[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0499247A - Production of soft magnetic sintered parts by utilizing mechanical alloying - Google Patents

Production of soft magnetic sintered parts by utilizing mechanical alloying

Info

Publication number
JPH0499247A
JPH0499247A JP2210212A JP21021290A JPH0499247A JP H0499247 A JPH0499247 A JP H0499247A JP 2210212 A JP2210212 A JP 2210212A JP 21021290 A JP21021290 A JP 21021290A JP H0499247 A JPH0499247 A JP H0499247A
Authority
JP
Japan
Prior art keywords
powder
less
soft magnetic
weight
pure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2210212A
Other languages
Japanese (ja)
Inventor
Noboru Uenishi
昇 上西
Yoshiaki Ito
嘉朗 伊藤
Yoshinobu Takeda
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2210212A priority Critical patent/JPH0499247A/en
Publication of JPH0499247A publication Critical patent/JPH0499247A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a sintered steel sheet having superior soft magnetic characteristics and high saturation magnetic flux density by mechanically grinding Fe-Si, Fe-Al or Fe-Si-Al having a specified compsn. in a nonoxidizing atmosphere, extrusion-molding and sintering the resulting powder having a hyperfine crystal structure and/or an amorphous structure at a specified temp. CONSTITUTION:Fe-Si powder contg. 3-7wt.% Si, Fe-Al powder contg. <7wt.% Al or Fe-Si-Al powder contg. <10wt.% Si and <6wt.% Al is mechanically ground in an Ar atmosphere or powders of pure Fe, pure Si, pure Al, Fe-Si, Fe-Al, etc., are mixed so as to obtain the above-mentioned compsn. or <=5wt.% Nb or Cu is further added and they are mechanically ground. The resulting powder having a hyperfine crystal structure of <100nm average grain amorphous structure is extrusion-molded and sintered at the crystallization temp. +20 deg.C or below to produce a soft magnetic sintered amorphous alloy sheet.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメカニカルアロイングを利用した新規な軟磁性
焼結部品の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel method for manufacturing soft magnetic sintered parts using mechanical alloying.

〔従来の技術〕[Conventional technology]

軟磁性焼結部品は磁気ヘッド、柱上トランスモータ用鉄
心等に用いられるものであり、従来この分野ではフェラ
イト系、パーマロイ、ケイ素鋼あるいはアモルファス合
金などが使用されていた。
Soft magnetic sintered parts are used in magnetic heads, cores for pole-mounted transformers, etc., and conventionally in this field, ferrite, permalloy, silicon steel, or amorphous alloys have been used.

アモルファス合金とは、単ロールや双ロール法のような
急冷凝固法で作成されるリボン状の合金であり、Fe系
とCo系のものがある。軟磁性材料としては飽和磁束密
度、比透磁率が高く、磁心損失や磁歪定数の小さなもの
が望ましい。
Amorphous alloys are ribbon-shaped alloys created by a rapid solidification method such as a single-roll or twin-roll method, and include Fe-based and Co-based alloys. The soft magnetic material preferably has high saturation magnetic flux density, high relative magnetic permeability, and low core loss and magnetostriction constant.

C発明が解決しようとする課題〕 上記の従来材料はいずれも一長一短であり、必ずしも全
てに優れた材料というものはなかった。
Problems to be Solved by the Invention C] All of the above-mentioned conventional materials have advantages and disadvantages, and no material is necessarily superior in all respects.

すなわち、ケイ素鋼は飽和磁束密度が2,0と高いが磁
心損失が極めて大きく、比透磁率が2000と小さい。
That is, silicon steel has a high saturation magnetic flux density of 2.0, but has an extremely large magnetic core loss and a low relative magnetic permeability of 2000.

