[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0498803A - Manufacture of rare-earth alloy magnet powder - Google Patents

Manufacture of rare-earth alloy magnet powder

Info

Publication number
JPH0498803A
JPH0498803A JP2216215A JP21621590A JPH0498803A JP H0498803 A JPH0498803 A JP H0498803A JP 2216215 A JP2216215 A JP 2216215A JP 21621590 A JP21621590 A JP 21621590A JP H0498803 A JPH0498803 A JP H0498803A
Authority
JP
Japan
Prior art keywords
powder
raw material
melting point
magnet
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2216215A
Other languages
Japanese (ja)
Inventor
Mihiro Sumiyama
隅山 望洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2216215A priority Critical patent/JPH0498803A/en
Publication of JPH0498803A publication Critical patent/JPH0498803A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To make it possible to manufacture rare-earth alloy magnet powder for highly efficient anisotropic resin bonding at low cost by a method wherein rare-earth alloy magnet raw material powder only is annealed at 400 to l000 deg.C in a vacuum atmosphere of 1X10<-3> to 1X10<-5>Torr, a suitable thin oxide film is formed on the surface of the powder, and the powder is annealed at 500 to 1200 deg.C in a non-oxidizing atmosphere. CONSTITUTION:It is important to select and control the degree of vacuum atmosphere in which the first stage of annealing is conducted on raw material powder, and it is necessary to control the degree of vacuum at 1X10<-3> to 1X10<-5>Torr, desirably in the range of 1X10<-3> to 1X10<-4>Torr. The temperature of annealing, which is smaller than the influence of an atmosphere, is to be conducted at 100 to 400 deg.C, and the temperature range of 600 to 900 deg.C is desirable in order to obtain the magnet powder having high magnetic characteristics (iHc and OS). Then the above-mentioned raw material powder is thoroughly mixed with high melting point powder and the mixture is dispersed. There is calcium oxide (CaO) and the like, for example, as the high melting point powder, and the ratio of its adding quantity is 0.3 to 2 : 1 (raw material powder : high melting point powder) or thereabout.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は希土類系合金樹脂ボンド磁石の製造に係わり、
特に高い磁気特性が要求される樹脂ボンド磁石に最適の
希土類元素−鉄(Fe)−ホウ素(B)系、中でもネオ
ジム(Nd) −Fe−B系合金の磁石粉末を安価に製
造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to the production of rare earth alloy resin bonded magnets.
The present invention relates to a method for inexpensively manufacturing rare earth element-iron (Fe)-boron (B) alloy, especially neodymium (Nd)-Fe-B alloy magnet powder, which is ideal for resin-bonded magnets that particularly require high magnetic properties.

〔従来の技術1 高磁気特性〔保磁力1iHc) 、磁化の強さ(σ、)
等]を有する永久磁石の素材として種々の磁石粉末が用
いられている0代表的な磁石粉末としてはフェライト系
と希土類元素−コバルト系である。
[Conventional technology 1 High magnetic properties [coercive force 1iHc], strength of magnetization (σ, )
A variety of magnet powders are used as materials for permanent magnets having the following characteristics. Typical magnet powders include ferrite-based and rare earth element-cobalt-based magnet powders.

最近、安価な希土類元素と鉄とを用いて、最大エネルギ
ー積(BHI waxが陽めて優れた新高性能永久磁石
用磁石粉末としてR−Fe −B系が開発されつつある
Recently, the R-Fe-B system is being developed as a new high-performance permanent magnet magnetic powder that has a significantly superior maximum energy product (BHI wax) using inexpensive rare earth elements and iron.

このR−Fe −B系合金磁石粉末を製造する方法とし
て、下記の2方法がある。
There are the following two methods for manufacturing this R-Fe-B alloy magnet powder.

(1)特開昭59−46008号公報などに開示されて
いるとおり、溶解−造塊(インゴット)−粉砕(2)特
開昭59−64739号公報、特開昭60− lo(1
402号公報及び特開昭60−189902号公報に示
されているとおり、 超急冷凝固(固体物質、例えばリボン状)−粉砕または
超急冷凝固−熱処理一粉砕。
(1) As disclosed in JP-A-59-46008, etc., melting-ingot-pulverization (2) JP-A-59-64739, JP-A-60-LO(1)
402 and JP-A-60-189902, ultra-rapid solidification (solid material, e.g. ribbon-like) - grinding or ultra-rapid solidification - heat treatment - grinding.

