
色を行った後の染色廃液中に残存する染料成分の除去つ
まり前記廃液の脱色方法としては、活性炭吸着法又はオ
ゾンや次亜塩素酸ナトリウムのような酸化剤を使用する
酸化脱色法がある。活性炭による吸着脱色法は極めて有
効性の高い方法であるが、大量の活性炭を必要とし又活
性炭の再生にも高温処理が必要で装置が大型化し費用も
膨大となるという欠点がある。2. Description of the Related Art At present, various kinds of synthetic dyes of hundreds of kinds are synthesized, and natural dyes are also used. The dye has a chemical structure containing various functional groups and has high chemical stability. As a method of removing the dye component remaining in the dyeing waste liquid after dyeing using the dye, that is, a method of decolorizing the waste liquid, an activated carbon adsorption method or an oxidizing agent such as ozone or sodium hypochlorite is used. There is an oxidative decolorization method. The adsorptive decolorization method using activated carbon is extremely effective, but it has a drawback that it requires a large amount of activated carbon and requires high-temperature treatment to regenerate the activated carbon, resulting in a large apparatus and a huge cost.
【0003】オゾン処理は、オゾンを染料の発色団等の
不飽和結合部と反応させてオゾニドのような中間体を経
由して不飽和結合を切断酸化することにより脱色が行わ
れるものと考えられる。オゾンは高い酸化を有するが処
理条件又は染料の種類によっては脱色されない化合物が
ある。又オゾンが気体であり溶液と効率良く接触しにく
いため、溶液の処理方法としては十分な効率が得られな
いことがあり、更にオゾンは有毒であり処理時に危険が
伴うことがある。次亜塩素酸ナトリウム水溶液の添加に
よる方法は処理方法としては簡便であるため一般的に使
用されているが、脱色に時間が掛かりその投入量が過剰
になりやすい。そして染料廃液の処理では種々の染料が
混合されているため染料の種類により次亜塩素酸ナトリ
ウム水溶液の投入量や脱色時間が異なるため、この脱色
工程は常時人手により管理されている。又次亜塩素酸ナ
トリウム水溶液は次亜塩素酸イオンの分解防止用の過剰
のアルカリを含有しているため、放流前に処理水を中和
する必要がある。Ozone treatment is considered to be carried out by reacting ozone with an unsaturated bond portion such as a chromophore of a dye to cleave and oxidize the unsaturated bond via an intermediate such as ozonide. .. Ozone has a high degree of oxidation, but some compounds do not decolorize depending on processing conditions or dye type. Further, since ozone is a gas and it is difficult to contact the solution efficiently, the efficiency of the solution treatment may not be sufficient, and ozone may be toxic and may be dangerous during the treatment. The method of adding an aqueous solution of sodium hypochlorite is generally used because it is a simple treatment method, but it takes a long time to decolorize, and the amount thereof is likely to be excessive. Since various dyes are mixed in the treatment of the dye waste liquid, the amount of the aqueous sodium hypochlorite solution and the decoloring time differ depending on the type of the dye, so that this decolorizing step is always managed manually. Further, since the sodium hypochlorite aqueous solution contains an excessive alkali for preventing the decomposition of hypochlorite ions, it is necessary to neutralize the treated water before discharging.
【0004】[0004]
【発明の目的】本発明は、上記従来の染料水溶液の処理
方法における各種欠点を解決し、脱色効率が良く煩雑な
メンテナンスを必要としない安価に行い得る染料水溶液
の処理方法を提供することを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to solve the various drawbacks of the conventional methods for treating an aqueous dye solution and to provide a method for treating an aqueous dye solution which has good decolorization efficiency and does not require complicated maintenance and can be carried out at a low cost. And
【問題点を解決するための手段】本発明は、塩化物イオ
ンを含有する染料水溶液を電解液とし不溶性電極を用い
て該電解液を電解することにより活性塩素及び/又は次
亜塩素酸イオンを生成させ、該活性塩素及び/又は次亜
塩素酸イオンにより前記染料水溶液を処理することを特
徴とする染料水溶液の処理方法であり、更に処理後の染
料水溶液中に高濃度の有効塩素例えば活性塩素や次亜塩
素酸イオンが残留する場合には還元処理を行って前記有
効塩素を分解する方法である。According to the present invention, active chlorine and / or hypochlorite ions are produced by electrolyzing an electrolytic solution using a dye aqueous solution containing chloride ions as an electrolytic solution and using an insoluble electrode. A method for treating an aqueous dye solution, which is characterized in that the aqueous dye solution is treated with the active chlorine and / or hypochlorite ion, and a high concentration of available chlorine such as active chlorine is further added to the aqueous dye solution after the treatment. If residual hypochlorite ions remain, a reduction treatment is carried out to decompose the available chlorine.
【0005】以下本発明を詳細に説明する。本発明方法
により塩化物イオンを含む染料水溶液を処理すると、該
染料水溶液中に存在する塩化物イオンが陽極で酸化され
て活性塩素が発生し、該活性塩素の、もしくは通常の水
電解により陰極で発生する水酸イオンと前記活性塩素と
の反応で生成する次亜塩素酸イオンの酸化力により染料
の発色団が酸化的に脱色されるものと推測され、本発明
方法による染料水溶液処理による脱色効率は従来の次亜
塩素酸ナトリウム水溶液添加による脱色効率より優れて
いる。これは陽極上で発生する活性塩素の酸化力が次亜
塩素酸ナトリウムの酸化力より優れているだけでなく、
染料が陽極上で直接酸化されることにより溶液中で次亜
塩素酸ナトリウムと接触しても酸化的脱色がされにくい
発色団も前記陽極上で次亜塩素酸イオンや活性塩素と接
触することにより容易に脱色されるものと推測される。
又陰極上でも染料の不飽和結合を有する発色団が還元さ
れ脱色されるものと推測される。The present invention will be described in detail below. When a dye aqueous solution containing chloride ions is treated by the method of the present invention, chloride ions present in the dye aqueous solution are oxidized at the anode to generate active chlorine, and the active chlorine is generated or at the cathode by ordinary water electrolysis. It is presumed that the chromophore of the dye is oxidatively decolorized by the oxidizing power of the hypochlorite ion formed by the reaction of the generated hydroxyl ion and the active chlorine, and the decolorization efficiency by the aqueous dye solution treatment according to the method of the present invention. Is superior to the conventional decolorization efficiency by adding an aqueous solution of sodium hypochlorite. Not only is the oxidizing power of active chlorine generated on the anode superior to that of sodium hypochlorite,
By contacting with hypochlorite ion or active chlorine on the anode also a chromophore that is difficult to be oxidatively decolorized even when contacting with sodium hypochlorite in a solution by directly oxidizing the dye on the anode It is presumed that it is easily decolorized.