■一方、アモルファス合金は比透磁率が高く磁心損失が
小さいが、飽和磁束密度がFe系で1.41゜Co系で
0,55と小さい欠点がある。アモルファス合金が急冷
凝固法で作成されるkめに、B(ホウ素)やC(炭素)
のような微量の元素をその化学組成として含有するため
、飽和磁束密度が低くなるのである。
(2) On the other hand, amorphous alloys have high relative magnetic permeability and low core loss, but have the disadvantage that the saturation magnetic flux density is as low as 1.41° for Fe-based materials and 0.55° for Co-based materials. B (boron) and C (carbon) are used to create amorphous alloys by rapid solidification.
The saturation magnetic flux density is low because it contains trace amounts of elements such as in its chemical composition.

したがって、飽和磁束密度、軟磁気特性の優れたアモル
ファス合金が要求されており、本発明は急冷凝固法によ
らないアモルファス合金の新規な製造方法の掃供を課題
としてなされたものである。
Therefore, there is a need for an amorphous alloy with excellent saturation magnetic flux density and soft magnetic properties, and the present invention has been made to provide a new method for producing an amorphous alloy that does not involve rapid solidification.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、Fe−Si系合金のアモルファス材を急
冷法以外の手段で作成できれば、軟磁気特性の優れた合
金を得られると考え、鋭意研究の結果、メカニカルアロ
イングを利用してこの目的を達成できることを見出し本
発明に到った。
The present inventors believe that if an amorphous Fe-Si alloy can be made by a method other than the rapid cooling method, an alloy with excellent soft magnetic properties can be obtained, and as a result of extensive research, they have developed an alloy using mechanical alloying. The inventors have discovered that the object can be achieved and have developed the present invention.

すなわち、本発明はSi3〜7重量%残部Fe、 M7
重量%以下残部Fe、またはSi0重量%以下1M6重
量%以下残部Fe、の化学組成を有する合金の粉末をN
雰囲気中にて1時間以上メカニカルグラインディングす
ることにより平均結晶が1100n以下の組織および/
またはアモルファス構造を有する処理粉末を作成し、該
処理粉末を合金の結晶化温度をTx(’C)とするとき
(TX+20)℃以下の温度において押し出し法により
固化成形することを特徴とするメカニカルアロイングを
利用した軟磁性焼結部品の製造方法である。
That is, in the present invention, Si3 to 7% by weight, balance Fe, M7
An alloy powder having a chemical composition of 0 wt% or less of Fe, or 0 wt% or less of Si, 1M or less of 6 wt% or less of Fe,
Mechanical grinding for over 1 hour in an atmosphere creates a structure with an average crystal size of 1100n or less and/or
Alternatively, a mechanical alloy is produced by preparing a treated powder having an amorphous structure, and solidifying and molding the treated powder by extrusion at a temperature of (TX+20)°C or lower, where the crystallization temperature of the alloy is Tx ('C). This is a method for manufacturing soft magnetic sintered parts using ing.

本発明において、純Fe、純Si、純Aj’、 Fe 
 Si合金またはFe−Al’合金の粉末を、SL3〜
7重量%残部Fe、/lj!7重量%以下残部Fe、ま
たはSi10重量%以下、/V6重量%以下残部Feの
化学組成に配合した後、Ar雰囲気中にて50時間以上
メカニカルアロイングすることにより平均結晶が110
0n以下の組織および/またはアモルファス構造を有す
る処理粉末を作成することを、特に好丈しい実施態様と
して挙げることができる。
In the present invention, pure Fe, pure Si, pure Aj', Fe
Si alloy or Fe-Al' alloy powder is SL3~
7% by weight balance Fe, /lj! After blending into a chemical composition with a balance of 7% by weight or less of Fe, or a Si of 10% by weight or less and a /V of 6% by weight or less and a balance of Fe, mechanical alloying is performed in an Ar atmosphere for 50 hours or more to obtain an average crystal of 110
Particularly advantageous embodiments include producing treated powders with a sub-On texture and/or an amorphous structure.

また、本発明においては、合金粉末が5重量%以下のN
bまたは/およびCuを合金元素として配合されている
ものは、Nbはこの系のアモルファス化を容易にし、C
oは磁心損失を低下させ比透磁率を高める作用を有する
点で、特に好ましい実施態様である。
Further, in the present invention, the alloy powder contains 5% by weight or less of N.
When B or/and Cu are blended as alloying elements, Nb facilitates the amorphization of the system, and C
o is a particularly preferred embodiment in that it has the effect of reducing core loss and increasing relative magnetic permeability.