樹脂ボンド磁石は、磁石粉末とバイダーとしての樹脂と
を混合し、混練し、押出成形し、圧縮成形あるいは射出
成形することにより、製造されるのが一般的である。
Resin bonded magnets are generally manufactured by mixing magnet powder and a resin as a binder, kneading, extrusion molding, compression molding, or injection molding.

超急冷凝固法により得られたNd−Fe−B系合金磁石
粉末を用い、前述の方法により、樹脂ボンド磁石を製造
した場合、得られた樹脂ボンド磁石は等方性であるため
、その磁気特性は満足出来るレベルでない。その製造方
法を変重し、高磁気特性が得られる異方性樹脂ボンド&
!1石を作ることば可能であるが、高価な製造設備を要
するため、安価な磁石を得ることが出来ない。また、従
来と同じ条件にて、インゴットを粉砕して得たNd−F
e−B系合金等の磁石原料粉末を用いて製造した磁石粉
末は磁気特性、特にiHcが低いために、樹脂ボンド磁
石用には適当でない。
When a resin-bonded magnet is manufactured by the method described above using Nd-Fe-B alloy magnet powder obtained by the ultra-rapid solidification method, the resulting resin-bonded magnet is isotropic, so its magnetic properties are is not at a satisfactory level. Anisotropic resin bond &
! Although it is possible to make one stone, it requires expensive manufacturing equipment, making it impossible to obtain a cheap magnet. In addition, Nd-F obtained by crushing the ingot under the same conditions as before
Magnet powder manufactured using magnet raw material powder such as e-B alloy has low magnetic properties, particularly iHc, and is therefore not suitable for resin bonded magnets.

それは、従来と同じ条件で製造された希土類系合金磁石
粉末は、粉末表面の変質及び内部上の残溜のため、磁気
特性、特に 1tlcが低下するためと考えられる。
This is thought to be because the rare earth alloy magnet powder manufactured under the same conditions as conventional ones deteriorates in magnetic properties, particularly in 1tlc, due to alteration of the powder surface and residue inside the powder.

これを解決する手段の1つとして、粉砕後に高温度で焼
鈍する方法が提案されているが、好ましい磁気特性を得
るに適した温度で焼鈍すると、原料粉末の焼結が生じる
ため、再粉砕する必要があり、これにより磁気特性を低
下させると云う問題点が生じた。
As one way to solve this problem, a method of annealing at a high temperature after pulverization has been proposed, but annealing at a temperature suitable for obtaining desirable magnetic properties causes sintering of the raw material powder, so re-pulverization is necessary. This caused the problem of degrading the magnetic properties.

本発明者はこの問題点を解決する手段として、特願平1
−94397号及び特願平1−:1I8451号に示し
た方法を提案した。
As a means to solve this problem, the inventor has proposed
The method shown in No. 94397 and Japanese Patent Application No. 1I8451 was proposed.

この方法によれば、 iHcは回復し、向上するが、他
の重要な磁気特性であるOsが必ずしも充分でないと云
う問題点が生じた。
According to this method, iHc is recovered and improved, but there is a problem that Os, which is another important magnetic property, is not necessarily sufficient.

本発明は、…脂ボンド磁石用希土類系合金磁石粉末を製
造するため、インゴットを粉砕したものを磁石原料粉末
とする磁石粉末製造法における上記課題を解決するため
になされたものであり、高性能異方性…脂ボンド用希七
類系合1i石粉末を、安価に製造する方法を提供するこ
とを目的とするものである。
The present invention was made in order to solve the above-mentioned problems in a magnet powder manufacturing method that uses pulverized ingots as magnet raw material powder in order to manufacture rare earth alloy magnet powder for fat-bonded magnets. Anisotropic...The object of the present invention is to provide a method for manufacturing at low cost a rare heptad-based amorphous amorphous powder for use in resin bonding.

[課題を解決するための手段1 前記課題を解決するために、特願平1−94397号及
び特願平1−318451号に示した製造方法により得
られた磁石粉末について検討し、本発明に至った。
[Means for Solving the Problems 1] In order to solve the above problems, magnetic powder obtained by the manufacturing method shown in Japanese Patent Application No. 1-94397 and Japanese Patent Application No. 1-318451 was studied, and the present invention was developed. It's arrived.