It is also presumed that the chromophore having an unsaturated bond of the dye is reduced and decolored on the cathode.
【0006】本発明に使用する塩化物イオンは特に限定
されず、例えば塩化ナトリウム、塩化カルシウム、塩化
アンモニウム、塩化カリウム等を挙げることができる。
これらの塩化物イオンは電解処理により活性塩素や次亜
塩素酸イオンに変換され、次いで該活性塩素又は次亜塩
素酸イオンが染料と反応して再度塩化物イオンに戻る。
従って染料水溶液中の前記塩化物イオン濃度は、陽極上
で生成する活性塩素又は次亜塩素酸イオンと染料との反
応が速やかに起こるのであればかなり低くてもよいが、
前記染料と塩化物イオンとの反応に時間を要する場合は
該塩化物イオンの濃度を高くして前記染料との反応速度
を速くすることが望ましく、前記染料水溶液中の塩化物
イオン濃度は一般に0.5 g/リットル以上好ましくは5
g/リットル以上とする。染料水溶液中の塩化物イオン
濃度が低下すると濃度拡散律速となり、活性塩素又は次
亜塩素酸イオンの生成効率が低下する。処理すべき染料
水溶液中には前記塩化物イオンが例えば染料合成工程で
添加された塩化物イオンの残留物として含まれることが
あり、この塩化物イオン濃度が前記範囲内である場合は
更に塩化物イオンを添加する必要はないが、塩化物イオ
ンが全く含まれない場合又は含有量が不十分な場合に
は、通電(電解)処理前に前記塩化物イオンを添加す
る。The chloride ion used in the present invention is not particularly limited, and examples thereof include sodium chloride, calcium chloride, ammonium chloride and potassium chloride.
These chloride ions are converted into active chlorine or hypochlorite ion by electrolytic treatment, and then the active chlorine or hypochlorite ion reacts with the dye and returns to chloride ion again.
Therefore, the chloride ion concentration in the aqueous dye solution may be considerably low as long as the reaction between the active chlorine or hypochlorite ion generated on the anode and the dye occurs rapidly,
When it takes time to react the dye with chloride ion, it is desirable to increase the concentration of the chloride ion to accelerate the reaction rate with the dye, and the chloride ion concentration in the dye aqueous solution is generally 0.5. g / liter or more, preferably 5
g / liter or more. When the chloride ion concentration in the aqueous dye solution decreases, the concentration diffusion rate is controlled, and the production efficiency of active chlorine or hypochlorite ion decreases. In the aqueous dye solution to be treated, the chloride ion may be contained, for example, as a residue of the chloride ion added in the dye synthesis step. If the chloride ion concentration is within the above range, further chloride is added. It is not necessary to add ions, but when chloride ions are not contained at all or when the content is insufficient, the chloride ions are added before the energization (electrolysis) treatment.
【0007】このような塩化物イオンを含む染料水溶液
を通電処理して該染料水溶液の脱色を行う。該通電処理
の各種条件は塩化物イオン濃度、染料濃度及び染料の種
類等に依存し一義的に決定することはできず、例えば陽
極電流密度を0.5 〜20A/dm2 程度、液温を5〜40℃
程度とするのが一般的である。あまり液温が低いと活性
塩素や次亜塩素酸イオンの発生効率が低下し、又40℃以
上になると活性塩素や次亜塩素酸イオンの自己分解が始
まり脱色効率が低下する。従って冬期には加熱し夏期に
は冷却することが望ましい。染料の種類つまり発色団の
種類の変化した場合に最適条件を維持するために最も必
要なことは電極被覆の触媒の選択であり、該選択により
脱色効率が大幅に変動することがあり、次に使用する電
極につき詳述する。The dye aqueous solution containing such chloride ions is subjected to an electric current treatment to decolor the dye aqueous solution. The various conditions of the energization treatment cannot be uniquely determined depending on the chloride ion concentration, the dye concentration, the type of dye, and the like. For example, the anode current density is about 0.5 to 20 A / dm 2 , and the liquid temperature is 5 to 5. 40 ° C
Generally, it is set as a degree. If the liquid temperature is too low, the generation efficiency of active chlorine or hypochlorite ion will decrease, and if it exceeds 40 ° C, the self-decomposition of active chlorine or hypochlorite ion will start and the decolorization efficiency will decrease. Therefore, it is desirable to heat in winter and cool in summer. What is most needed to maintain the optimum conditions when the type of dye, that is, the type of chromophore, is to select the catalyst for the electrode coating, which may greatly change the decolorization efficiency. The electrodes used will be described in detail.