〔作用〕[Effect]

本発明の方法を具体的に説明すると、原料粉末としては
Si3〜7重量%残部FeSMT重量%以下残部Fe、
または5110重量%以下1M6重量%以下残部Feを
化学組成として有する合金粉を用いることができる。ま
たは、純Fe、純Si、純M、さらにはFe−Si母合
金、Fe−M母合金等の素粉末を用いることもできる。
To specifically explain the method of the present invention, the raw material powder includes 3 to 7% by weight of Si, balance of FeSMT, balance of Fe,
Alternatively, an alloy powder having a chemical composition of 5110% by weight or less, 1M, 6% by weight or less, and the remainder Fe can be used. Alternatively, base powders such as pure Fe, pure Si, pure M, Fe-Si master alloy, Fe-M master alloy, etc. can also be used.

所望の化学組成となるように用意した原料粉をメカニカ
ルブライディング又はメカニカルアロイング(以下MA
とも略記する)することにより、アモルファス粉末また
はloonm以下の結晶粒を有するMA粉末とする。
Mechanical briding or mechanical alloying (hereinafter referred to as MA
(also abbreviated as "MA powder"), it is made into an amorphous powder or an MA powder having crystal grains of less than 10m.

なお、メカニカルブライディングもメカニカルアロイン
グも、共に粉末に歪を与えるという点、即ち、粉末に歪
エネルギーを蓄積させる方法である点では同じである。
Note that both mechanical briding and mechanical alloying are the same in that they both apply strain to powder, that is, they are methods of accumulating strain energy in powder.

しかし、メカニカルブライディングが単に粉末を歪を与
える方法であるのに対して、メカニカルアロイングは、
2種又は3種以上の粉末を合金化させるプロセスでもを
る点で前者と相違している。
However, while mechanical briding is simply a method of distorting powder, mechanical alloying is
It differs from the former in that it can also be used in a process of alloying two or more types of powder.

具体的にはアトライター装置を用いて、例えばArガス
雰囲気中においてアジテータ−回転数200rpmで5
0分間処理といった条件で行なうことで上記の粉末を得
ることができる。雰囲気は上記のNが一般的であるが、
その他N、ガス雰囲気、H□を少量含有したNガス雰囲
気、大気等でも行われる。
Specifically, using an attritor device, for example, in an Ar gas atmosphere, an agitator is rotated at a rotation speed of 200 rpm.
The above powder can be obtained by performing the treatment for 0 minutes. The atmosphere is generally N as described above,
In addition, N gas atmosphere, N gas atmosphere containing a small amount of H□, air, etc. may also be used.

メカニカルブライディング又はメカニカルアロイングの
いずれも、必要以上の長時間行うと、雰囲気からのコン
タミネイションが増えるばかりである。したがってこれ
らの処理を行なう時間は、合金粉の性状、大きさ、硬度
等によるものの、メカニカルブライディングでは少なく
とも1時間以上、長くとも20時間程度、メカニカルア
ロイングでは少なくとも16〜5050時間行えば充分
に目的を達成できる。
If either mechanical briding or mechanical alloying is performed for a longer time than necessary, contamination from the atmosphere will only increase. Therefore, although the time for performing these treatments depends on the properties, size, hardness, etc. of the alloy powder, for mechanical briding, it is sufficient to perform at least 1 hour or at most 20 hours, and for mechanical alloying, at least 16 to 5050 hours is sufficient. You can achieve your goals.

また、ボールミルを用いる振動ミル法によってもよい。Alternatively, a vibration milling method using a ball mill may be used.

この段階ではアモルファスと微細晶が混在していても構
わない。
At this stage, there may be a mixture of amorphous and fine crystals.