すなわち、希土類系合金磁石原料粉末のみをI X 1
O−3−I X 10−3〜1×10−5Torrの真
空雰囲策中において400〜1.000℃で焼鈍するこ
とにより、該原料粉末表面に適度な薄い酸化膜が生ずる
ように制i卸し、次いで該原料粉末を高融点の粉末と混
合したものを、非酸化性雰囲気中において500−1,
200℃で焼鈍することにより、該原料粉末と高融点の
粉末との相互作用を適度に制御して粉末の焼結を防止す
ると共に粉末表面を改質し、 iHc及び03等の磁気
特性を向上することを特徴とする#を頽系合金磁石粉末
の製造方法が本発明の要旨であ以下に本発明を川に詳細
に説明する。
In other words, only the rare earth alloy magnet raw material powder is I
By annealing at 400 to 1.000°C in a vacuum atmosphere of O-3-I Then, the raw material powder was mixed with high melting point powder and heated to 500-1,
By annealing at 200℃, the interaction between the raw material powder and the high melting point powder is appropriately controlled to prevent sintering of the powder, and the powder surface is modified to improve magnetic properties such as iHc and 03. The gist of the present invention is a method for producing #-based alloy magnet powder, which is characterized in that the present invention is described in detail below.

まず、インゴット粉砕による場合、周知の方法により、
所定の割合で成分調整した希を類系合金インゴットを得
る。超2冷凝固叉は急冷凝固の場合も、周知の方法によ
り、希土類系合金のリボン等を得る。
First, in the case of ingot crushing, by a well-known method,
A rare-type alloy ingot whose components are adjusted in a predetermined ratio is obtained. In the case of ultra-secondary solidification or rapid solidification, rare earth alloy ribbons and the like are obtained by well-known methods.

なお、希土類系合金の成分系及び組成についてはNd 
−Fe −B系に限らず、プラセオジム(Prl −F
e−B系や、これらNd、 Prに変えて他の希土類元
本を用いてもよい。
Regarding the component system and composition of the rare earth alloy, Nd
-Fe -B system, praseodymium (Prl -F
e-B series or other rare earth elements may be used in place of these Nd and Pr.

また、他の添加元素としては該合金磁石粉末の磁気特性
の向上を目的として、コバルト(Go)、アルミニウム
(At) 、ジルコニウム(Zr) 、硅素(Si) 
、ニオブ(Nb)等を添加してもよい。咀に、サマリウ
ムfsml −Go系、Fe−R系等の2元素の希土類
系合金でもよい。要はこの種の用途に供し得る成分系並
びに組成のものであれば、特に制限ばされない。(与ら
れたインゴット又はリボン等は周知の粉砕法、すなわち
、クラッシャー、スタンプミル、ボールミル等により、
非酸化性雰囲気で粉砕し、望ましくは平均粒径10μm
以下の粉末を得る。平均粒径40μ−以下ならば充分で
あり、あまり細粒にすると、最初の焼鈍で酸化されすぎ
、所望の特性が得られない。また、粉砕法は乾式でも湿
式でもよい。
In addition, other additive elements include cobalt (Go), aluminum (At), zirconium (Zr), and silicon (Si) for the purpose of improving the magnetic properties of the alloy magnet powder.
, niobium (Nb), etc. may be added. The material may be a two-element rare earth alloy such as samarium fsml-Go type or Fe-R type. In short, there are no particular limitations as long as the component system and composition can be used for this type of use. (The given ingot or ribbon, etc. is crushed by a well-known crushing method, i.e., a crusher, stamp mill, ball mill, etc.)
Grind in a non-oxidizing atmosphere, preferably with an average particle size of 10 μm
The following powder is obtained. An average grain size of 40 μm or less is sufficient; if the grains are made too fine, they will be oxidized too much during the first annealing, making it impossible to obtain the desired properties. Further, the pulverization method may be a dry method or a wet method.