【0008】本発明に用いられる不溶性電極の陽極の導
電性基体は鉄、ニッケル、チタン、タンタル、ニオブ、
亜鉛又はこれらの合金等であり、染料の種類や染料水溶
液の液性に応じて適宜選択する。該電極基体の形状は、
板状、エキスパンドメタル、パンチングメタル、金網、
簾状ワイヤ等の任意形状とすることができる。更にエキ
スパンドメタル、パンチングメタル、金網、簾状ワイ
ヤ、金属繊維積層体、金属繊維織布、ワイヤロール、金
属フェルト、金属焼結多孔体等を板状基体にボルト締め
や溶接等の公知の手法で電気的に接合したものを電極基
体として使用することも可能である。これらは電極基体
としての強度や通電量を考慮して複数層積層してもよ
い。又前記電極基体の表面を窒化、硼化又は炭化処理し
た基体も電極基体として使用可能であり、電解浴の組成
等を考慮して適宜選択できる。該窒化処理等はイオンプ
レーティング、スパッタリング等の公知の方法を採用で
きる。このような電極基体と後述する電極被覆間に、チ
タン、ジルコニウム、ニオブ、スズ、アンチモン、タン
タル等のうち少なくとも1種の金属の酸化物あるいは白
金族金属の中間層を設けて電極寿命を延ばすこともでき
る。該中間層被覆は10μm以下、好ましくは5μm以下
程度で十分である。中間層の被覆を厚くしすぎると電解
電圧の上昇を招いたりコストアッブになったりする。The conductive substrate of the anode of the insoluble electrode used in the present invention is iron, nickel, titanium, tantalum, niobium,
It is zinc or an alloy thereof, and is appropriately selected depending on the type of dye and the liquidity of the dye aqueous solution. The shape of the electrode substrate is
Plate shape, expanded metal, punching metal, wire mesh,
It can be of any shape, such as a cord-shaped wire. Furthermore, expanded metal, punching metal, wire mesh, blind wire, metal fiber laminated body, metal fiber woven cloth, wire roll, metal felt, sintered metal porous body, etc. are attached to a plate-shaped substrate by a known method such as bolting or welding. It is also possible to use an electrically bonded product as the electrode substrate. These may be laminated in a plurality of layers in consideration of the strength of the electrode base body and the amount of electricity supplied. A substrate obtained by nitriding, borating or carbonizing the surface of the electrode substrate can also be used as the electrode substrate and can be appropriately selected in consideration of the composition of the electrolytic bath and the like. For the nitriding treatment and the like, known methods such as ion plating and sputtering can be adopted. Providing an intermediate layer of an oxide or a platinum group metal of at least one metal selected from titanium, zirconium, niobium, tin, antimony, tantalum, etc. between such an electrode substrate and an electrode coating described later to extend the electrode life. You can also It is sufficient that the intermediate layer coating has a thickness of 10 μm or less, preferably 5 μm or less. If the coating of the intermediate layer is too thick, the electrolytic voltage will rise and the cost will increase.
【0009】中間層の被覆方法は、これらの成分金属の
塩を可溶な溶液に溶解し、塗布しかつ酸化雰囲気あるい
は還元雰囲気中で加熱分解し、目的とする酸化物あるい
は金属を析出させる熱分解法、スパッタ法、化学蒸着
法、電気メッキ法、化学メッキ法等の公知の方法が適用
可能であり、目的に応じて適宜選択される。該中間層
上、あるいは前記基体上に直接被覆される電極被覆(触
媒)を構成する物質は、白金族金属又は白金族金属酸化
物もしくはこれらにチタン、ジルコニウム、ニオブ、ス
ズ、アンチモン、タンタル、コバルト、シリコン等の卑
金属元素の1種以上の金属酸化物を含む複合物質が使用
される。被覆方法としては、中間層被覆と同様な方法、
すなわち熱分解法、スパッタ法、化学蒸着法、電気メッ
キ法、化学メッキ法等の公知の方法が適用可能である。
又必要に応じて、熱分解法であれば前述の被覆形成手段
を繰り返すことにより、又他の方法では通電量や被覆時
間等を制御することにより所望の厚みの電極被覆とする
ことができる。この他にフェライト電極や鉛系電極を使
用することもできる。フェライト電極は、Fe2O3 を主成
分とし、これに1〜5価の各種金属酸化物を添加し、焼
結法により作成する公知の方法で得ることができる。前
記添加金属としてはマンガン、鉄、コバルト、ニッケ
ル、銅、亜鉛等が挙げられ、該金属はスピネル構造であ
ることが望ましい。該フェライト電極の形状は丸棒や角
板状とすることができ、電極の厚みは約3〜12mm程度
とする。このフェライト電極は電極内の電気抵抗が高い
ため、通電量を考慮して形状、電極サイズ及び電極被覆
の厚み等を適宜決定する。The method for coating the intermediate layer is such that the salts of these component metals are dissolved in a soluble solution, coated and thermally decomposed in an oxidizing atmosphere or a reducing atmosphere to precipitate the target oxide or metal. Known methods such as a decomposition method, a sputtering method, a chemical vapor deposition method, an electroplating method, and a chemical plating method can be applied, and are appropriately selected according to the purpose. The substance constituting the electrode coating (catalyst) directly coated on the intermediate layer or on the substrate is a platinum group metal or a platinum group metal oxide or titanium, zirconium, niobium, tin, antimony, tantalum or cobalt. , Composite materials containing one or more metal oxides of base metal elements such as silicon are used. As the coating method, the same method as the intermediate layer coating,
That is, known methods such as a thermal decomposition method, a sputtering method, a chemical vapor deposition method, an electroplating method, and a chemical plating method can be applied.
If necessary, in the case of a thermal decomposition method, the above-mentioned coating forming means may be repeated, or in other methods, the amount of current supplied, the coating time, etc. may be controlled to obtain an electrode coating having a desired thickness. Besides this, a ferrite electrode or a lead-based electrode can also be used. The ferrite electrode can be obtained by a known method in which Fe 2 O 3 is the main component, various metal oxides having a valence of 1 to 5 are added thereto, and the sintering is performed. Examples of the added metal include manganese, iron, cobalt, nickel, copper, zinc and the like, and the metal preferably has a spinel structure. The shape of the ferrite electrode can be a round bar or a square plate, and the thickness of the electrode is about 3 to 12 mm. Since this ferrite electrode has a high electric resistance in the electrode, the shape, the electrode size, the thickness of the electrode coating, and the like are appropriately determined in consideration of the amount of energization.