以上で得られたMA粉末を熱間押出法により固化成形す
るが、この時の温度はアモルファスの結晶化温度をTx
(C)とするとき、(Tx+20)°C以下で押出しを
行なう。(Tx+20)’Cを越えると、合金の結晶化
及びその粗大化が顕著に起こるので不都合である。また
、下限値はないが、例えばアモルファスの転移温度をT
g(’C)とするとき、(Tg−150)℃以下の温度
では押出し変形圧力が高くなり、押出しを行おうとする
と押詰まりが起こり、押出材を作成できなくなる。
The MA powder obtained above is solidified and molded by hot extrusion, and the temperature at this time is Tx
When (C) is used, extrusion is performed at (Tx+20)°C or lower. Exceeding (Tx+20)'C is disadvantageous because crystallization and coarsening of the alloy occur significantly. Although there is no lower limit, for example, the transition temperature of amorphous is T
g('C), the extrusion deformation pressure becomes high at temperatures below (Tg-150)°C, and when extrusion is attempted, clogging occurs, making it impossible to create an extruded material.

本発明に従って作成された合金は微細な結晶粒を有する
ケイ素鋼である、結晶粒は200〜300Å以下の大き
さを有している。このため磁気的異方性が小さい。また
、ケイ素鋼であるため飽和磁束密度が高い上に、磁心損
失が小さく、磁歪定数も小さい。さらに、合金がアモル
ファス状態を経過していること、結晶粒が小さいこ吉か
ら、比透磁率も通常のケイ素鋼に較べ比較的小さな値を
示す。
The alloy made according to the invention is a silicon steel with fine grains, the grains having a size of less than 200-300 Å. Therefore, the magnetic anisotropy is small. In addition, since it is made of silicon steel, it has a high saturation magnetic flux density, a small magnetic core loss, and a small magnetostriction constant. Furthermore, because the alloy is in an amorphous state and the crystal grains are small, the relative magnetic permeability also shows a relatively small value compared to ordinary silicon steel.

本発明のFe−Si鋼には微量の他元素、例えばCuや
Nbを含んでいてもよい。Cuは磁心損失を低下させ、
比透磁率を高めるが、これはCuが結晶粒径の微細化に
多少の効果を有することと関係があると考えられる。C
uの存在量は5重量に以下であることが好ましい。
The Fe-Si steel of the present invention may contain trace amounts of other elements such as Cu and Nb. Cu lowers magnetic core loss,
Although the relative magnetic permeability is increased, this is thought to be related to the fact that Cu has some effect on making the crystal grain size finer. C
Preferably, the amount of u present is less than or equal to 5 parts by weight.

Nbはこの系の合金のアモルファス化を容易にする働き
を有する。Nbの存在量は5重量%であることが好まし
い。
Nb has the function of facilitating the amorphization of this type of alloy. The amount of Nb present is preferably 5% by weight.

Cu、 Nbの他にも、合金のアモルファス化を促進す
るような元素、結晶の微細化に効果かある元素等の存在
は差し支えない。
In addition to Cu and Nb, there is no problem in the presence of elements that promote the amorphization of the alloy, elements that are effective in making the crystals finer, etc.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を具体的に説明するが、本
発明はこの範囲に限定されるものではない。
Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to this scope.

実施例1 falFe96%−3i4%、(b)Fe93%−3i
4%−N3%、(CIF293%−M7%、のアトマイ
ズ粉をそれぞれメカニカルブライディングした。また、
これとは別に純Fe(カーボニルFe)粉、Fe−Si
粉及びFe−30AI!粉(いずれも100メツシユ以
下)をlal〜fclの組成に配合し、これをメカニカ
ルアロイングした。
Example 1 falFe96%-3i4%, (b) Fe93%-3i
Atomized powders of 4%-N3% and (CIF293%-M7%) were mechanically bridded.
Apart from this, pure Fe (carbonyl Fe) powder, Fe-Si
Powder and Fe-30AI! Powder (all 100 mesh or less) was blended into a composition of lal to fcl, and this was mechanically alloyed.

また、Fe−Nb −Cu粉を用いて、Fe90%−3
i6%−Nb2%−Cu2%の組成に配合した粉末につ
いても、メカニカルアロイングした。
In addition, using Fe-Nb-Cu powder, Fe90%-3
Mechanical alloying was also performed on the powder blended with the composition of i6%-Nb2%-Cu2%.