非酸化性雰囲気中で粉砕する理由は、希土類系合金は極
めて酸化されやすく、室温、大気中での放置下でもすみ
やかに酸化が進行するため、粉砕中における該磁石原料
粉末の酸化を防止し、次工程の焼鈍のみにおいて、その
酸化を厳しく制御するためである。第1段の焼鈍におい
て、該磁石原料粉末に適度のりすい酸化膜を生成させる
制御は本発明の効果に大きな影響を与える。それには、
雰囲気真空度の選択、管理が大切であり、l×In−”
〜I X 1O−5Torr、望ましくはlXl0−”
〜lX10−3〜1×10−5Torrの範囲で管理す
る必要がある。雰囲気の影響よりは小さいが、その焼鈍
温度は400〜1、ooo℃であり、高磁気性fi’ 
 l1Hc 、 o、)の磁石粉末を得るためには60
0〜900℃が望ましい。焼鈍温度が高くなるにつれて
、得られる磁石粉末のiHc及びOfの両磁気特性いず
れも向上するが、温度が高(なるにつれて該磁石原料粉
末の酸化が進みやす(、且融着、焼結しやすくなるため
、前述の温度範囲が良い。
The reason for grinding in a non-oxidizing atmosphere is that rare earth alloys are extremely easily oxidized, and oxidation proceeds quickly even when left in the air at room temperature. This is to strictly control oxidation only in the next step of annealing. In the first stage annealing, control to generate a moderately resistant oxide film on the magnet raw material powder has a great influence on the effects of the present invention. For that,
It is important to select and manage the degree of vacuum in the atmosphere.
~IX1O-5Torr, preferably lXl0-"
It is necessary to manage the temperature within the range of ~1×10 −3 to 1×10 −5 Torr. Although the influence of the atmosphere is smaller, the annealing temperature is 400~1,00℃, and the high magnetic fi'
60 to obtain magnetic powder of l1Hc, o,)
A temperature of 0 to 900°C is desirable. As the annealing temperature increases, both the iHc and Of magnetic properties of the resulting magnet powder improve; Therefore, the above-mentioned temperature range is preferable.

該磁石原料粉末の一部に融着、焼結が生じた場合、平均
粒径lOμ■程度に再粉砕する。この再粉砕により該磁
石原料粉末の一部分は未酸化の新しい表面を露出する。
If fusion or sintering occurs in a part of the magnet raw material powder, it is re-pulverized to an average particle size of about 10μ■. This re-grinding exposes a new, unoxidized surface of a portion of the magnet raw powder.

次いで、該磁石原料粉末を高融点の粉末と充分に混合、
分散させる。高融点の粉末としては、少くとも 1.8
00℃以上の高融点であり、重には1.200℃以下の
温度での焼鈍において、酸化がな(、焼結しないものが
望ましい。例えば酸化カルシウム(Ca01、酸化ジル
コニウム(ZrOz) 、マグネシア(legal、ア
ルミナ(AlaOil、酸化チタン(T10□)等の酸
化物の粉末や、酸化ジスプロシウム(Dyz03) 、
酸化ネオジlム(Naioil等の希土類酸化物の粉末
、あるいは、窒化ボロンのような窒化物の粉末等が挙げ
られる。
Next, the magnet raw material powder is thoroughly mixed with a high melting point powder,
disperse. As a powder with a high melting point, at least 1.8
It is preferable to have a high melting point of 00℃ or higher, and that does not oxidize (or sinter) when annealed at a temperature of 1.200℃ or lower. For example, calcium oxide (Ca01), zirconium oxide (ZrOz), magnesia ( oxide powder such as legal, alumina (AlaOil, titanium oxide (T10□), dysprosium oxide (Dyz03),
Examples include powders of rare earth oxides such as neodymium oxide (Naioil), powders of nitrides such as boron nitride, and the like.

これらの粉末の平均粒径は原料粉末を分散させるに充分
な粒度であればよい。また添加盪としては原料粉末の焼
結を完全に妨げる置であればよく、体積比で0.3〜2
:1 (原料粉末:高融点の粉末)程度でよく、例えば
l:1.0.5:1のごとく混合する。該混合粉末を真
空中で充分に脱気した後、非酸化性雰囲気中で焼鈍を行
なう。
The average particle size of these powders may be sufficient as long as the particle size is sufficient to disperse the raw material powder. In addition, as for addition, it is sufficient that it completely prevents sintering of the raw material powder, and the volume ratio is 0.3 to 2.
:1 (raw material powder: powder with high melting point) may be used, for example, 1:1.0.5:1. After the mixed powder is sufficiently degassed in vacuum, it is annealed in a non-oxidizing atmosphere.