【0010】鉛系電極としては二酸化鉛電極、鉛又は鉛
合金電極等がある。二酸化鉛電極は高い酸素過電圧及び
特異な陽極触媒能を有する耐食性の高い安価な電極であ
るが、接合性に問題があり、亀裂が発生しやすいという
欠点があるが、これらの欠点は中間層を設けたり、二酸
化鉛被覆の電着を分散剤を含有させて行い内部歪みを緩
和させることにより解決することができる。前記鉛合金
電極は二酸化鉛電極より消耗が少なく、スラッジ生成の
原因となる溶出鉛イオンは電解液中の塩化物イオンと反
応し不溶性の塩化鉛を生成するので溶液中への鉛イオン
の溶出は防止することができる。又他に黒鉛電極がある
が、該黒鉛電極は酸素発生を伴う場合には炭酸ガスや炭
酸イオンとして消失するが、本発明では陽極反応が塩素
発生反応であるため殆ど消耗することがなく、効果的に
使用することができる。本発明では陽極において前述の
通り活性塩素や次亜塩素酸イオンが電解的に生成し、こ
の活性塩素等により染料の発色団の酸化的分解が生じて
染料水溶液の脱色が行われる。一方陰極の材質は前記染
料水溶液に対する耐食性があれば特に限定されず、例え
ば黒鉛、アルミニウム、鉄、ニッケル、チタン、タンタ
ル、ジルコニウム、鉛、これらの合金、あるいはこれら
に白金族金属又はその酸化物を被覆したものを使用する
ことができる。Examples of lead-based electrodes include lead dioxide electrodes, lead or lead alloy electrodes, and the like. The lead dioxide electrode is a low-cost electrode with high oxygen overvoltage and unique anodic catalytic ability and high corrosion resistance, but it has a problem that it has a problem of bondability and cracks easily occur. The problem can be solved by providing or electroplating the lead dioxide coating with a dispersant to alleviate the internal strain. The lead alloy electrode is less worn than the lead dioxide electrode, and the eluted lead ions that cause sludge formation react with chloride ions in the electrolytic solution to form insoluble lead chloride, so the lead ions are not eluted into the solution. Can be prevented. In addition, there is a graphite electrode, which disappears as carbon dioxide gas or carbonate ions when oxygen is generated, but in the present invention, the anode reaction is a chlorine generation reaction and is hardly consumed. Can be used for any purpose. In the present invention, active chlorine or hypochlorite ion is electrolytically generated in the anode as described above, and the active chlorine or the like causes oxidative decomposition of the chromophore of the dye to decolorize the aqueous dye solution. On the other hand, the material of the cathode is not particularly limited as long as it has corrosion resistance to the aqueous dye solution, and examples thereof include graphite, aluminum, iron, nickel, titanium, tantalum, zirconium, lead, alloys thereof, or platinum group metals or oxides thereof. A coated product can be used.
【0011】これらの電極を使用して染料水溶液の処理
を行い前記染料と活性塩素等が速く反応する場合は前述
の通り、染料水溶液中の染料の発色団が分解して該染料
水溶液の脱色が行われる。そして前記染料と活性塩素や
次亜塩素酸イオンとの反応が遅い場合には該活性塩素等
が蓄積して処理後の染料水溶液中に残留することがあ
る。該活性塩素等はそれらの強い酸化力のため殺菌力を
有し、自然環境の生態系を崩壊させることがあり前記活
性塩素等の濃度を低下させることが望ましい。又脱色処
理した染料水溶液を更に活性汚泥処理する場合には該処
理済の染料水溶液中の活性塩素や次亜塩素酸イオン濃度
を零としなければならない。この活性塩素等の除去のた
めには還元処理を行うことが望ましく該還元処理として
はオゾン、チオ硫酸塩やハイドロサルファイト等の薬剤
添加あるいは電解還元が有効である。オゾン還元は生成
物が塩化物イオンと酸素で残留オゾンの分解も速く、チ
オ硫酸塩例えばチオ硫酸ナトリウムを使用した場合の還
元生成物は排水中に含有されていても問題のない硫酸ナ
トリウムであり、又ハイドロサルファイトも安価で還元
力の強い試薬である。更に電解還元の場合には還元が行
われる陰極の表面積を大きく例えば多孔質陰極を使用す
ることにより容易に行うことができ、この電解還元の場
合には試薬の添加が不要で残留物が生じないため特に有
用である。When a dye aqueous solution is treated by using these electrodes and the above dye reacts rapidly with active chlorine, etc., as described above, the chromophore of the dye in the dye aqueous solution is decomposed to cause decolorization of the dye aqueous solution. Done. When the reaction of the dye with active chlorine or hypochlorite ion is slow, the active chlorine or the like may accumulate and remain in the dye aqueous solution after the treatment. The active chlorine and the like have a sterilizing power due to their strong oxidizing power, and may destroy the ecosystem of the natural environment, and it is desirable to reduce the concentration of the active chlorine and the like. When the decolorized dye aqueous solution is further treated with activated sludge, the concentration of active chlorine or hypochlorite ion in the treated dye aqueous solution must be zero. In order to remove the active chlorine and the like, it is desirable to carry out a reduction treatment, and as the reduction treatment, addition of chemicals such as ozone, thiosulfate and hydrosulfite, or electrolytic reduction is effective. In ozone reduction, residual ozone is decomposed quickly with chloride ion and oxygen as a product, and when thiosulfate such as sodium thiosulfate is used, the reduction product is sodium sulfate which is not a problem even if it is contained in wastewater. Also, hydrosulfite is an inexpensive and highly reducing agent. Furthermore, in the case of electrolytic reduction, the surface area of the cathode to be reduced is large and can be easily achieved by using, for example, a porous cathode. In the case of this electrolytic reduction, addition of reagents is unnecessary and no residue is generated. Therefore, it is particularly useful.