以上のメカニカルブライディング、メカニカルアロイン
グは乾式アトライターを用いて、Nガス雰囲気中で75
時間行った。アジテータ−回転数は175rpmとした
The above mechanical briding and mechanical alloying are performed using a dry attritor in an N gas atmosphere.
Time went. The agitator rotation speed was 175 rpm.

得られたMA粉末を軟鋼容器に充填し、750℃で押出
し加工し、粉末の固化を行った。
The obtained MA powder was filled into a mild steel container and extruded at 750°C to solidify the powder.

得られた各合金の特性値を測定したところ、表1に示す
結果であった。この測定結果から、本発明品が飽和磁束
密度(Bs)、残留磁束密度(Br)、保磁力(HC)
、最大磁化率(μmaw)、において優れていることが
わかる。
When the characteristic values of each obtained alloy were measured, the results were shown in Table 1. From this measurement result, it was found that the product of the present invention has a saturation magnetic flux density (Bs), a residual magnetic flux density (Br), and a coercive force (HC).
, maximum magnetic susceptibility (μmaw).

〔発明の効果〕〔Effect of the invention〕

以」二のように、本発明による合金は軟磁性焼結部品は
高い飽和磁束密度と優れた軟磁気特性を有する合金であ
り、磁気ヘッドや柱上トランス、モータ内鉄心等の軟磁
性材料として有利な特性を有するものであり、産業上非
常に有効である。
As described above, the alloy according to the present invention is an alloy that has high saturation magnetic flux density and excellent soft magnetic properties for soft magnetic sintered parts, and can be used as a soft magnetic material for magnetic heads, columnar transformers, cores in motors, etc. It has advantageous properties and is very effective industrially.

Claims (3)

【特許請求の範囲】[Claims] (1)Si3〜7重量%残部Fe、Al7重量%以下残
部Fe、またはSi10重量%以下、Al重量%以下残
部Fe、の化学組成を有する合金の粉末をAr雰囲気中
にて1時間以上メカニカルグラインディングすることに
より平均結晶が100nm以下の組織および/またはア
モルファス構造を有する処理粉末を作成し、該処理粉末
を合金の結晶化温度をTx(℃)とするとき(Tx+2
0)℃以下の温度において押し出し法により固化成形す
ることを特徴とするメカニカルアロイングを利用した軟
磁性焼結部品の製造方法。
(1) Mechanical grinding of an alloy powder having a chemical composition of 3 to 7% by weight of Si, balance of Fe, 7% by weight of Al or less, balance of Fe, or 10% or less of Si, balance of Fe of 10% or less by weight of Al, in an Ar atmosphere for more than 1 hour. When the crystallization temperature of the alloy is Tx (℃) (Tx+2
0) A method for manufacturing soft magnetic sintered parts using mechanical alloying, characterized by solidifying and molding by extrusion at a temperature of 0°C or lower.
(2)純Fe、純Si、純Al、Fe−Si合金または
Fe−M合金の粉末を、Si3〜7重量%残部Fe、A
l7重量%以下残部Fe、またはSi10重量%以下、
Al6重量%以下残部Feの化学組成に配合した後、A
r雰囲気中にて50時間以上メカニカルアロイングする
ことにより平均結晶が100nm以下の組織および/ま
たはアモルファス構造を有する処理粉末を作成すること
を特徴とする請求項(1)記載のメカニカルアロイング
を利用した軟磁性焼結部品の製造方法。
(2) Pure Fe, pure Si, pure Al, Fe-Si alloy or Fe-M alloy powder is mixed with 3 to 7% by weight Si, balance Fe, A
17% by weight or less, balance Fe, or Si 10% by weight or less,
After adding Al to the chemical composition of 6% by weight or less with the balance being Fe,
Utilizing the mechanical alloying according to claim (1), wherein a treated powder having an average crystal size of 100 nm or less and/or an amorphous structure is created by mechanical alloying for 50 hours or more in an r atmosphere. A method for manufacturing soft magnetic sintered parts.
(3)合金粉末が5%以下のNbまたは/およびCuを
合金元素として配合されていることを特徴とする請求項
(1)または(2)に記載のメカニカルアロイングを利
用した軟磁性焼結部品の製造方法。
(3) Soft magnetic sintering using mechanical alloying according to claim (1) or (2), wherein the alloy powder contains 5% or less of Nb and/or Cu as an alloying element. How the parts are manufactured.
JP2210212A 1990-08-10 1990-08-10 Production of soft magnetic sintered parts by utilizing mechanical alloying Pending JPH0499247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2210212A JPH0499247A (en) 1990-08-10 1990-08-10 Production of soft magnetic sintered parts by utilizing mechanical alloying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2210212A JPH0499247A (en) 1990-08-10 1990-08-10 Production of soft magnetic sintered parts by utilizing mechanical alloying