本焼鈍における主目的は、Nd−Fe−B糸磁石原料粉
末を用いた場合を例にすれば、該磁石原料粉末表面に形
成されるNd rich層の薄膜化による磁気特性の向
上にある。この際混合粉末の融着と焼結を防止し、再粉
砕をしないようにする必要がある。焼鈍は500〜1.
200℃で行なう。焼鈍温度が500℃より低いとNd
 rich層のIll化が不充分であり、該磁石原料粉
末と高融点の粉末との相互作用も不充分であり、且焼鈍
に時間を要し、効果が少ない。1,200℃以上になる
と、該磁石原料粉末の結晶の主相の融点に近づ(ため、
磁気特性に悪影響するので好ましくない。非酸化性雰囲
気としては不活性ガス雰囲気などである。このようにし
て得られる混合粉末は、殆ど焼結していないので、焼鈍
後の粉砕は必要なく、また原料粉末と高融点の粉末の融
着も少なく、かつ分離も従来分離法、すなわち超音波分
離と磁力選別の組合せにより、容易に分離でき、また、
該磁石原料粉末表面の改質効果が得られるので、高磁気
特性fiHc及びoctの磁石粉末を得る事が出来る。
Taking the case of using Nd-Fe-B thread magnet raw material powder as an example, the main purpose of the main annealing is to improve the magnetic properties by thinning the Nd rich layer formed on the surface of the magnet raw material powder. At this time, it is necessary to prevent the mixed powder from fusion and sintering, and to avoid re-grinding. Annealing is 500 to 1.
Perform at 200°C. When the annealing temperature is lower than 500℃, Nd
The Illization of the rich layer is insufficient, the interaction between the magnet raw material powder and the powder having a high melting point is also insufficient, and annealing takes time and is less effective. When the temperature exceeds 1,200°C, it approaches the melting point of the main phase of the crystal of the magnet raw material powder (because
This is not preferable because it adversely affects magnetic properties. Examples of the non-oxidizing atmosphere include an inert gas atmosphere. The mixed powder obtained in this way is hardly sintered, so there is no need for pulverization after annealing, and there is little fusion between the raw material powder and the powder with a high melting point, and separation is possible using conventional separation methods, ie ultrasonic waves. The combination of separation and magnetic sorting allows easy separation, and
Since the effect of modifying the surface of the magnet raw powder can be obtained, a magnet powder with high magnetic properties fiHc and oct can be obtained.

【作用〕[Effect]

本発明によれば、l X 10−3〜l X 10−3
〜1×10−5Torrの真空雰囲気中において、40
0−1.000℃の温度で、希土類系合金磁石原料粉末
のみを焼鈍し、次いで、該磁石原料粉末と高融点の粉末
とを充分に混合、分散した後、アルゴンガス等の非酸化
性雰囲気中において、500〜1,200℃の温度で焼
鈍し、磁石粉末の保磁力と磁化の強さの両磁気特性を同
時に向上させることが可能になった。この効果の機構は
明確ではないが、発明者は下記のように推論する。
According to the invention, l x 10-3 to l x 10-3
In a vacuum atmosphere of ~1 x 10-5 Torr, 40
Only the rare earth alloy magnet raw material powder is annealed at a temperature of 0-1.000°C, and then the magnet raw material powder and high melting point powder are sufficiently mixed and dispersed, and then heated in a non-oxidizing atmosphere such as argon gas. By annealing at a temperature of 500 to 1,200°C, it has become possible to simultaneously improve both the magnetic properties of the magnet powder, including the coercive force and magnetization strength. Although the mechanism of this effect is not clear, the inventor infers as follows.

Nd−Fe−B系磁石粉末を製造する場合を例にし、説
明すれば、第1段の焼鈍において、Nd+5FetアB
8なる組成の磁石原料粉末表面に形成され、層っている
Nd rich層の一部が酸化され、その表面に薄い酸
化膜が形成されると共に粉砕によりダメージを受けた該
磁石原料粉末の内部歪が除去される。
Taking as an example the case of manufacturing Nd-Fe-B based magnet powder, in the first stage annealing, Nd+5Fet aB
A part of the Nd rich layer formed and layered on the surface of the magnet raw material powder with a composition of is removed.