【0012】染料水溶液の中には染料合成において使用
された触媒である種々の金属や金属酸化物が残存し染料
廃液の中にこれらの金属等が含有されている場合があ
る。これらの金属特にマンガンや鉄等の金属イオンは陽
極上に酸化物として析出して活性塩素等の生成を阻害し
脱色効率を低下させる。この脱色効率の低下を防止する
ためには、電解により生成した活性塩素や次亜塩素酸イ
オンを含む溶液を金属イオンを含む液に予め混合しこれ
らの金属イオンを酸化させた後、電解液とすればよい。There are cases in which various metals and metal oxides that are catalysts used in dye synthesis remain in the aqueous dye solution and these metals and the like are contained in the waste dye solution. These metals, particularly metal ions such as manganese and iron, are deposited as an oxide on the anode to inhibit the production of active chlorine and reduce the decolorization efficiency. In order to prevent a decrease in this decolorization efficiency, a solution containing active chlorine or hypochlorite ions generated by electrolysis is mixed in advance with a solution containing metal ions to oxidize these metal ions, and then an electrolyte solution is prepared. do it.
【0013】[0013]
【実施例】次に本発明方法による染料水溶液の脱色処理
の実施例を記載するが、本発明はこれらに限定されるも
のではない。染料水溶液の脱色に先立ち電極試料を次の
通り作製した。電極試料1 縦100 mm、横100 mm、厚さ3mmの市販のチタン板
をアセトン脱脂後、熱シュウ酸溶液で洗浄し、更に純水
で洗浄し乾燥して電極基体とした。塩化スズと塩化ニオ
ブを1:1のモル比でエタノールに溶解した溶液を前記
電極基体に塗布、乾燥後550 ℃で10分間焼成した。この
操作を繰り返し行い厚さ3μmの中間層被覆を形成し
た。次に塩化イリジウム、塩化白金及び塩化パラジウム
をブタノール溶液に溶解し各金属のモル比が4:1:1
の溶液を調製した。該溶液を前記中間層被覆を施した基
体上に塗布、乾燥後550℃で10分間焼成した。この操作
を繰り返し行い厚さ15μmの電極被覆を形成し、試料1
とした。EXAMPLES Next, examples of decolorizing treatment of dye aqueous solution by the method of the present invention will be described, but the present invention is not limited thereto. Electrode samples were prepared as follows prior to decolorization of the aqueous dye solution. Electrode Sample 1 A commercially available titanium plate having a length of 100 mm, a width of 100 mm and a thickness of 3 mm was degreased with acetone, washed with a hot oxalic acid solution, further washed with pure water and dried to obtain an electrode substrate. A solution of tin chloride and niobium chloride dissolved in ethanol at a molar ratio of 1: 1 was applied to the electrode substrate, dried, and then baked at 550 ° C. for 10 minutes. This operation was repeated to form an intermediate layer coating having a thickness of 3 μm. Next, iridium chloride, platinum chloride and palladium chloride are dissolved in butanol solution and the molar ratio of each metal is 4: 1: 1.
Was prepared. The solution was applied onto the substrate coated with the intermediate layer, dried, and baked at 550 ° C. for 10 minutes. Repeat this operation to form an electrode coating with a thickness of 15 μm.
And
【0014】電極試料2 縦100 mm、横100 mm、厚さ3mmの市販のチタン板
をサンドブラスト処理し、次いで約80℃の水酸化ナトリ
ウム水溶液中に2時間浸漬し脱脂を行った。水洗後5%
フッ酸水溶液中に浸漬し水洗し直ちに塩化白金酸を含む
リン酸アンモニウム及びリン酸ナトリウム浴を使用して
1μmの白金メッキ層を形成した。該白金メッキ被覆を
施したチタン板を電極基体とし硝酸鉛を溶解した二酸化
鉛電着浴にて温度50℃、電流密度4A/dm2 の条件で
陰極にステンレスを用いて電解し、二酸化鉛被覆層の厚
さが0.6 mmの二酸化鉛電極を作製し、試料2とした。 Electrode Sample 2 A commercially available titanium plate having a length of 100 mm, a width of 100 mm and a thickness of 3 mm was subjected to sandblasting, and then immersed in an aqueous sodium hydroxide solution at about 80 ° C. for 2 hours for degreasing. 5% after washing
Immersion in a hydrofluoric acid aqueous solution, washing with water, and immediately, a 1 μm platinum plating layer was formed using an ammonium phosphate and sodium phosphate bath containing chloroplatinic acid. The titanium plate coated with the platinum plating is used as an electrode substrate and is electrolyzed in a lead dioxide electrodeposition bath in which lead nitrate is dissolved at a temperature of 50 ° C. and a current density of 4 A / dm 2 using stainless steel as a cathode, and coated with lead dioxide. A lead dioxide electrode having a layer thickness of 0.6 mm was prepared and used as sample 2.
【0015】[0015]
【実施例1】電極試料1を陽極とし、陽極と同じ大きさ
の鉛板を陰極として、主にアゾ染料系酸性媒染染料等を
含む黄色の染料廃液(約5%の塩化ナトリウム含有)1
リットルを電解液として室温で攪拌しながら10Aの直流
電流を1時間通電した。Example 1 An electrode sample 1 was used as an anode, a lead plate having the same size as the anode was used as a cathode, and a yellow dye waste liquid containing mainly an azo dye-based acid mordant dye (containing about 5% sodium chloride) 1
A direct current of 10 A was applied for 1 hour while stirring at room temperature using 1 liter of the electrolytic solution.