Publications (1)

Publication Number Publication Date
JPH0499247A true JPH0499247A (en) 1992-03-31

Family

ID=16585646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2210212A Pending JPH0499247A (en) 1990-08-10 1990-08-10 Production of soft magnetic sintered parts by utilizing mechanical alloying

Country Status (1)

Country Link
JP (1) JPH0499247A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443787A (en) * 1993-07-13 1995-08-22 Tdk Corporation Method for preparing iron system soft magnetic sintered body
KR100960699B1 (en) * 2008-01-16 2010-05-31 한양대학교 산학협력단 Fabrication Method of Fe-Si type soft magnet powder and soft magnet core using the same
CN111020410A (en) * 2019-11-13 2020-04-17 中国科学院宁波材料技术与工程研究所 Iron-based nanocrystalline magnetically soft alloy and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443787A (en) * 1993-07-13 1995-08-22 Tdk Corporation Method for preparing iron system soft magnetic sintered body
KR100960699B1 (en) * 2008-01-16 2010-05-31 한양대학교 산학협력단 Fabrication Method of Fe-Si type soft magnet powder and soft magnet core using the same
CN111020410A (en) * 2019-11-13 2020-04-17 中国科学院宁波材料技术与工程研究所 Iron-based nanocrystalline magnetically soft alloy and preparation method thereof
CN111020410B (en) * 2019-11-13 2020-11-03 中国科学院宁波材料技术与工程研究所 Iron-based nanocrystalline magnetically soft alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
US5178689A (en) Fe-based soft magnetic alloy, method of treating same and dust core made therefrom
JPH02125801A (en) Flat-state fe base soft magnetic alloy fine powder and manufacture thereof
JPH02298003A (en) Manufacture of rare-earth permanent magnet
JPH0448005A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JPH0499247A (en) Production of soft magnetic sintered parts by utilizing mechanical alloying
WO2020196608A1 (en) Amorphous alloy thin strip, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
JPS62177101A (en) Production of permanent magnet material
JPH0734183A (en) Composite dust core material and its production
JPS5911641B2 (en) Bonded permanent magnet powder and its manufacturing method
JP3516820B2 (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet, and method for producing rare earth permanent magnet
JPH04260302A (en) Magnetic powder and its manufacture and bonded magnet
JP7556248B2 (en) Sm-Fe-N magnetic material and its manufacturing method
JP2928647B2 (en) Method for producing iron-cobalt based sintered magnetic material
JPH0368743A (en) Fe-base sintered magnetic core material and its production
JPS63109140A (en) Manufacture of fe-sn soft-magnetic material
JPH0448004A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JPH03271346A (en) Soft magnetic alloy
JPH0310001A (en) Manufacture of super fine crystal alloy powder
JPH0238520A (en) Manufacture of fe-base soft-magnetic alloy and magnetic core
JPH09186038A (en) Manufacture of composite magnetic material
JPS6263645A (en) Production of permanent magnet material
KR920009167B1 (en) Soft magnetic materials
JPH01255620A (en) Production of permanent magnet material and bonded magnet
JPH02220412A (en) Rare earth alloy powder for bond magnet and bond magnet
JPS62290807A (en) Production of rare earth containing magnet alloy