次いで行なわれた焼鈍において、譲磁石原料粉末と充分
に混合、分散された高融点の粉末は、該磁石原料粉末表
面の酸化膜が存在する所には、融着し難く、酸化膜が存
在しない部分の一部あるいは前焼鈍後再粉砕された場合
、該磁石原料粉末の再粉砕により出来た新しい表面の一
部等に非連続的に、分離して融着し、その融着面積が小
さくなるため、粉末同志の焼結は極めて少なくなり、再
粉砕が不必要になる。また、該磁石原料粉末表面に形成
され、覆っているNd rich層が薄くなる効果があ
るため、全体として、得られた磁石粉末の保磁力と磁化
の強さ等のM1’R特性を向上する。
In the subsequent annealing, the high melting point powder that was sufficiently mixed and dispersed with the magnet raw material powder was difficult to fuse and no oxide film was present on the surface of the magnet raw material powder where an oxide film existed. If a part of the magnet is re-pulverized after pre-annealing, it will discontinuously separate and fuse to a part of the new surface created by re-pulverizing the magnet raw material powder, and the fused area will become smaller. Therefore, sintering of the powders together becomes extremely small, and re-grinding becomes unnecessary. In addition, since the Nd rich layer formed on the surface of the magnet raw material powder and covering it becomes thinner, the M1'R characteristics such as coercive force and magnetization strength of the obtained magnet powder as a whole are improved. .

[実施例] Nd+5FeyyBsなる組成の合金の鋳造インゴット
をArガス雰囲気中で粉砕し1粒径が45μ箇以下の粉
末を得た。譲原料粉末を真空中(I[+−3Torr)
で700℃、800℃及び880℃の3温度で1時間焼
鈍し、冷却した後、 Arガス雰囲気中で45μ−まで
再度粉砕した。得られた再粉砕粉末を平均粒径lμ■の
焼結防止剤としてのDygOsを体積比l・lになるよ
うに混合し、混合粉末をArガス雰囲気中で1,000
℃1時間焼鈍した。冷却後、混合粉末をエチルアルコー
ル中で能力300Wの超音波洗浄基中で10分間分離を
行ない、その後磁力分離を行ない、磁石粉末を得た。こ
の分離法を6回繰返した。
[Example] A cast ingot of an alloy having a composition of Nd+5FeyyBs was pulverized in an Ar gas atmosphere to obtain powder with a grain size of 45 μm or less. Transfer raw material powder in vacuum (I [+-3 Torr)
The sample was annealed at three temperatures of 700°C, 800°C and 880°C for 1 hour, cooled, and ground again to 45 μm in an Ar gas atmosphere. The obtained re-pulverized powder was mixed with DygOs as a sintering inhibitor with an average particle size of 1μ so that the volume ratio was 1.1, and the mixed powder was mixed in an Ar gas atmosphere with a
It was annealed at ℃ for 1 hour. After cooling, the mixed powder was separated in ethyl alcohol in an ultrasonic cleaning unit with a capacity of 300 W for 10 minutes, and then subjected to magnetic separation to obtain magnetic powder. This separation procedure was repeated six times.

Dy*Ox除去分離後の磁石粉末をArガス雰囲気中で
乾燥した後、VSMで該磁石粉末の磁気特性を測定しそ
の結果を第1表に示した。
After drying the magnet powder after Dy*Ox removal and separation in an Ar gas atmosphere, the magnetic properties of the magnet powder were measured using a VSM, and the results are shown in Table 1.

比較例として、原料粉末のみでの1段目の焼鈍とその後
の再粉砕とを行なわないで、その他は同じ条件で製造し
た場合の測定結果を第1表に記載した。
As a comparative example, Table 1 shows the measurement results obtained when manufacturing was performed under the same conditions except for the first stage annealing using only the raw material powder and the subsequent re-pulverization.

第  1 表 この磁石粉末をエポキシ樹脂と混合し、磁場中(15に
口e)で約5t/crn”の圧力で成形し、#M脂硬化
させたところiHc 7にOe 、  (B旧wax 
10MGOeのボンド磁石が得られた。
Table 1 This magnet powder was mixed with epoxy resin, molded under a pressure of about 5t/crn in a magnetic field (15), and hardened with #M resin to give an Oe of 7 (B old wax).
A bonded magnet of 10 MGOe was obtained.

〔発明の効果J 以上、詳述したように、従来技術によるインゴット粉砕
法で得られた磁石粉末では、高保磁力が得られないかま
たは高保磁力が得られても、高い磁化の強さが得られな
かった。本発明によれば、高価な装置を用いないで、安
価な高磁気特性(保磁力と磁化の強さ)の磁石粉末を製
造することが可能になった。
[Effect of the invention J] As detailed above, the magnetic powder obtained by the ingot crushing method according to the conventional technology either cannot obtain a high coercive force, or even if a high coercive force is obtained, a high magnetization strength can be obtained. I couldn't. According to the present invention, it has become possible to produce inexpensive magnet powder with high magnetic properties (coercive force and magnetization strength) without using expensive equipment.