【比較例1】実施例1と同じ染料廃液1リットルに市販
の12%の次亜塩素酸ナトリウム水溶液150 ミリリットル
を添加し室温で1時間攪拌した。Comparative Example 1 To 1 liter of the same dye waste solution as in Example 1 was added 150 ml of a commercially available 12% aqueous sodium hypochlorite solution, and the mixture was stirred at room temperature for 1 hour.
【0016】[0016]
【実施例2】電極試料1を陽極とし、同じ大きさのステ
ンレスSUS304 を陰極とした。アントラキノン系建染
染料を主体とする緑色の染料廃液に塩化ナトリウムを加
え塩化ナトリウム濃度10%の溶液を調製した。該溶液は
約300 ppmのマンガンイオンを含有していた。該染料
廃液1リットル(実施例2-1 )、及び別に該染料廃液1
リットルに、実施例1で脱色した溶液(実施例2-2 )を
20A/dm2 で10分間直流電流を通電した液100 ミリリ
ットルを添加した液をそれぞれ20Aの直流電流を1時間
室温にて攪拌しながら通電した。Example 2 Electrode sample 1 was used as an anode, and stainless steel SUS304 having the same size was used as a cathode. Sodium chloride was added to a green dye waste liquid mainly containing anthraquinone vat dye to prepare a solution having a sodium chloride concentration of 10%. The solution contained about 300 ppm manganese ions. 1 liter of the dye waste liquid (Example 2-1) and separately the dye waste liquid 1
To the liter, the solution decolorized in Example 1 (Example 2-2) was added.
A liquid to which 100 ml of a direct current was applied for 10 minutes at 20 A / dm 2 was added to each of the solutions to which a direct current of 20 A was applied for 1 hour while stirring at room temperature.
【比較例2】実施例2の染料廃液1リットルに市販の12
%次亜塩素酸ナトリウム水溶液300ミリリットルを添加
し室温にて1時間攪拌した。[Comparative Example 2] Commercially available 12
% 300% aqueous sodium hypochlorite solution was added, and the mixture was stirred at room temperature for 1 hour.
【0017】[0017]
【実施例3】縦100 mm、横100 mm、厚さ5mmの鉛
−スズ(5%)板を陽極とし、同じ大きさの黒鉛を陰極
として、アゾ染料を合成した橙色の染料廃液(約3%の
塩化ナトリウムを含有)1リットルを電解液として室温
で攪拌しながら5Aの直流電流を30分間通電した。Example 3 A lead-tin (5%) plate having a length of 100 mm, a width of 100 mm and a thickness of 5 mm was used as an anode, and graphite of the same size was used as a cathode, and an orange dye waste liquid (about 3 % Of sodium chloride) was used as an electrolytic solution, and a DC current of 5 A was applied for 30 minutes while stirring at room temperature.
【比較例3】実施例3と同じ染料廃液1リットルに市販
の12%次亜塩素酸ナトリウム水溶液50ミリリットルを添
加し室温にて30分間攪拌した。Comparative Example 3 To 1 liter of the same dye waste solution as in Example 3 was added 50 ml of a commercially available 12% aqueous sodium hypochlorite solution, and the mixture was stirred at room temperature for 30 minutes.
【0018】[0018]
【実施例4】電極試料2の二酸化鉛電極を陽極とし、同
じ大きさの白金メッキチタン板を陰極として、アントラ
キノン系建染染料を主体とする青色の染料廃液に塩化ナ
トリウムを加え塩化ナトリウム濃度4%の水溶液を調製
し該水溶液1リットルを電解液として10Aの直流電流を
室温で攪拌しながら2時間通電した。Example 4 A lead dioxide electrode of electrode sample 2 was used as an anode, a platinum-plated titanium plate of the same size was used as a cathode, and sodium chloride was added to a blue dye waste liquid mainly composed of anthraquinone-based vat dye to give a sodium chloride concentration of 4 % Aqueous solution was prepared, and 1 liter of the aqueous solution was used as an electrolytic solution, and a direct current of 10 A was applied at room temperature for 2 hours with stirring.
【比較例4】実施例4と同じ染料廃液1リットルに市販
の12%次亜塩素酸ナトリウム水溶液300 ミリリットルを
添加し室温にて2時間攪拌した。実施例1〜4及び比較
例1〜4のそれぞれの電解液(染料廃液)につき通電前
後の電解液を比色管に採取して行った比色の結果と通電
後の沈澱の状態を表1に纏めた。Comparative Example 4 To 1 liter of the same dye waste solution as in Example 4 was added 300 ml of a commercially available 12% aqueous sodium hypochlorite solution, and the mixture was stirred at room temperature for 2 hours. Table 1 shows the results of colorimetry and the state of precipitation after electrification for each of the electrolytes (dye waste liquid) of Examples 1 to 4 and Comparative Examples 1 to 4 before and after energization were collected in a colorimetric tube. I summarized it in.