従って、高性能な希土類系合金異方性樹脂ボンド磁石の
製造が可能になった。
Therefore, it has become possible to manufacture a high-performance rare earth alloy anisotropic resin bonded magnet.

Claims (5)

【特許請求の範囲】[Claims] 1.希土類系合金磁石原料粉末のみを1×10^−^3
〜1×10^−^5Torrの真空雰囲気中において4
00〜1,000℃で焼鈍し、次いで、該原料粉末を高
融点の粉末と混合したものを、非酸化性雰囲気中におい
て500〜1,200℃で焼鈍することを特徴とする希
土類系合金磁石粉末の製造方法。
1. Rare earth alloy magnet raw material powder only 1×10^-^3
4 in a vacuum atmosphere of ~1×10^-^5 Torr
A rare earth alloy magnet characterized by annealing at 00 to 1,000°C, and then annealing the raw material powder mixed with high melting point powder at 500 to 1,200°C in a non-oxidizing atmosphere. Method of manufacturing powder.
2.前記高融点の粉末が高融点酸化物及び高融点窒化物
のうちから選ばれたものである請求項1記載の方法。
2. 2. The method of claim 1, wherein said high melting point powder is selected from high melting point oxides and high melting point nitrides.
3.前記高融点酸化物が酸化カルシウム、酸化ジルコニ
ウム、マグネシア、アルミナ、酸化チタン、並びに希土
類酸化物のうちから選ばれたものである請求項2記載の
方法。
3. 3. The method of claim 2, wherein the high melting point oxide is selected from calcium oxide, zirconium oxide, magnesia, alumina, titanium oxide, and rare earth oxides.
4.前記希土類酸化物が酸化ジスプロシウムまたは酸化
ネオジムのうちから選ばれたものである請求項3記載の
方法。
4. 4. The method of claim 3, wherein said rare earth oxide is selected from dysprosium oxide or neodymium oxide.
5.前記高融点窒化物が窒化ボロンである請求項2記載
の方法。
5. 3. The method of claim 2, wherein the high melting point nitride is boron nitride.
JP2216215A 1990-08-16 1990-08-16 Manufacture of rare-earth alloy magnet powder Pending JPH0498803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2216215A JPH0498803A (en) 1990-08-16 1990-08-16 Manufacture of rare-earth alloy magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2216215A JPH0498803A (en) 1990-08-16 1990-08-16 Manufacture of rare-earth alloy magnet powder

Publications (1)

Publication Number Publication Date
JPH0498803A true JPH0498803A (en) 1992-03-31

Family

ID=16685081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2216215A Pending JPH0498803A (en) 1990-08-16 1990-08-16 Manufacture of rare-earth alloy magnet powder

Country Status (1)

Country Link
JP (1) JPH0498803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353025A (en) * 2001-05-28 2002-12-06 Sanei Kasei Kk Plastic magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353025A (en) * 2001-05-28 2002-12-06 Sanei Kasei Kk Plastic magnet

Similar Documents

Publication Publication Date Title
JPS63232301A (en) Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof
EP0657899B1 (en) Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
JPH01703A (en) Permanent magnet and its manufacturing method
JP2720040B2 (en) Sintered permanent magnet material and its manufacturing method
JPS6393841A (en) Rare-earth permanent magnet alloy
JP3693838B2 (en) Alloy ribbon for rare earth magnet, alloy fine powder, and production method thereof
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JPS62177101A (en) Production of permanent magnet material
JP3693839B2 (en) Alloy ribbon for rare earth magnet, alloy fine powder, and production method thereof
JPH0498803A (en) Manufacture of rare-earth alloy magnet powder
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JPH0837122A (en) Production of r-t-m-n anisotropic bonded magnet
JPS6353201A (en) Production of permanent magnet material
JP2002057014A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JP3652751B2 (en) Anisotropic bonded magnet
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JPH05211102A (en) Powder for permanent magnet and permanent magnet
JPH04119605A (en) Manufacture of sintered permanent magnet, sintered permanent magnet power and bonded magnet made of the power
JPH02138707A (en) Rare-earth magnet powder annealing method
JP2631380B2 (en) Rare earth-iron permanent magnet manufacturing method
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPS62261102A (en) Bonded magnet for starter motor
JPH04240703A (en) Manufacture of permanent magnet