【0019】[0019]
【表1】 [Table 1]
【0020】更に通電後の電解液(染料廃液)の残留有
効塩素濃度をチオ硫酸ナトリウムによるヨウ素滴定で測
定した結果を表1に示した。実施例1、比較例1、実施
例3及び比較例3の電解液に面積比を1:10としたフェ
ライト陽極及び黒鉛陰極により直流電流を通電し還元処
理を行った(陽極電流密度5A/dm2 、陰極電流密度
0.5 A/dm2 )。又実施例2-1 、実施例2-2 、比較例
2、実施例4及び比較例4の電解液に必要量(分析結果
より残留有効塩素を還元するために必要であると算出さ
れた量)のチオ硫酸ナトリウムを添加して還元処理を行
った。各還元処理後の電解液中の残留有効塩素濃度の測
定値を表1に示した。表1から染料水溶液の不溶性電極
を使用する通電処理により得られる液は次亜塩素酸添加
処理により得られる液よりも脱色の程度が高く(液の色
が薄く)沈澱が生ずることが判る。更に通電処理後に残
留する有効塩素は還元処理を行うことにより大幅に低減
(通電処理)しあるいはほぼ零に低減(チオ硫酸ナトリ
ウム添加処理)することができることも判る。Further, Table 1 shows the results of measuring the residual effective chlorine concentration of the electrolytic solution (dye waste solution) after energization by iodometric titration with sodium thiosulfate. A reduction treatment was carried out by passing a direct current through the electrolytes of Example 1, Comparative Example 1, Example 3 and Comparative Example 3 through a ferrite anode and a graphite cathode having an area ratio of 1:10 (anode current density 5 A / dm. 2 , cathode current density
0.5 A / dm 2 ). Further, the required amount for the electrolytic solution of Example 2-1, Example 2-2, Comparative Example 2, Example 4 and Comparative Example 4 (the amount calculated to be necessary for reducing residual available chlorine from the analysis results) ) Sodium thiosulfate was added to perform reduction treatment. Table 1 shows the measured values of the residual available chlorine concentration in the electrolytic solution after each reduction treatment. From Table 1, it can be seen that the liquid obtained by the electric current treatment using the insoluble electrode of the aqueous dye solution has a higher degree of decolorization (the liquid color is lighter) than the liquid obtained by the treatment with hypochlorous acid and precipitates. Further, it is also understood that effective chlorine remaining after the energization treatment can be significantly reduced (energization treatment) or reduced to almost zero (sodium thiosulfate addition treatment) by performing reduction treatment.
【0021】[0021]
【発明の効果】本発明は、塩化物イオンを含有する染料
水溶液を電解液とし不溶性電極を用いて該電解液を電解
することにより活性塩素及び/又は次亜塩素酸イオンを
生成させ、該活性塩素及び/又は次亜塩素酸イオンによ
り前記染料水溶液を処理することを特徴とする染料水溶
液の処理方法である。本発明により電解的に処理される
染料水溶液中には塩化物イオンが含有され、該塩化物イ
オンを電解酸化することにより該塩化物イオンは活性塩
素に酸化され更に該活性塩素は水酸イオンと反応して次
亜塩素酸イオンを生成する。この活性塩素や次亜塩素酸
イオンが陽極上で染料成分と反応して発色団等の不飽和
結合部と反応して不飽和結合を切断酸化すること等によ
り脱色が行われる。INDUSTRIAL APPLICABILITY The present invention produces an active chlorine and / or hypochlorite ion by electrolyzing an electrolytic solution using an aqueous solution of a dye containing chloride ion and an insoluble electrode. A method for treating an aqueous dye solution, which comprises treating the aqueous dye solution with chlorine and / or hypochlorite ions. Chloride ions are contained in the aqueous dye solution electrolytically treated according to the present invention, and by electrolytically oxidizing the chloride ions, the chloride ions are oxidized to active chlorine, and the active chlorine is converted to hydroxide ions. Reacts to produce hypochlorite ions. The active chlorine or hypochlorite ion reacts with the dye component on the anode and reacts with an unsaturated bond portion such as a chromophore to cleave and oxidize the unsaturated bond, whereby decolorization is performed.
【0022】この本発明方法は、試薬を使用せずに染料
水溶液の処理を行うことができるため安価であるととも
に操作が安定し、更に添加した試薬の後処理や再生も必
要としないため手間が掛からず容易にコントロールする
ことができる。しかも従来の次亜塩素酸イオンによる処
理と異なり電解により発生する活性塩素や次亜塩素酸イ
オンが染料成分と陽極表面で反応するため染料成分の分
解が促進されて脱色効率が遙に向上する。不溶性電極の
電極基体と電極被覆間に白金族金属やチタン等から成る
中間層を形成すると、前記電極基体と電極被覆との密着
性が向上して電極寿命が延び、染料水溶液の処理を長期
間行うことが可能になる。そしてこの電解酸化による染
料成分の分解では該染料成分と活性塩素等との反応速度
の遅速に応じて塩化物イオンの初期添加量を調節する必
要があり、該初期添加量が大きいと前記染料成分分解後
の染料水溶液中の残留有効塩素の濃度が高くなる。この
場合には更に通電あるいは薬剤添加による還元処理を行
って前記残留有効塩素の分解(塩化物イオンへの変換)
を行い残留有効塩素濃度を零又は大幅に低減して、環境
汚染を防止することができる。This method of the present invention is inexpensive because the dye aqueous solution can be treated without using a reagent, the operation is stable, and no post-treatment or regeneration of the added reagent is required, which is troublesome. It can be controlled easily without hanging. Moreover, unlike the conventional treatment with hypochlorite ion, active chlorine or hypochlorite ion generated by electrolysis reacts with the dye component on the surface of the anode, so that the decomposition of the dye component is promoted and the decolorization efficiency is greatly improved. When an intermediate layer made of a platinum group metal or titanium is formed between the electrode base of the insoluble electrode and the electrode coating, the adhesion between the electrode base and the electrode coating is improved, the electrode life is extended, and the aqueous dye solution is treated for a long period of time. It will be possible to do. Then, in the decomposition of the dye component by this electrolytic oxidation, it is necessary to adjust the initial addition amount of chloride ion according to the slow reaction rate of the dye component and active chlorine, etc. The concentration of residual available chlorine in the dye aqueous solution after decomposition becomes high. In this case, further reduction treatment by energizing or adding chemicals is performed to decompose the residual available chlorine (conversion to chloride ion).
The residual effective chlorine concentration can be reduced to zero or significantly to prevent environmental pollution.
Claims (3)
解液とし不溶性電極を用いて該電解液を電解することに
より活性塩素及び/又は次亜塩素酸イオンを生成させ、
該活性塩素及び/又は次亜塩素酸イオンにより前記染料
水溶液を処理することを特徴とする染料水溶液の処理方
法。1. An active chlorine and / or hypochlorite ion is produced by electrolyzing an electrolytic solution using a dye aqueous solution containing chloride ions as an electrolytic solution and using an insoluble electrode.
A method for treating an aqueous dye solution, which comprises treating the aqueous dye solution with the active chlorine and / or hypochlorite ion.
に形成された中間層、及び該中間層上に形成された電極
被覆を含んで成る請求項1に記載の方法。2. The method of claim 1, wherein the insoluble electrode comprises an electrode substrate, an intermediate layer formed on the electrode substrate, and an electrode coating formed on the intermediate layer.
解液とし不溶性電極を用いて該電解液を電解することに
より活性塩素及び/又は次亜塩素酸イオンを生成させ、
該活性塩素及び/又は次亜塩素酸イオンにより前記染料
水溶液を処理し、更に該染料水溶液を還元処理し残留有
効塩素濃度を減少させることを特徴とする染料水溶液の
処理方法。3. An active chlorine and / or hypochlorite ion is produced by electrolyzing the electrolyte solution using an aqueous solution of a dye containing chloride ions as an electrolyte solution and using an insoluble electrode.
A method for treating an aqueous dye solution, which comprises treating the aqueous dye solution with the active chlorine and / or hypochlorite ion, and further reducing the aqueous dye solution to reduce the residual available chlorine concentration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30967091A JPH05115879A (en) | 1991-10-29 | 1991-10-29 | Treatment of dyestuff aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30967091A JPH05115879A (en) | 1991-10-29 | 1991-10-29 | Treatment of dyestuff aqueous solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05115879A true JPH05115879A (en) | 1993-05-14 |
Family
ID=17995861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30967091A Pending JPH05115879A (en) | 1991-10-29 | 1991-10-29 | Treatment of dyestuff aqueous solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05115879A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07100469A (en) * | 1993-10-06 | 1995-04-18 | Noritake Yokozuka | Method for purification treatment of dyeing waste water |
JPH08281271A (en) * | 1995-04-14 | 1996-10-29 | Osaka Prefecture | Treating device of waste dyeing water and treatment of the same |
US6589396B2 (en) | 1998-06-26 | 2003-07-08 | Canon Kabushiki Kaisha | Method for treating colored liquid and apparatus for treating colored liquid |
CN115607722A (en) * | 2022-10-31 | 2023-01-17 | 广东美的制冷设备有限公司 | Sterilizer, control method and control device thereof, and storage medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49107979A (en) * | 1973-02-13 | 1974-10-14 | ||
JPS5727184A (en) * | 1980-06-16 | 1982-02-13 | Kinergy Corp | Vibrating screen |
JPS6345878A (en) * | 1986-08-13 | 1988-02-26 | Sharp Corp | Semicoductor laser array device |
-
1991
- 1991-10-29 JP JP30967091A patent/JPH05115879A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49107979A (en) * | 1973-02-13 | 1974-10-14 | ||
JPS5727184A (en) * | 1980-06-16 | 1982-02-13 | Kinergy Corp | Vibrating screen |
JPS6345878A (en) * | 1986-08-13 | 1988-02-26 | Sharp Corp | Semicoductor laser array device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07100469A (en) * | 1993-10-06 | 1995-04-18 | Noritake Yokozuka | Method for purification treatment of dyeing waste water |
JPH08281271A (en) * | 1995-04-14 | 1996-10-29 | Osaka Prefecture | Treating device of waste dyeing water and treatment of the same |
US6589396B2 (en) | 1998-06-26 | 2003-07-08 | Canon Kabushiki Kaisha | Method for treating colored liquid and apparatus for treating colored liquid |
US6776886B2 (en) | 1998-06-26 | 2004-08-17 | Canon Kabushiki Kaisha | Method for treating colored liquid and apparatus for treating colored liquid |
CN115607722A (en) * | 2022-10-31 | 2023-01-17 | 广东美的制冷设备有限公司 | Sterilizer, control method and control device thereof, and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Electrodeposited lead dioxide coatings | |
EP0047595A1 (en) | Electrochemical cell | |
Hine et al. | On the oxidation of cyanide solutions with lead dioxide coated anode | |
JPH02197590A (en) | Redox reaction method and electrolytic bath for it | |
JPS631448A (en) | Treatment of organic waste and catalyst/promotor compositiontherefor | |
US4859300A (en) | Process for treating plastics with alkaline permanganate solutions | |
US4834852A (en) | Process for the activation of hydrogen peroxide | |
JP5105406B2 (en) | Electrode for reverse electrolysis | |
JPH05115879A (en) | Treatment of dyestuff aqueous solution | |
Nsaif et al. | Modified Graphite with Tin Oxide as a Promising Electrode for Reduction of Organic Pollutants from Wastewater by Sonoelectrochemical Oxidation | |
JP4975271B2 (en) | Electrolytic water treatment electrode | |
JP2885913B2 (en) | Anode for chromium plating and method for producing the same | |
KR100406142B1 (en) | Dimensionally stable electrode for treating hard-resoluble waster water | |
KR20050090700A (en) | Metal mixed oxide electrode and making method of the same | |
JP2002219464A (en) | Electrolytic treatment method and system | |
JP3724096B2 (en) | Oxygen generating electrode and manufacturing method thereof | |
JP3654204B2 (en) | Oxygen generating anode | |
CA2013123A1 (en) | Electrolytic regeneration of alkaline permanganate etching bath | |
Nidola | Electrode materials for oxygen evolution cobalt treated lead vs. commercial lead and lead alloys | |
Florêncio et al. | Application of Ti/Pt/β-PbO2 anodes in the degradation of DR80 azo dye | |
US4108745A (en) | Selenium-containing coating for valve metal electrodes and use | |
JP2722263B2 (en) | Electrode for electrolysis and method for producing the same | |
US4222826A (en) | Process for oxidizing vanadium and/or uranium | |
JPH0699178A (en) | Electrolytical treating method for waste chemical plating liquid | |
JP2006322056A (en) | Electrode for electrolysis and manufacturing method therefor |